
GCC plugins and MELT extensions (e.g. Talpo)

Basile STARYNKEVITCH and Pierre VITTET
basile@starynkevitch.net (or basile.starynkevitch@cea.fr)

piervit@pvittet.com

August 24th 2011 – Gnu Hackers Meeting 2011 (Paris,IRILL France)

These slides are under a Creative Commons Attribution-ShareAlike 3.0 Unported License

creativecommons.org/licenses/by-sa/3.0 and downloadable fromgcc-melt.org
Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 1 / 85

mailto:basile@starynkevitch.net
mailto:basile.starynkevitch@cea.fr
mailto:piervit@pvittet.com
http://creativecommons.org/licenses/by-sa/3.0/
http://gcc-melt.org/

Table of Contents

1 Introduction
about you and me
about GCC and MELT
running GCC

2 MELT
why MELT?
handling GCC internal data with MELT
matching GCC data with MELT
future work on MELT

3 Talpo
Foreword about Talpo
Type of tests
Using Talpo
Modularity

4 Conclusion

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 2 / 85

Introduction

Contents

1 Introduction
about you and me
about GCC and MELT
running GCC

2 MELT
why MELT?
handling GCC internal data with MELT
matching GCC data with MELT
future work on MELT

3 Talpo
Foreword about Talpo
Type of tests
Using Talpo
Modularity

4 Conclusion

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 3 / 85

Introduction about you and me

opinions are mine only

Opinions expressed here are only mine!
not of my employer (CEA, LIST) or school (Polytech Tours)
not of the Gcc community
not of funding agencies (e.g. DGCIS or Google GSOC)1

I don’t understand or know all of Gcc;
there are many parts of Gcc I know nothing about.

Beware that I have some strong technical opinions which are not the view
of the majority of contributors to Gcc.

I am not a lawyer ⇒ don’t trust me on licensing issues

(slides presented before at Archi11 (Basile), and RMLL11 (Pierre))
1Work on Melt have been possible thru the GlobalGCC ITEA and OpenGPU FUI

collaborative research projects, with funding from DGCIS, and GSOC (for Talpo)

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ♠ 4 / 85

Introduction about you and me

Questions to the audience

1 What is your usual Gcc version? your latest Gcc?
2 Who contributed to Gcc ,?
3 Who knows and codes in

C language is mandatory since you use gcc!
C++ or Objective C or D or Go or OpenCL or Cuda (C “improvements”)?
Scheme, Common Lisp, Clojure, or Emacs Lisp (lispy languages)?
Ocaml or Haskell or Scala (pattern matching, functional)?
Java or C# [.Net] (major VMs, GC-ed)?
Python, Ruby, Lua, PHP, Perl, Awk, Scilab, R (dynamic scripting languages)?
Fortran, Ada, Pascal, Modula3 (legacy, perhaps targeted by Gcc)?

4 Who wrote (or contributed to) a compiler? An interpreter? A C or JIT code generator?

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 5 / 85

Introduction about you and me

Contributing to GCC

Bug reports are always welcome. http://gcc.gnu.org/bugzilla/
give carefully all needed information

For code (or documentation) contributions:
read http://gcc.gnu.org/contribute.html

legalese: copyright assignment of your work to FSF
need legal signature by important people: boss, dean, “President
d’Université” (takes a lot of burocratic time)
never submit code which you did not write yourself

coding rules and standards
http://gcc.gnu.org/codingconventions.html

peer-review of submitted code patches on gcc-patches@gcc.gnu.org

every contribution to Gcc has been reviewed

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 6 / 85

http://gcc.gnu.org/bugzilla/
http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/codingconventions.html
mailto:gcc-patches@gcc.gnu.org

Introduction about GCC and MELT

GCC at a glance
You are expected to know about it, and to have used it!

http://gcc.gnu.org/

GNU COMPILER COLLECTION
(long time ago, started as Gnu C Compiler)

Gcc is a [set of] compiler[s] for several languages and architectures
with the necessary language and support libraries (e.g. libstdc++, etc.)

Gcc is free -as in speech- software (mostly under GPLv3+ license)

Gcc is central to the GNU movement, so ...
Gcc is a GNU software
Gcc is used to compile a lot of free (e.g. GNU) software, notably most of
GNU/Linux distributions, Linux kernel, . . .
the http://www.gnu.org/licenses/gcc-exception.html permit you to use Gcc to
compile proprietary software with conditions.
So, it probably forbids to distribute only binaries built with a proprietary enhancement of Gcc.

Everyone is using code compiled with Gcc
(e.g. in your smartphone, car, plane, ADSL box, laptop, TV set, Web servers . . .).

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 7 / 85

http://gcc.gnu.org/
http://www.gnu.org/licenses/gcc-exception.html

Introduction about GCC and MELT

A short history of GCC

started in 1985-87 by RMS (Richard M. Stallman, father of GNU and FSF)

may 1987: gcc-1.0 released (a “statement at a time” compiler for C)

december 1987: gcc-1.15.3 with g++

1990s: the Cygnus company (M. Tiemann)

february 1992: gcc-2.0

1997: The EGCS crisis (an Experimental Gnu Compiler System), a fork

ecgs 1.1.2 released in march 1999

april 1999: ECGS reunited with FSF, becomes gcc-2.95

march 2001: gcc-2.95.3

june 2001: gcc-3.0

november 2004: gcc-3.4.3

april 2005: gcc-4.0

april 2010: gcc-4.5 enable plugins and LTO

march 2011: gcc-4.6 released

See also http://www.h-online.com/open/features/

GCC-We-make-free-software-affordable-1066831.html

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 8 / 85

http://www.h-online.com/open/features/GCC-We-make-free-software-affordable-1066831.html
http://www.h-online.com/open/features/GCC-We-make-free-software-affordable-1066831.html

Introduction about GCC and MELT

GCC community

The community:
more than 400 contributors (file MAINTAINERS), mostly nearly full-time
corporate professionals (AMD, AdaCore, CodeSourcery, Google, IBM, Intel, Oracle,
SuSE, and many others)

copyright assigned to FSF (sine qua non for write svn access)
peer-reviewed contributions, but no single leader
several levels:

1 Global Reviewers (able to Ok anything)
2 Specialized Reviewers (port, language, or features maintainers)
3 Write After Approval maintainers

(formally cannot approve patches, but may comment about them)

These levels are implemented socially, not technically
(e.g. every maintainer could svn commit any file but shouldn’t.).

Public exchanges thru archived mailing-lists gcc@gcc.gnu.org &
gcc-patches@gcc.gnu.org, IRC, meetings, GCC Summit-s.

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 9 / 85

mailto:gcc@gcc.gnu.org
mailto:gcc-patches@gcc.gnu.org

Introduction about GCC and MELT

GCC Steering Commitee

http://gcc.gnu.org/steering.html and
http://gcc.gnu.org/gccmission.html

The SC is made of major Gcc experts (mostly global reviewers, not
representing their employers). It takes major “political” decisions

relation with FSF
license update (e.g. GPLv2→ GPLv3) and exceptions
approve (and advocate) major evolutions: plugins feature 2, new
languages, new targets
nominate reviewers

NB. Major technical improvements (e.g. LTO or Gimple) is not the role of the SC.

2The introduction of plugins required improvement of the GCC runtime exception
licensing.

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 10 / 85

http://gcc.gnu.org/steering.html
http://gcc.gnu.org/gccmission.html

Introduction about GCC and MELT

GCC major features

large free software project, essential to GNU ideals and goals
1 old mature software: started in 1984, lots of legacy
2 essential to free software: corner stone of GNU and Linux systems
3 big software, nearly 5 million lines of source code
4 large community (≈ 400) of full-time developers
5 no single leader or benevolent dictator
⇒ the Gcc code base or architectural design is sometimes messy!

compiles many source languages: C, C++, Ada, Fortran, Objective C, Java,
Go . . . (supports several standards, provides signficant extensions)

makes non-trivial optimizations to generate efficient binaries
targets many processors & variants : x86, ARM, Sparc, PowerPC, MIPS, ...

can be used as a cross-compiler:
compile on your Linux PC for your ARM smartphone

can run on many systems (Linux, FreeBSD, Windows, Hurd ...) and generate
various binaries

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 11 / 85

Introduction about GCC and MELT

Extending GCC

Recent Gcc can be extended by plugins.
This enables extra-ordinary features:

additional optimizations (e.g. research or prototyping on optimizations)

domain-, project-, corporation-, software- ... specific extensions:
1 specific warnings , e.g. for untested calls to fopen or fork
2 specific type checks, e.g. type arguments of variadic g_object_set in Gtk.
3 coding rules validation, e.g. ensure that pthread_mutex_lock is matched

with pthread_mutex_unlock
4 specific optimizations, e.g. fprintf(stdout,...) ⇒ printf(...)

take advantage of Gcc power for your “source-code” processing (metrics,
navigations, refactoring...)

Some people dream of enhancing GCC thru plugins to get a free competitor to CoverityTM

http://www.coverity.com/ source code analyzer
See also a C-only free static analyzer Frama-C http://frama-c.com/ coded in Ocaml

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 12 / 85

http://www.coverity.com/
http://frama-c.com/

Introduction about GCC and MELT

alternatives to GCC

You can use other languages:
1 high-level functional statically-typed languages like e.g. Ocaml
http://caml.inria.fr or Haskell

2 more academic languages (SML, Mercury, Prolog, Scheme, . . .) 3, or niche
languages (Erlang . . .)

3 dynamic scripting languages: Python, PHP, Perl, Lua . . .
4 dynamic compiled languages: Smalltalk (Squeak), CommonLisp (SBCL)

(some implementations are even generating machine code on the fly!)

5 Java4 and JVM based languages (Scala, Clojure, . . .)
6 etc . . .
7 assembly code is obsolete: compilers do better than humans5

(you could use Gcc powerful asm statement)

3Some compilers -e.g. Chicken Scheme- are generating C code for Gcc
4Gcc accepts Java as gcj but that is rarely used.
5For a hundred lines of code.

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 13 / 85

http://caml.inria.fr

Introduction about GCC and MELT

Generating code yourself

You can generate code, either e.g. C or C++6, or machine code with JIT-ing
libraries like GNU lightning or libjit or LLVM, a free BSD-licensed7

library http://llvm.org for [machine] code generation (e.g. Just In Time)

Melt is implemented by generating C code

meta-knowledge8 meta-programming and multi-staged programming are
interesting subjects.

Advice: never generate by naïve text expansion (e.g. printf...). Always represent your
generated code in some abstract syntax tree.

6You could even generate C code, compile it (by forking a gcc or a make), then
dlopen it, all from the same process. On Linux you can call dlopen many times.

7IMHO, the BSD license of LLVM do not encourage enough a free community. LLVM
is rumored to have many proprietary enhancements.

8J.Pitrat: Méta-connaissances, futur de l’intelligence artificielle (Hermès 1990)
Artificial beings - the conscience of a conscious machine (Wiley 2009)

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 14 / 85

http://llvm.org

Introduction about GCC and MELT

Competitors to GCC

You can use other compilers, even for C or C++:
proprietary compilers, e.g. Intel’s icc
Compcert http://compcert.inria.fr/ - a C compiler formally
proven in Coq (restrictive license, usable & readable by academia)

Clang, a C and C++ front-end above LLVM.
“toy” one-person compilers9, usually only on x86:

tinycc by Fabrice Bellard http://tinycc.org/ and
http://savannah.nongnu.org/projects/tinycc; compiles very quickly to slow
machine code
nwcc by Nils Weller http://nwcc.sourceforge.net/ - possibly stalled

NB: There is almost no market for costly proprietary compilers, competitors to GCC

Competition is IMHO good within free software

9Often quite buggy in practice
Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 15 / 85

http://compcert.inria.fr/
http://tinycc.org/
http://savannah.nongnu.org/projects/tinycc
http://nwcc.sourceforge.net/

Introduction about GCC and MELT

Why GCC matters?

Gcc matters to you and to me because:

you are interested in computer architecture or performance or
diagnostics10,so compilers matter to you
you want to experiment some new compilation ideas
you want to profit of Gcc to do some “extra-compilatory” activities
so you need to understand (partly) Gcc internals
it is fun to understand such a big free software!
you want to contribute to Gcc itself (or to Melt)

10Execution speed, code size, fancy compiler warnings!

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 16 / 85

Introduction about GCC and MELT

Link time or whole program optimization

Recent Gcc has link-time optimizations:
use gcc -O2 -flto for compile and for linking11.

Then optimization between compilation units (e.g. inlining) can happen.

LTO can be costly.

LTO is implemented by encoding GCC internal representations (Gimple, ...) in
object files.

LTO can be extended for large whole program optimization (WHOPR)

LTO can be used by extensions to provide program-wide features

11e.g. with CC=gcc -O2 -flto in your Makefile
Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 17 / 85

Introduction about GCC and MELT

Gcc and Melt big picture

Generic / Tree

internal representation[s]
Link Time
Optimizations

GIM
PLE

internal representation[s]

bee.c

foo.cc

bar.f90

cat.adb

dog.o

(LTO)

C front-end

C++ front-end

Fortran front-end

Ada front-end

LTO "front-end"

R
T

L
 i.r.

bee.o

foo.o

bar.o

cat.o

dog.o

250 passes in GCC!

yourpass.meltmelt.so yourpass.so

Melt runtime & translator

GCC MELT

warmelt*.so

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 18 / 85

Introduction about GCC and MELT

What is MELT?

Coding Gcc extensions (or prototyping new Gcc passes) is quite difficult in C:

compiler technology is mostly symbolic processing
(while C can be efficient, it is not easy to process complex data with it).

specific Gcc extensions need to be developped quickly
(so development productivity matters more than raw performance)

an important part of the work is to detect or filter patterns in Gcc internal
representations

Melt is a lispy Domain Specific Language for developing Gcc extensions
Melt is designed to fit very well into Gcc internals; it is translated to C
(in the style required by Gcc).
Melt has powerful features: pattern-matching, applicative & object
programming, . . .
Melt is itself a [meta-] plugin12 for Gcc

12There is also an experimental Gcc branch for Melt!

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 19 / 85

Introduction about GCC and MELT

driven by gcc
gcc -v -O hello.c -o hello

1 C-compile

/usr/lib/gcc/x86_64-linux-gnu/4.6.1/cc1 -quiet -v hello.c -quiet \
-dumpbase hello.c -mtune=generic -march=x86-64 -auxbase hello \
-O -version -o /tmp/ccTBI9E6.s

2 assemble as -64 -o /tmp/ccOMVPbN.o /tmp/ccTBI9E6.s

3 link

/usr/lib/gcc/x86_64-linux-gnu/4.6.1/collect2 --build-id
--no-add-needed--eh-frame-hdr -m elf_x86_64 --hash-style=both
-dynamic-linker /lib64/ld-linux-x86-64.so.2 -o hello
/usr/lib/gcc/x86_64-linux-gnu/4.6.1/../../../../lib/crt1.o
/usr/lib/gcc/x86_64-linux-gnu/4.6.1/../../../../lib/crti.o
/usr/lib/gcc/x86_64-linux-gnu/4.6.1/crtbegin.o
-L/usr/lib/gcc/x86_64-linux-gnu/4.6.1
-L/usr/lib/gcc/x86_64-linux-gnu/4.6.1/../../../../lib
-L/lib/../lib -L/usr/lib/../lib
-L/usr/lib/gcc/x86_64-linux-gnu/4.6.1/../../..
-L/usr/lib/x86_64-linux-gnu /tmp/ccOMVPbN.o -lgcc --as-needed
-lgcc_s --no-as-needed -lc -lgcc
--as-needed -lgcc_s --no-as-needed
/usr/lib/gcc/x86_64-linux-gnu/4.6.1/crtend.o
/usr/lib/gcc/x86_64-linux-gnu/4.6.1/../../../../lib/crtn.o

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 20 / 85

Introduction running GCC

driven by gcc [with C++ and LTO]
gcc -v -O -flto sayit.cc hello1.c -o hello1 -lstdc++

1 C++ compile
.../cc1plus -quiet -v -v -D_GNU_SOURCE sayit.cc -quiet -dumpbase sayit.cc -mtune=generic -march=x86-64 -auxbase sayit -O -version -flto -o /tmp/cccEErWK.s

2 assemble as -64 -o /tmp/ccMj0zRK.o /tmp/cccEErWK.s

3 C compile
.../cc1 -quiet -quiet -v -v hello1.c -quiet -dumpbase hello1.c -mtune=generic -march=x86-64 -auxbase hello1 -O -version -flto -o /tmp/cccEErWK.s

4 assemble as -64 -o /tmp/ccocvgSK.o /tmp/cccEErWK.s

5 link
.../collect2 -plugin .../liblto_plugin.so -plugin-opt=.../lto-wrapper -plugin-opt=-fresolution=/tmp/ccFoSbUK.res -plugin-opt=-pass-through=-lgcc -plugin-opt=-pass-through=-lgcc_s -plugin-opt=-pass-through=-lc -plugin-opt=-pass-through=-lgcc -plugin-opt=-pass-through=-lgcc_s -flto --build-id --no-add-needed --eh-frame-hdr -m elf_x86_64 --hash-style=both -dynamic-linker /lib64/ld-linux-x86-64.so.2 -o hello1 .../crt1.o .../crti.o .../crtbegin.o -L.... /tmp/ccMj0zRK.o /tmp/ccocvgSK.o -lstdc++ -lgcc --as-needed -lgcc_s --no-as-needed -lc -lgcc --as-needed -lgcc_s --no-as-needed .../crtend.o .../crtn.o

6 re-invoke gcc @/tmp/ccZF9We9.args so
1 link-time optimize

.../lto1 -quiet -dumpdir ./ -dumpbase hello1.wpa -mtune=generic -march=x86-64 -auxbase ccMj0zRK -O -version -fltrans-output-list=/tmp/ccBc8K58.ltrans.out -fwpa -fresolution=/tmp/ccFoSbUK.res @/tmp/ccmckm08

2 link-time optimize
.../lto1 -quiet -dumpdir ./ -dumpbase hello1.ltrans0 -mtune=generic -march=x86-64 -auxbase-strip /tmp/ccBc8K58.ltrans0.ltrans.o -O -version -fltrans @/tmp/cc8WqSAa -o /tmp/ccghYRNa.s

3 assemble as -64 -o /tmp/ccBc8K58.ltrans0.ltrans.o /tmp/ccghYRNa.s

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 21 / 85

Introduction running GCC

what is happening inside cc1 ?

make inside a fresh directory a small hello.c with a simple loop, and
using #include <stdio.h>

compile with gcc -v -Wall -O hello.c -o hello and run
./hello

preprocessing: gcc -C -E hello.c > hello.i. Look into hello.i

generated assembly: gcc -O -fverbose-asm -S hello.c.
See hello.s. Try again with -g or -O2 -mtune=native

detailed timing report with -ftime-report. Try it with -O1 and with
-O3.
internal dump files, to debug or understand Gcc itself.
gcc -O2 -c -fdump-tree-all hello.c produces hundreds of
files. List them chronologically with ls -lt hello.c.* and look
inside some.

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 22 / 85

MELT

Contents

1 Introduction
about you and me
about GCC and MELT
running GCC

2 MELT
why MELT?
handling GCC internal data with MELT
matching GCC data with MELT
future work on MELT

3 Talpo
Foreword about Talpo
Type of tests
Using Talpo
Modularity

4 Conclusion

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 23 / 85

MELT why MELT?

Motivations for MELT

Gcc extensions address a limited number of users13, so their development
should be facilitated (cost-effectiveness issues)

extensions should be [meta-] plugins, not Gcc variants [branches, forks] 14

which are never used
⇒ extensions delivered for and compatible with Gcc releases
when understanding Gcc internals, coding plugins in plain C is very hard
(because C is a system-programming low-level language, not a high-level
symbolic processing language)
⇒ a higher-level language is useful
garbage collection - even inside passes - eases development for
(complex and circular) compiler data structures
⇒ Ggc is not enough : a G-C working inside passes is needed
Extensions filter or search existing Gcc internal representations
⇒ powerful pattern matching (e.g. on Gimple, Tree-s, . . .) is needed

13Any development useful to all Gcc users should better go inside Gcc core!
14Most Gnu/Linux distributions don’t even package Gcc branches or forks.

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 24 / 85

MELT why MELT?

Embedding a scripting language is impossible

Many scripting or high-level languages 15 can be embedded in some other software:
Lua, Ocaml, Python, Ruby, Perl, many Scheme-s, etc . . .

But in practice this is not doable for Gcc (we tried one month for Ocaml) :
mixing two garbage collectors (the one in the language & Ggc) is error-prone
Gcc has many existing GTY-ed types
the Gcc API is huge, and still evolving
(glue code for some scripting implementation would be obsolete before finished)

since some of the API is low level (accessing fields in struct-s), glue code
would have big overhead⇒ performance issues
Gcc has an ill-defined, non “functional” [e.g. with only true functions] or
“object-oriented” API; e.g. iterating is not always thru functions and callbacks:
/* iterating on every gimple stmt inside a basic block bb */
for (gimple_stmt_iterator gsi = gsi_start_bb (bb);

!gsi_end_p (gsi); gsi_next (&gsi)) {
gimple stmt = gsi_stmt (gsi); /* handle stmt ...*/ }

15Pedantically, languages’ implementations can be embedded!
Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 25 / 85

MELT why MELT?

Melt, a Domain Specific Language translated to C

Melt is a DSL translated to C in the style required by Gcc

C code generators are usual inside Gcc

the Melt-generated C code is designed to fit well into Gcc (and Ggc)

mixing small chunks of C code with Melt is easy

Melt contains linguistic devices to help Gcc-friendly C code generation

generating C code eases integration into the evolving Gcc API

The Melt language itself is tuned to fit into Gcc
In particular, it handles both its own Melt values and existing Gcc stuff

The Melt translator is bootstrapped, and Melt extensions are loaded by the
melt.so plugin

With Melt, Gcc may generate C code while running, compiles it16 into a Melt
binary .so module and dlopen-s that module.

16By invoking make from melt.so loaded by cc1; often that make will run another
gcc -fPIC

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 26 / 85

MELT why MELT?

Melt values vs Gcc stuff

Melt handles first-citizen Melt values:
values like many scripting languages have (Scheme, Python, Ruby, Perl,
even Ocaml . . .)
Melt values are dynamically typed17, organized in a lattice; each Melt
value has its discriminant (e.g. its class if it is an object)
you should prefer dealing with Melt values in your Melt code
values have their own garbage-collector (above Ggc), invoked implicitly

But Melt can also handle ordinary Gcc stuff:
stuff is usually any GTY-ed Gcc raw data, e.g. tree, gimple, edge,
basic_block or even long

stuff is explicitly typed in Melt code thru c-type annotations like :tree,
:gimple etc.
adding new ctypes is possible (some of the Melt runtime is generated)

17Because designing a type-system friendly with Gcc internals mean making a type
theory of Gcc internals!

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 27 / 85

MELT why MELT?

Things = (Melt Values) ∪ (Gcc Stuff)

things Melt values Gcc stuff
memory
manager

Melt GC (implicit, as needed,
even inside passes)

Ggc (explicit, between passes)

allocation quick, in the birth zone ggc_alloc, by various
zones

GC tech-
nique

copying generational (old→
ggc)

mark and sweep

GC time O(λ) λ = size of young live ob-
jects

O(σ) σ = total memory size

typing dynamic, with discriminant static, GTY annotation
GC roots local and global variables only global data
GC suited
for

many short-lived temporary
values

quasi-permanent data

GC usage in generated C code in hand-written code
examples lists, closures, hash-maps,

boxed tree-s, objects . . .
raw tree stuff, raw gimple
. . .

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 28 / 85

MELT why MELT?

Melt garbage collection

co-designed with the Melt language
co-implemented with the Melt translator
manage only Melt values
all Gcc raw stuff is still handled by Ggc

copying generational Melt garbage collector (for Melt values only):
1 values quickly allocated in birth region

(just by incrementing a pointer; a Melt GC is triggered when the birth region is full.)
2 handle well very temporary values and local variables
3 minor Melt GC: scan local values (in Melt call frames), copy and move them

out of birth region into Ggc heap
4 full Melt GC = minor GC + ggc_collect (); 18

5 all local pointers (local variables) are in Melt frames
6 needs a write barrier (to handle old→ young pointers)
7 requires tedious C coding: call frames, barriers, normalizing nested

expressions (z = f(g(x),y)→ temporary τ = g(x); z=f(τ, y);)
8 well suited for generated C code

18So Melt code can trigger Ggc collection even inside Gcc passes!

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 29 / 85

MELT why MELT?

a first silly example of Melt code
Nothing meaningful, to give a first taste of Melt language:

;; -*- lisp -*- MELT code in firstfun.melt
(defun foo (x :tree t)

(tuple x
(make_tree discr_tree t)))

comments start with ; up to EOL; case is not meaningful: defun ≡ deFUn

Lisp-like syntax: (operator operands . . .) so
parenthesis are always significant in Melt (f) 6≡ f, but in C f() 6≡ f ≡ (f)

defun is a “macro” for def ining functions in Melt

Melt is an expression based language: everything is an expression giving a result

foo is here the name of the defined function

(x :tree t) is a formal arguments list (of two formals x and t); the “ctype
keyword” :tree qualifies next formals (here t) as raw Gcc tree-s stuff

tuple is a “macro” to construct a tuple value - here made of 2 component values

make_tree is a “primitive” operation, to box the raw tree stuff t into a value

discr_tree is a “predefined value”, a discriminant object for boxed tree values

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 30 / 85

MELT why MELT?

generated C code from previous example
The [low level] C code, has more than 680 lines in generated firstfun.c, including

melt_ptr_t MELT_MODULE_VISIBILITY
meltrout_1_firstfun_FOO
(meltclosure_ptr_t closp_,
melt_ptr_t firstargp_,
const melt_argdescr_cell_t xargdescr_[],
union meltparam_un *xargtab_,
const melt_argdescr_cell_t xresdescr_[],
union meltparam_un *xrestab_)

{
struct frame_meltrout_1_firstfun_FOO_st {

int mcfr_nbvar;
#if ENABLE_CHECKING

const char *mcfr_flocs;
#endif

struct meltclosure_st *mcfr_clos;
struct excepth_melt_st *mcfr_exh;
struct callframe_melt_st *mcfr_prev;
void *mcfr_varptr[5];
tree loc_TREE__o0;

} *framptr_ = 0, meltfram__;
memset (&meltfram__, 0, sizeof (meltfram__));
meltfram__.mcfr_nbvar = 5;
meltfram__.mcfr_clos = closp_;
meltfram__.mcfr_prev

= (struct callframe_melt_st *) melt_topframe;
melt_topframe

= (struct callframe_melt_st *) &meltfram__;
MELT_LOCATION ("firstfun.melt:2:/ getarg");

#ifndef MELTGCC_NOLINENUMBERING
#line 2 "firstfun.melt" /**::getarg::**/
#endif /*MELTGCC_NOLINENUMBERING */

/*_.X__V2*/ meltfptr[1] = (melt_ptr_t) firstargp_;
if (xargdescr_[0] != MELTBPAR_TREE)
goto lab_endgetargs;

/*_?*/ meltfram__.loc_TREE__o0 = xargtab_[0].meltbp_tree;
lab_endgetargs:;
/*_.MAKE_TREE__V3*/ meltfptr[2] =
#ifndef MELTGCC_NOLINENUMBERING
#line 4 "firstfun.melt" /**::expr::**/
#endif /*MELTGCC_NOLINENUMBERING */

(meltgc_new_tree
((meltobject_ptr_t) ((/*!DISCR_TREE */ meltfrout->tabval[0])),
(/*_?*/ meltfram__.loc_TREE__o0)));;

{
struct meltletrec_1_st {

struct MELT_MULTIPLE_STRUCT (2) rtup_0__TUPLREC__x1;
long meltletrec_1_endgap;

} *meltletrec_1_ptr = 0;
meltletrec_1_ptr = (struct meltletrec_1_st *)

meltgc_allocate (sizeof (struct meltletrec_1_st), 0);
/*_.TUPLREC___V5*/ meltfptr[4] =

(void *) &meltletrec_1_ptr->rtup_0__TUPLREC__x1;
meltletrec_1_ptr->rtup_0__TUPLREC__x1.discr =

(meltobject_ptr_t) (((void *)
(MELT_PREDEF (DISCR_MULTIPLE))));

meltletrec_1_ptr->rtup_0__TUPLREC__x1.nbval = 2;
((meltmultiple_ptr_t) (/*_.TUPLREC___V5*/ meltfptr[4]))->tabval[0] =

(melt_ptr_t) (/*_.X__V2*/ meltfptr[1]);
((meltmultiple_ptr_t) (/*_.TUPLREC___V5*/ meltfptr[4]))->tabval[1] =

(melt_ptr_t) (/*_.MAKE_TREE__V3*/ meltfptr[2]);
meltgc_touch (/*_.TUPLREC___V5*/ meltfptr[4]);
/*_.RETVAL___V1*/ meltfptr[0] = /*_.TUPLE___V4*/ meltfptr[3];;

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 31 / 85

MELT why MELT?

“hello world” in Melt, a mix of Melt and C code

;; file helloworld.melt
(code_chunk helloworldchunk

#{ /* our $HELLOWORLDCHUNK */ int i=0;
$HELLOWORLDCHUNK#_label:
printf("hello world from MELT %d\n", i);
if (i++ < 3) goto $HELLOWORLDCHUNK#_label; }#)

code_chunk is to Melt what asm is to C : for inclusion of chunks in the
generated code (C for Melt, assembly for C or gcc);
rarely useful, but we can’t live without!
helloworldchunk is the state symbol; it gets uniquely expanded 19

in the generated code (as a C identifier unique to the C file)

#{ and }# delimit macro-strings, lexed by Melt as a list of symbols (when
prefixed by $) and strings: #{A"$B#C"\n"}# ≡
("A\"" b "C\"\\n") [a 3-elements list, the 2nd is symbol b, others are
strings]

19Like Gcc predefined macro __COUNTER__ or Lisp’s gensym
Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 32 / 85

MELT why MELT?

running our helloworld.melt program
Notice that it has no defun so don’t define any Melt function.
It has one single expression, useful for its side-effects!
With the Melt branch:
gcc-melt -fmelt-mode=runfile \

-fmelt-arg=helloworld.melt -c example1.c

With the Melt plugin:
gcc-4.6 -fplugin=melt -fplugin-arg-melt-mode=runfile \

-fplugin-arg-melt-arg=helloworld.melt -c example1.c

Run as
cc1: note: MELT generated new file

/tmp/GCCMeltTmpdir-1c5b3a95/helloworld.c
cc1: note: MELT has built module

/tmp/GCCMeltTmpdir-1c5b3a95/helloworld.so in 0.416 sec.
hello world from MELT
hello world from MELT
hello world from MELT
hello world from MELT
cc1: note: MELT removed 3 temporary files

from /tmp/GCCMeltTmpdir-1c5b3a95

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 33 / 85

MELT why MELT?

How Melt is running

Using Melt as plugin is the same as using the Melt branch: ∀α∀σ
-fmelt-α=σ in the Melt branch
≡ -fplugin-arg-melt-α=σ with the melt.so plugin
for development, the Melt branch20 could be preferable
(more checks and debugging features)

Melt don’t do anything more than Gcc without a mode
so without any mode, gcc-melt ≡ gcc-trunk
use -fmelt-mode=help to get the list of modes
your Melt extension usually registers additional mode[s]

Melt is not a Gcc front-end
so you need to pass a C (or C++, . . .) input file to gcc-melt or gcc
often with -c empty.c or -x c /dev/null
when asking Melt to translate your Melt file
some Melt modes run a make to compile thru gcc -fPIC the
generated C code; most of the time is spent in that make compiling
the generated C code

20The trunk is often merged (weekly at least) into the Melt branch
Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 34 / 85

MELT why MELT?

Melt modes for translating *.melt files

(usually run on empty.c)

The name of the *.melt file is passed with -fmelt-arg=filename.melt
The mode µ passed with -fmelt-mode=µ

runfile to translate into a C file, make the filename.so Melt module,
load it, then discard everything.
translatedebug to translate into a .so Melt module built with gcc
-fPIC -g

translatefile to translate into a .c generated C file
translatetomodule to translate into a .so Melt module
(keeping the .c file).

Sometimes, several C files filename.c, filename+01.c,
filename+02.c, . . . are generated from your filename.melt

A single Melt module filename.so is generated, to be dlopen-ed by Melt
you can pass -fmelt-extra=µ1:µ2 to also load your µ1 & µ2 modules

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 35 / 85

MELT why MELT?

expansion of the code_chunk in generated C

389 lines of generated C, including comments, #line, empty lines, with:

{
#ifndef MELTGCC_NOLINENUMBERING
#line 3
#endif

int i=0; /* our HELLOWORLDCHUNK__1 */
HELLOWORLDCHUNK__1_label: printf("hello world from MELT\n");
if (i++ < 3) goto HELLOWORLDCHUNK__1_label; ;}

;

Notice the unique expansion HELLOWORLDCHUNK__1 of the state symbol
helloworldchunk

Expansion of code with holes given thru macro-strings is central in Melt

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 36 / 85

MELT why MELT?

Why Melt generates so many C lines?

normalization requires lots of temporaries
translation to C is “straightforward” ,

the generated C code is very low-level!
code for forwarding local pointers (for Melt copying GC) is generated
most of the code is in the initialization:

the generated start_module_melt takes a parent environment and
produces a new environment
uses hooks in the INITIAL_SYSTEM_DATA predefined value
creates a new environment (binding exported variables)
Melt don’t generate any “data” : all the data is built by (sequential, boring,
huge) code in start_module_melt

the Melt language is higher-level than C
ratio of 10-35 lines of generated C code for one line of Melt is not
uncommon
⇒ the bottleneck is the compilation by gcc -fPIC thru make of the
generated C code

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 37 / 85

MELT handling GCC internal data with MELT

Gcc internal representations

Gcc has several “inter-linked” representations:
Generic and Tree-s in the front-ends
(with language specific variants or extensions)

Gimple and others in the middle-end
Gimple operands are Tree-s
Control Flow Graph Edge-s, Basic Block-s, Gimple Seq-ences
use-def chains
Gimple/SSA is a Gimple variant

RTL and others in the back-end

A given representation is defined by many GTY-ed C types
(discriminated unions, “inheritance”, . . .)
tree, gimple, basic_block, gimple_seq, edge . . . are typedef-ed
pointers

Some representations have various roles
Tree both for declarations and for Gimple arguments
in gcc-4.3 or before Gimples were Trees

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 38 / 85

MELT handling GCC internal data with MELT

Why a Lisp-y syntax for Melt

True reason: I [Basile] am lazy ,, also

Melt is bootstrapped
now Melt translator21 is written in Melt
$GCCMELTSOURCE/gcc/melt/warmelt-*.melt
⇒ the C translation of Melt translator is in its source repository22

$GCCMELTSOURCE/gcc/melt/generated/warmelt-*.c
parts of the Melt runtime (G-C) are generated
$GCCMELTSOURCE/gcc/melt/generated/meltrunsup*.[ch]
major dependency of Melt translator is Ggc23

reading in melt-runtime.c Melt syntax is nearly trivial
as in many Lisp-s or Scheme-s, most of the parsing work is done by
macro-expansion⇒ modular syntax (extensible by advanced users)
existing support for Lisp (Emacs mode) works for Melt

familiar look if you know Emacs Lisp, Scheme, Common Lisp, or Gcc .md

21Melt started as a Lisp program
22This is unlike other C generators inside Gcc
23The Melt translator almost don’t care of tree-s or gimple-s

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 39 / 85

MELT handling GCC internal data with MELT

Why and how Melt is bootstrapped

Melt delivered in both original .melt & translated .c forms
gurus could make upgrade-warmelt to regenerate all generated code in
source tree.

at installation, Melt translates itself several times
(most of installation time is spent in those [re]translations and in compiling them)

⇒ the Melt translator is a good test case for Melt;
it exercices its runtime and itself (and Gcc do likewise)

historically, Melt translator written using less features than those newly
implemented (e.g. pattern matching rarely used in translator)

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 40 / 85

MELT handling GCC internal data with MELT

main Melt traits [inspired by Lisp]

let : define sequential local bindings (like let* in Scheme) and
evaluate sub-expressions with them
letrec : define co-recursive local constructive bindings
if : simple conditional expression (like ?: in C)
cond : complex conditional expression (with several conditions)
instance : build dynamically a new Melt object
definstance : define a static instance of some class
defun : define a named function
lambda : build dynamically an anonymous function closure
match : for pattern-matching24

setq : assignment
forever : infinite loop, exited with exit

return : return from a function
may return several things at once (primary result should be a value)

multicall : call with several results
24a huge generalization of switch in C

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 41 / 85

MELT handling GCC internal data with MELT

non Lisp-y features of Melt

Many linguistic devices to decribe how to generate C code
code_chunk to include bits of C
defprimitive to define primitive operations
defciterator to define iterative constructs
defcmatcher to define matching constructs

Values vs stuff :
c-type like :tree, :long to annotate stuff (in formals, bindings, . . .)
and :value to annotate values
quote, with lexical convention ’α ≡ (quote α)

(quote 2) ≡ ’2 is a boxed constant integer (but 2 is a constant long thing)
(quote "ab") ≡ ’"ab" is a boxed constant string
(quote x) ≡ ’x is a constant symbol (instance of class_symbol)

quote in Melt is different than quote in Lisp or Scheme.
In Melt it makes constant boxed values, so ’2 6≡ 2

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 42 / 85

MELT handling GCC internal data with MELT

defining your mode and pass in Melt

code by Pierre Vittet in his GMWarn extension

(defun test_fopen_docmd (cmd moduldata)
(let ((test_fopen ;a local binding!

(instance class_gcc_gimple_pass
:named_name ’"melt_test_fopen"
:gccpass_gate test_fopen_gate
:gccpass_exec test_fopen_exec
:gccpass_data (make_maptree discr_map_trees 1000)
:gccpass_properties_required ()

))) ;body of the let follows:
(install_melt_gcc_pass test_fopen "after" "ssa" 0)
(debug_msg test_fopen "test_fopen_mode installed test_fopen")
;; return the pass to accept the mode
(return test_fopen)))

(definstance test_fopen class_melt_mode
:named_name ’"test_fopen"
:meltmode_help ’"monitor that after each call to fopen, there is a test on the returned value"
:meltmode_fun test_fopen_docmd

)
(install_melt_mode test_fopen)

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 43 / 85

MELT handling GCC internal data with MELT

Gcc Tree-s
A central front-end and middle-end representation in Gcc:
in C the type tree (a pointer)
See files $GCCSOURCE/gcc/tree.{def,h,c}, and also
$GCCSOURCE/gcc/c-family/c-common.def and other front-end
dependent files #include-d from $GCCBUILD/gcc/all-tree.def

tree.def contains ≈ 190 definitions like

/* Contents are in TREE_INT_CST_LOW and TREE_INT_CST_HIGH fields,
32 bits each, giving us a 64 bit constant capability. INTEGER_CST
nodes can be shared, and therefore should be considered read only.
They should be copied, before setting a flag such as TREE_OVERFLOW.
If an INTEGER_CST has TREE_OVERFLOW already set, it is known to be unique.
INTEGER_CST nodes are created for the integral types, for pointer
types and for vector and float types in some circumstances. */

DEFTREECODE (INTEGER_CST, "integer_cst", tcc_constant, 0)

or

/* C’s float and double. Different floating types are distinguished
by machine mode and by the TYPE_SIZE and the TYPE_PRECISION. */

DEFTREECODE (REAL_TYPE, "real_type", tcc_type, 0)

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 44 / 85

MELT handling GCC internal data with MELT

Tree representation in C
tree.h contains

struct GTY(()) tree_base {
ENUM_BITFIELD(tree_code) code : 16;
unsigned side_effects_flag : 1;
unsigned constant_flag : 1;
// many other flags

};
struct GTY(()) tree_typed {
struct tree_base base;
tree type;

};
// etc

union GTY ((ptr_alias (union lang_tree_node),
desc ("tree_node_structure (&%h)"), variable_size)) tree_node {

struct tree_base GTY ((tag ("TS_BASE"))) base;
struct tree_typed GTY ((tag ("TS_TYPED"))) typed;
// many other cases
struct tree_target_option GTY ((tag ("TS_TARGET_OPTION"))) target_option;

};

But $GCCSOURCE/gcc/coretypes.h has
typedef union tree_node *tree;

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 45 / 85

MELT handling GCC internal data with MELT

Gcc Gimple-s

Gimple-s represents instructions in Gcc
in C the type gimple (a pointer)
See files $GCCSOURCE/gcc/gimple.{def,h,c}

gimple.def contains 36 definitions (14 are for OpenMP !) like

/* GIMPLE_GOTO <TARGET> represents unconditional jumps.
TARGET is a LABEL_DECL or an expression node for computed GOTOs. */

DEFGSCODE(GIMPLE_GOTO, "gimple_goto", GSS_WITH_OPS)

or

/* GIMPLE_CALL <FN, LHS, ARG1, ..., ARGN[, CHAIN]> represents function
calls.
FN is the callee. It must be accepted by is_gimple_call_addr.
LHS is the operand where the return value from FN is stored. It may
be NULL.
ARG1 ... ARGN are the arguments. They must all be accepted by
is_gimple_operand.
CHAIN is the optional static chain link for nested functions. */

DEFGSCODE(GIMPLE_CALL, "gimple_call", GSS_CALL)

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 46 / 85

MELT handling GCC internal data with MELT

Gimple assigns

/* GIMPLE_ASSIGN <SUBCODE, LHS, RHS1[, RHS2]> represents the assignment
statement
LHS = RHS1 SUBCODE RHS2.
SUBCODE is the tree code for the expression computed by the RHS of the
assignment. It must be one of the tree codes accepted by
get_gimple_rhs_class. If LHS is not a gimple register according to
is_gimple_reg, SUBCODE must be of class GIMPLE_SINGLE_RHS.
LHS is the operand on the LHS of the assignment. It must be a tree node
accepted by is_gimple_lvalue.
RHS1 is the first operand on the RHS of the assignment. It must always be
present. It must be a tree node accepted by is_gimple_val.
RHS2 is the second operand on the RHS of the assignment. It must be a tree
node accepted by is_gimple_val. This argument exists only if SUBCODE is
of class GIMPLE_BINARY_RHS. */

DEFGSCODE(GIMPLE_ASSIGN, "gimple_assign", GSS_WITH_MEM_OPS)

Gimple operands are Tree-s. For Gimple/SSA, the Tree is often a SSA_NAME

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 47 / 85

MELT handling GCC internal data with MELT

Gimple data in C
in $GCCSOURCE/gcc/gimple.h:
/* Data structure definitions for GIMPLE tuples. NOTE: word markers

are for 64 bit hosts. */
struct GTY(()) gimple_statement_base {

/* [WORD 1] Main identifying code for a tuple. */
ENUM_BITFIELD(gimple_code) code : 8;
// etc...
/* Number of operands in this tuple. */
unsigned num_ops;
/* [WORD 3] Basic block holding this statement. */
struct basic_block_def *bb;
/* [WORD 4] Lexical block holding this statement. */
tree block; };

/* Base structure for tuples with operands. */
struct GTY(()) gimple_statement_with_ops_base {
/* [WORD 1-4] */
struct gimple_statement_base gsbase;
/* [WORD 5-6] SSA operand vectors. NOTE: It should be possible to

amalgamate these vectors with the operand vector OP. However,
the SSA operand vectors are organized differently and contain
more information (like immediate use chaining). */

struct def_optype_d GTY((skip (""))) *def_ops;
struct use_optype_d GTY((skip (""))) *use_ops; };

ThenBasile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 48 / 85

MELT handling GCC internal data with MELT

inline accessors to Gimple

gimple.h also have many inline functions, like e.g.

/* Return the code for GIMPLE statement G. crash if G is null */
static inline enum gimple_code gimple_code (const_gimple g) {...}
/* Set the UID of statement. data for inside passes */
static inline void gimple_set_uid (gimple g, unsigned uid) {...}
/* Return the UID of statement. */
static inline unsigned gimple_uid (const_gimple g) {...}
/* Return true if GIMPLE statement G has register or memory operands. */
static inline bool gimple_has_ops (const_gimple g) {...}
/* Return the set of DEF operands for statement G. */
static inline struct def_optype_d *gimple_def_ops (const_gimple g) {...}
/* Return operand I for statement GS. */
static inline tree gimple_op (const_gimple gs, unsigned i) {...}
/* If a given GIMPLE_CALL’s callee is a FUNCTION_DECL, return it.

Otherwise return NULL. This function is analogous to get_callee_fndecl in tree land. */
static inline tree gimple_call_fndecl (const_gimple gs) {...}
/* Return the LHS of call statement GS. */
static inline tree gimple_call_lhs (const_gimple gs) {...}

There are also functions to build or modify gimple

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 49 / 85

MELT handling GCC internal data with MELT

control-flow related representations inside Gcc

gimple are simple instructions
gimple_seq are sequence of gimple-s
basic_block are elementary blocks, containing a gimple_seq and
connected to other basic blocks thru edge-s
edge-s connect basic blocks (i.e. are jumps!)
loop-s are for dealing with loops, knowing their basic block headers and
latches
the struct control_flow_graph packs entry and exit blocks and a
vector of basic blocks for a function
the struct function packs the control_flow_graph and the
gimple_seq of the function body, etc . . .
loop-s are hierachically organized inside the struct loops (e.g. the
current_loops global) for the current function.

NB: not every representation is available in every pass!

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 50 / 85

MELT handling GCC internal data with MELT

Basic Blocks in Gcc

coretypes.h has typedef struct basic_block_def *basic_block;

In $GCCSOURCE/gcc/basic-block.h

/* Basic block information indexed by block number. */
struct GTY((chain_next ("%h.next_bb"), chain_prev("%h.prev_bb"))) basic_block_def {
/* The edges into and out of the block. */
VEC(edge,gc) *preds;
VEC(edge,gc) *succs; //etc ...
/* Innermost loop containing the block. */
struct loop *loop_father;
/* The dominance and postdominance information node. */
struct et_node * GTY ((skip (""))) dom[2];
/* Previous and next blocks in the chain. */
struct basic_block_def *prev_bb;
struct basic_block_def *next_bb;
union basic_block_il_dependent {

struct gimple_bb_info * GTY ((tag ("0"))) gimple;
struct rtl_bb_info * GTY ((tag ("1"))) rtl;

} GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
// etc
/* Various flags. See BB_* below. */
int flags;

};

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 51 / 85

MELT handling GCC internal data with MELT

gimple_bb_info & control_flow_graph
Also in basic-block.h

struct GTY(()) gimple_bb_info {
/* Sequence of statements in this block. */
gimple_seq seq;
/* PHI nodes for this block. */
gimple_seq phi_nodes;

};

/* A structure to group all the per-function control flow graph data. */
struct GTY(()) control_flow_graph {
/* Block pointers for the exit and entry of a function.

These are always the head and tail of the basic block list. */
basic_block x_entry_block_ptr;
basic_block x_exit_block_ptr;
/* Index by basic block number, get basic block struct info. */
VEC(basic_block,gc) *x_basic_block_info;
/* Number of basic blocks in this flow graph. */
int x_n_basic_blocks;
/* Number of edges in this flow graph. */
int x_n_edges;
// etc ...

};

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 52 / 85

MELT handling GCC internal data with MELT

Control Flow Graph and loop-s in Gcc

In $GCCSOURCE/gcc/cfgloop.h
/* Description of the loop exit. */
struct GTY (()) loop_exit {

/* The exit edge. */
struct edge_def *e;
/* Previous and next exit in the list of the exits of the loop. */
struct loop_exit *prev; struct loop_exit *next;
/* Next element in the list of loops from that E exits. */
struct loop_exit *next_e; };

typedef struct loop *loop_p;
/* Structure to hold information for each natural loop. */
struct GTY ((chain_next ("%h.next"))) loop {

/* Index into loops array. */
int num;
/* Number of loop insns. */
unsigned ninsns;
/* Basic block of loop header. */
struct basic_block_def *header;
/* Basic block of loop latch. */
struct basic_block_def *latch;
// etc ...

/* True if the loop can be parallel. */
bool can_be_parallel;
/* Head of the cyclic list of the exits of the loop. */
struct loop_exit *exits;

};

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 53 / 85

MELT handling GCC internal data with MELT

Caveats on Gcc internal representations

in principle, they are not stable (could change in 4.7 or next)
in practice, changing central representations (like gimple or tree) is
very difficult :

Gcc gurus (and users?) care about compilation time
Gcc people could “fight” for some bits
changing them is very costly: ⇒ need to patch every pass
you need to convince the whole Gcc community to enhance them
some Gcc heroes could change them

extensions or plugins cannot add extra data fields (into tree-s,
gimple-s25 or basic_block-s, ...)
⇒ use other data (e.g. associative hash tables) to link your data to them

25Gimple-s have uid-s but they are only for inside passes!

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 54 / 85

MELT handling GCC internal data with MELT

Handling GCC stuff with MELT

Gcc raw stuff is handled by Melt c-types like :gimple_seq or :edge

raw stuff can be passed as formal arguments or given as secondary
results
Melt functions

first argument26 should be a value
first result is a value

raw stuff have boxed values counterpart
raw stuff have hash-maps values (to associate a non-nil Melt value to a
tree, a gimple etc)
primitive operations can handle stuff or values
c-iterators can iterate inside stuff or values

26i.e. the reciever, when sending a message in Melt
Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 55 / 85

MELT handling GCC internal data with MELT

Primitives in Melt

Primitive operations have arbitrary (but fixed) signature, and give one result
(which could be :void).

used e.g. in Melt where body is some :basic_block stuff
(code by Jérémie Salvucci from xtramelt-c-generator.melt)

(let ((:gimple_seq instructions (gimple_seq_of_basic_block body)))
;; do something with instructions

)

(gimple_seq_of_basic_block takes a :basic_block stuff & gives a :gimple_seq stuff)

Primitives are defined thru defprimitive by macro-strings, e.g. in
$GCCMELTSOURCE/gcc/melt/xtramelt-ana-base.melt

(defprimitive gimple_seq_of_basic_block (:basic_block bb) :gimple_seq
#{(($BB)?bb_seq(($BB)):NULL)}#)

(always test for 0 or null, since Melt data is cleared initially)
Likewise, arithmetic on raw :long stuff is defined (in warmelt-first.melt):
(defprimitive +i (:long a b) :long
:doc #{Integer binary addition of $a and $b.}#
#{(($A) + ($B))}#)

(no boxed arithmetic primitive yet in Melt)
Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 56 / 85

MELT handling GCC internal data with MELT

c-iterators in Melt

C-iterators describe how to iterate, by generation of for-like constructs, with
input arguments - for parameterizing the iteration
local formals - giving locals changing on each iteration

So if bb is some Melt :basic_block stuff, we can iterate on its contained
:gimple-s using

(eachgimple_in_basicblock
(bb) ;; input arguments
(:gimple g) ;; local formals
(debuggimple "our g" g) ;; do something with g

)

The definition of a c-iterator, in a defciterator, uses a state symbol (like
in code_chunk-s) and two “before” and “after” macro-strings, expanded in the
head and the tail of the generated C loop.

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 57 / 85

MELT handling GCC internal data with MELT

Example of defciterator

in xtramelt-ana-base.melt

(defciterator eachgimple_in_basicblock
(:basic_block bb) ;start formals
eachgimpbb ;state symbol
(:gimple g) ;local formals
;;; before expansion
#{ /* start $EACHGIMPBB */
gimple_stmt_iterator gsi_$EACHGIMPBB;
if ($BB)
for (gsi_$eachgimpbb = gsi_start_bb ($BB);

!gsi_end_p (gsi_$EACHGIMPBB);
gsi_next (&gsi_$EACHGIMPBB)) {

$G = gsi_stmt (gsi_$EACHGIMPBB);
}#
;;; after expansion
#{ } /* end $EACHGIMPBB */ }#

)

(most iterations in Gcc fit into c-iterators; because few are callbacks based)

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 58 / 85

MELT handling GCC internal data with MELT

values in Melt

Each value starts with an immutable [often predefined] discriminant
(for a Melt object value, the discriminant is its class).

discr

gimple

boxed gimple

3-tuple

discr

value 1

value 2

value 3

3 (length)

class

field 1

field 2

field 3

3
(#fields)

30017
(magic)

object

discr hd tl discr hd tl

pair
pair

discr hd

pair

discr first lastlist

GCC MELT values

 hash 0x57de2f

Melt copying generational garbage collector manages [only] values
(it copies live Melt values into Ggc heap).

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 59 / 85

MELT handling GCC internal data with MELT

values taxonomy

classical almost Scheme-like (or Python-like) values:
1 the nil value () - it is the only false value (unlike Scheme)
2 boxed integers, e.g. ’2; or boxed strings, e.g. ’"ab"
3 symbols (objects of class_symbol), e.g. ’x
4 closures, i.e. functions [only values can be closed by lambda or defun]

(also [internal to closures] routines containing constants)
e.g. (lambda (f :tree t) (f y t)) has closed y

5 pairs (rarely used alone)

boxed stuff, e.g. boxed gimples or boxed basic blocks, etc . . .
lists of pairs (unlike Scheme, they know their first and last pairs)

tuples ≡ fixed array of immutable components
associative homogenous hash-maps, keyed by either

non-nil Gcc raw stuff like :tree-s, :gimple-s . . . (all keys of same type), or
Melt objects

with each such key associated to a non-nil Melt value
objects - (their discriminant is their class)

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 60 / 85

MELT handling GCC internal data with MELT

lattice of discriminants

Each value has its immutable discrimnant.
Every discriminant is an object of class_discriminant (or a subclass)

Classes are objects of class_class
Their fields are reified as instances of class_field

The nil value (represented by the NULL pointer in generated C code) has
discr_null_reciever as its discriminant.
each discriminant has a parent discriminant (the super-class for classes)

the top-most discriminant is discr_any_reciever
(usable for catch-all methods)

discriminants are used by garbage collectors (both Melt and Ggc!)
discriminants are used for Melt message sending:

each message send has a selector σ & a reciever ρ, i.e. (σ ρ ...)
selectors are objects of class_selector defined with defselector
recievers can be any Melt value (even nil)
discriminants have a :disc_methodict field - an object-map associating
selectors to methods (closures); and their :disc_super

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 61 / 85

MELT handling GCC internal data with MELT

C-type example: ctype_tree
Our c-types are described by Melt [predefined] objects, e.g.

;; the C type for gcc trees
(definstance ctype_tree class_ctype_gty
:doc #{The $CTYPE_TREE is the c-type

of raw GCC tree stuff. See also
$DISCR_TREE. Keyword is :tree.}#
:predef CTYPE_TREE
:named_name ’"CTYPE_TREE"
:ctype_keyword ’:tree
:ctype_cname ’"tree"
:ctype_parchar ’"MELTBPAR_TREE"
:ctype_parstring ’"MELTBPARSTR_TREE"
:ctype_argfield ’"meltbp_tree"
:ctype_resfield ’"meltbp_treeptr"
:ctype_marker ’"gt_ggc_mx_tree_node"

;; GTY ctype
:ctypg_boxedmagic ’"MELTOBMAG_TREE"
:ctypg_mapmagic ’"MELTOBMAG_MAPTREES"
:ctypg_boxedstruct ’"melttree_st"
:ctypg_boxedunimemb ’"u_tree"
:ctypg_entrystruct ’"entrytreemelt_st"

:ctypg_mapstruct ’"meltmaptrees_st"
:ctypg_boxdiscr discr_tree
:ctypg_mapdiscr discr_map_trees
:ctypg_mapunimemb ’"u_maptrees"
:ctypg_boxfun ’"meltgc_new_tree"
:ctypg_unboxfun ’"melt_tree_content"
:ctypg_updateboxfun ’"meltgc_tree_updatebox"
:ctypg_newmapfun ’"meltgc_new_maptrees"
:ctypg_mapgetfun ’"melt_get_maptrees"
:ctypg_mapputfun ’"melt_put_maptrees"
:ctypg_mapremovefun ’"melt_remove_maptrees"
:ctypg_mapcountfun ’"melt_count_maptrees"
:ctypg_mapsizefun ’"melt_size_maptrees"
:ctypg_mapnattfun ’"melt_nthattr_maptrees"
:ctypg_mapnvalfun ’"melt_nthval_maptrees"
)

(install_ctype_descr
ctype_tree "GCC tree pointer")

The strings are the names of generated run-time support routines (or types, enum-s, fields . . .)
in $GCCMELTSOURCE/gcc/melt/generated/meltrunsup*.[ch]

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 62 / 85

MELT handling GCC internal data with MELT

Melt objects and classes
Melt objects have a single class (class hierarchy rooted at class_root)
Example of class definition in warmelt-debug.melt:
;; class for debug information (used for debug_msg & dbgout* stuff)
(defclass class_debug_information
:super class_root
:fields (dbgi_out dbgi_occmap dbgi_maxdepth)
:doc #{The $CLASS_DEBUG_INFORMATION is for debug information output,

e.g. $DEBUG_MSG macro. The produced output or buffer is $DBGI_OUT,
the occurrence map is $DBGI_OCCMAP, used to avoid outputting twice the
same object. The boxed maximal depth is $DBGI_MAXDEPTH.}#
)

We use it in code like
(let ((dbgi (instance class_debug_information

:dbgi_out out
:dbgi_occmap occmap
:dbgi_maxdepth boxedmaxdepth))

(:long framdepth (the_framedepth))
)

(add2out_strconst out "!!!!****####")
;; etc

)

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 63 / 85

MELT handling GCC internal data with MELT

Melt fields and objects

Melt field names are globally unique
⇒ (get_field :dbgi_out dbgi) is translated to safe code:

1 testing that indeed dbgi is instance of class_debug_information, then
2 extracting its dbgi_out field.

(⇒ never use unsafe_get_field, or your code could crash)

Likewise, put_fields is safe
(⇒ never use unsafe_put_fields)

convention: all proper field names of a class share a common prefix
no visibility restriction on fields
(except module-wise, on “private” classes not passed to export_class)

Classes are conventionally named class_*

Methods are dynamically installable on any discriminant, using
(install_method discriminant selector method)

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 64 / 85

MELT matching GCC data with MELT

About pattern matching
You already used it, e.g.

in regular expressions for substitution with sed

in XSLT or Prolog (or expert systems rules with variables, or formal symbolic computing)

in Ocaml, Haskell, Scala

A tiny calculator in Ocaml:

(*discriminated unions [sum type], with cartesian products*)
type expr_t = Num of int

| Add of expr_t * expr_t
| Mul of expr_t * expr_t ;;

(*recursively compute an expression thru pattern matching*)
let rec compute e = match e with

Num x → x
| Add (a,b) → a + b
(*disjunctive pattern with joker _ and constant sub-patterns::*)
| Mul (_,Num 0) | Mul (Num 0,_) → 0
| Mul (a,b) → a * b ;;

(*inferred type: compute : expr_t → int *)

Then compute (Add (Num 1, Mul (Num 2, Num 3)))⇒ 7

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 65 / 85

MELT matching GCC data with MELT

Using pattern matching in your Melt code

code by Pierre Vittet

(defun detect_cond_with_null (grdata :gimple g)
(match g ;; the matched thing

(?(gimple_cond_notequal ?lhs
?(tree_integer_cst 0))

(make_tree discr_tree lhs))
(?(gimple_cond_equal ?lhs

?(tree_integer_cst 0))
(make_tree discr_tree lhs))

(?_
(make_tree discr_tree (null_tree))))))

lexical shortcut: ?π ≡ (question π), much like ’ε ≡ (quote ε)

patterns are major syntactic constructs (like expressions or bindings are;
parsed with pattern macros or “patmacros”), first in matching clauses
?_ is the joker pattern, and ?lhs is a pattern variable (local to its clause)

most patterns are nested, made with matchers, e.g.
gimple_cond_notequal or tree_integer_const

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 66 / 85

MELT matching GCC data with MELT

What match does?

syntax is (match ε κ1 . . . κn) with ε an expression giving µ and κj are
matching clauses considered in sequence
the match expression returns a result (some thing, perhaps :void)
it is made of matching clauses (πi εi,1 . . . εi,ni ηi), each starting with a
pattern27 πi followed by sub-expressions εi,j ending with ηi

it matches (or filters) some thing µ
pattern variables are local to their clause, and initially cleared
when pattern πi matches µ the expressions εi,j of clause i are executed in
sequence, with the pattern variables inside πi locally bound. The last
sub-expression ηi of the match clause gives the result of the entire match
(and all ηi should have a common c-type, or else :void)
if no clause matches -this is bad taste, usually last clause has the ?_
joker pattern-, the result is cleared
a pattern πi can match the thing µ or fail

27expressions, e.g. constant litterals, are degenerate patterns!
Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 67 / 85

MELT matching GCC data with MELT

pattern matching rules

rules for matching of pattern π against thing µ:
the joker pattern ?_ always match
an expression (e.g. a constant) ε (giving µ′) matches µ iff (µ′ == µ) in C
parlance
a pattern variable like ?x matches if

x was unbound; then it is bound (locally to the clause) to µ
or else x was already bound to some µ′ and (µ′ == µ) [non-linear patterns]
otherwise (x was bound to a different thing), the pattern variable ?x match fails

a matcher pattern ?(m η1 . . . ηn π′1 . . . π
′
p) with n ≥ 0 input argument

sub-expressions ηi and p ≥ 0 sub-patterns π′
j

the matcher m does a test using results ρi of ηi ;
if the test succeeds, data are extracted in the fill step and each should
match its π′

j
otherwise (the test fails, so) the match fails

an instance pattern ?(instance κ :φ1 π′1 ... :φn π′n)
matches iff µ is an object of class κ (or a sub-class) with each field φi
matching its sub-pattern π′i

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 68 / 85

MELT matching GCC data with MELT

control patterns

We have controlling patterns
conjonctive pattern ?(and π1 . . . πn) matches µ iff π1 matches µ and
then π2 matches µ . . .
disjonctive pattern?(or π1 . . . πn) matches µ iff π1 matches µ or else
π2 matches µ . . .

Pattern variables are initially cleared, so (match 1 (?(or ?x ?y) y))
gives 0 (as a :long stuff)

(other control patterns would be nice, e.g. backtracking patterns)

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 69 / 85

MELT matching GCC data with MELT

matchers

Two kinds of matchers:
1 c-matchers giving the test and the fill code thru expanded macro-strings

(defcmatcher gimple_cond_equal
(:gimple gc) ;; matched thing µ
(:tree lhs :tree rhs) ;; subpatterns putput
gce ;; state symbol
;; test expansion:
#{($GC &&

gimple_code ($GC) == GIMPLE_COND &&
gimple_cond_code ($GC) == EQ_EXPR)

}#
;; fill expansion:
#{ $LHS = gimple_cond_lhs ($GC);

$RHS = gimple_cond_rhs ($GC);
}#)

2 fun-matchers give test and fill steps thru a Melt function returning
secondary results

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 70 / 85

MELT future work on MELT

known MELT weaknesses [corrections are worked upon]

1 pattern matching translation is weak28

(a new pattern translator is nearly completed)
2 Melt passes can be slow

better and faster Melt application
memoization in message sends
optimization of Melt G-C invocations and Ggc invocations

3 variadic functions (e.g. debug printing)
4 dump support
5 debug support

plugins want their gcc with -enable-check=all, not
-enable-check=release
Melt debug_msg wants -fmelt-debug and -enable-check=...
a probing process?

28Sometimes crashing the Melt translator /
Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 71 / 85

Talpo

Contents

1 Introduction
about you and me
about GCC and MELT
running GCC

2 MELT
why MELT?
handling GCC internal data with MELT
matching GCC data with MELT
future work on MELT

3 Talpo
Foreword about Talpo
Type of tests
Using Talpo
Modularity

4 Conclusion

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 72 / 85

Talpo Foreword about Talpo

Foreword about Talpo

Talpo means mole in Esperanto!

The idea of the name is that it digs blindly into GCC (without knowing much
where it goes :)) and calls still found useful informations you need.

In fact: a customizable GCC extension (written in MELT) to run simple
analysis in your C/C++ programs.
Use case:

You want to check that a call to malloc function is followed by a call to
free in the same function.
You want to check that a call to fopen is immediately followed by a test on
his returned pointer.
Checking that there is (or not) code after an execX* (execl, execlp,
execle, execv, execvp, execvpe) (to check for error for example).

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 73 / 85

Talpo Type of tests

Talpo

Talpo29 started with the idea that a static analysis tool can use the powerful
functionalities of GCC and must be customized for a project: A Talpo test can
be easily parameterized by people ignoring (much of) GCC and MELT.
With Talpo you can check this:

for each call to a foo function, result of the call is tested to be (not)
NULL/negative/zero.
each call to a foo function is immediately followed by a call to a bar
function.
each call to a foo function is followed by a call to a bar function in the
same function body.

This is quite simple and limited but can already be useful in many cases!

29https://gitorious.org/talpo
Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 74 / 85

Talpo Using Talpo

Easy to use
There are different ways to pass argument to Talpo:

Using pragma in code file

#pragma MELT ta l po t e s t N u l l (fopen)
#pragma MELT ta l po t e s t _ f o l l o w e d \ by (chroot , chd i r)

Using direct argument

gcc . . .
−f p l ug i n−arg−melt−opt ion= ta lpo−arg = ’ (t e s t N u l l " fopen ") \
(tes t_ fo l l owed_by " chroot " " chown ") ’
. . .

Using a file to list argument

−f p l ug i n−arg−melt−opt ion= ta lpo−arg− f i l e = ’ my f i le ’

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 75 / 85

Talpo Modularity

Modularity

You can easily implement a new way to read user input.
You can easily implement a new test.

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 76 / 85

Talpo Modularity

Try it!

C code

#include < s t d i o . h>
i n t main (void) {

FILE ∗ t e s t ;
t e s t =fopen (" t e s t " , " a ") ;
return 0;

}

Result

gcc −Wall −f p l u g i n =melt −f p l ug i n−arg−melt−mode= ta l po \
−f p l ug i n−arg−melt−module−path= ’ $ (ta lpoPath) ’ \
−f p l ug i n−arg−melt−source−path =. \
−f p l ug i n−arg−melt−ex t ra=@$(ta lpoPath) / t a l po \
−f p l ug i n−arg−melt−opt ion= ta lpo−arg= ’ (t e s t N u l l " fopen ") ’ \
−O2 t e s t . c −o t e s t . o

t es t_s imp le_check_c f i l e . c : 5 : 1 0 : warning : Melt Warning [# 2 2 1] : Funct ion ’ fopen ’ \
not fo l lowed by a t e s t on h is re tu rned p o i n t e r .

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 77 / 85

Talpo Modularity

Using post-dominating basicblock

C code

i n t main (void) {
i n t i =0;
FILE ∗ t e s t ;
FILE ∗ t e s t 2 ;
i f (i ==1)

t e s t =fopen (" t o t o " , " a ") ;
else

t e s t 2 =fopen (" t a t a " , " a ") ;
i f (t e s t == NULL)

return 1;
return 0;

}

Result

t es t_s imp le_check_c f i l e . c : 8 : 1 0 : warning : Melt Warning [# 2 1 6] : Funct ion ’ fopen ’ \
not fo l lowed by a t e s t on h is re tu rned p o i n t e r .

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 78 / 85

Talpo Modularity

Using a struct

C code

typedef struct _myStr
{

FILE ∗ p t r f i l e ;
} myStr ;

i n t
use_struct_no_warn (void)
{

myStr ∗ t e s t S t r = (myStr ∗) mal loc (sizeof (myStr)) ;
t e s t S t r−> p t r f i l e =fopen (" t o t o " , " a ") ;
i f (! t e s t S t r−> p t r f i l e) {

return 1;
}
return 0;

}

Result
(No warnings returned!)

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 79 / 85

Talpo Modularity

On a different variable

C code

i n t
not_same_var_warn_once ()
{

char ∗ cu rD i r = (char ∗) mal loc (sizeof (char) ∗3) ;
char ∗ notCurDi r = (char ∗) mal loc (sizeof (char) ∗3) ;
cu rD i r = " . " ;
chroot (cu rD i r) ;
chd i r (notCurDi r) ;
return 0;

}

Result

gcc −Wall −f p l u g i n =melt −f p l ug i n−arg−melt−mode= ta l po \
−f p l ug i n−arg−melt−module−path= ’ $ (ta lpoPath) ’ \
−f p l ug i n−arg−melt−source−path =. \
−f p l ug i n−arg−melt−ex t ra=@$(ta lpoPath) / t a l po \
−f p l ug i n−arg−melt−opt ion= ta lpo−arg= ’ (testFol lowedBy " chroot " 1 " chd i r " 1) ’ \
−O2 t e s t . c −o t e s t . o

t e s t . c : 8 : 4 : a t t e n t i o n : Melt Warning [# 2 5 4] : Ca l l to ’ chroot ’ i s not fo l l owed \
by a c a l l to ’ chd i r ’ . [enabled by defaul t]

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 80 / 85

Talpo Modularity

What does not work

For some code samples, it still returns false positives.

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 81 / 85

Talpo Modularity

Function pointer are not detected!

C code

i n t main ()
{

FILE ∗ (∗myPtr) (char ∗ , char ∗) ;
myPtr = fopen ;

FILE ∗ res = myPtr (" path " , " a ") ;
return 0;

}

Result
(No warnings returned!)

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 82 / 85

Talpo Modularity

Function pointer are not detected!

C++ code

The f o l l o w i n g case has been asked by Jonathan Wakely on the GCC mai l i ng l i s t :

struct Guard {
Guard (void∗ p) : p (p) { i f (! p) throw std : : bad_al loc () ; }
~Guard () { grub_f ree (p) ; }
void∗ p ;

} ;

void func (grub_s ize_t n)
{

Guard g (grub_malloc (n)) ;
/ / do something wi th g . p

}

Result
(No warnings returned with -O0!)

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 83 / 85

Conclusion

Contents

1 Introduction
about you and me
about GCC and MELT
running GCC

2 MELT
why MELT?
handling GCC internal data with MELT
matching GCC data with MELT
future work on MELT

3 Talpo
Foreword about Talpo
Type of tests
Using Talpo
Modularity

4 Conclusion

Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 84 / 85

Conclusion

Conclusion

Free software is about adapting software to your needs: Plugins are a
great way to customize Gcc.
Melt30 simplifies writing Gcc extensions (and is more fun than coding in C).
We invite you to test Talpo, code in MELT, extend them!
Manu projects could provide their specific MELT extensions to help their
C coders: Hurd, MPC, MPFR, GTK, Qt...

30MELT also has a mailing list : gcc-melt@googlegroup.com
Basile STARYNKEVITCH, Pierre VITTET GCC plugins and MELT extensions (e.g. Talpo) August 24th 2011 GHM’11 ? 85 / 85

gcc-melt@googlegroup.com

	Introduction
	about you and me
	about GCC and MELT
	running GCC

	MELT
	why MELT?
	handling GCC internal data with MELT
	matching GCC data with MELT
	future work on MELT

	Talpo
	Foreword about Talpo
	Type of tests
	Using Talpo
	Modularity

	Conclusion

