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Sylvestre Ledru
● In charge of the R&D projects

● Responsible of GNU/Linux & Mac OS X

● Developer

● Community manager for Scilab

● … and also for IRILL

● Debian Developer

Presentation
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● Engineer against researcher
● IT people against non-it people 
● Academic against non-academic

Disclaimer
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Scilab as a consortium
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● Started in the mid 80

● Inspired by the Matlab fortran

● Fortran was too complex to handle matrices

● Needed to do some researchs at the INRIA

History of Scilab
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● Developed by a research project at the INRIA since 
1990 

● From 2003 to 2008, through the Scilab consortium

● Since 2008, the Scilab consortium is hosted by the 
Digiteo foundation

● 2011 : Scilab entreprises created for the classical 
open source business model (most of the current 
employees being founders)

● Currently ~15 persons

History of Scilab
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The Consortium
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The Scilab Software
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● Numerical computing software

● Interpreted language

● Weakly dynamically typed

● About 2300 functions available from the 
language

Scilab
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● Opensource (Scilab licence) since 1994 and 
free since Scilab 5.0 (under the CeCILL 
license – GPL compatible)

● Multiplatform (GNU/Linux, Mac OS X, 
Windows, Unix...)

● Current version: 5.3.3

Scilab
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● Many libraries are binded/wrappers in Scilab
● Hide complexity
● Provides a common language
● Allow interactions between incompatible libraires
● Remove the need to know C, C++ or Fortran 

programmation
● ...

Scilab
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● Students in engineering

● Engineers (spatial, avionics, car industry, etc)

● Traders and bankers

● Researchers

● ...

Who is using Scilab (or Octave) ?



13

● Scilab can be used:
● To develop complex applications
● As a prototyping application
● Link and use a load level library into a high level 

language
● A powerfull calculator
● Computing engine
● Control external devices

What for ?
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Scilab – CLI
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Scilab GUI
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Scilab – Graphics + doc
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Scilab – Xcos
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Scilab & Octave
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● A lot of in common

● Scilab provides an equivalent to Simulink called Xcos. 
A simulation and modeling for complex systems.
Only free alternative in the FOSS world

● Scilab provides out of the box graphics

Scilab vs Octave – Features
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● Octave focus on Matlab compatibility

● Scilab: Matlab is a source of inspiration when 
they are doing good things

● Scilab has some important differences:
● // for comments instead of %
● 2./ <> 2 ./
● Different function profiles
● Different graphics features

Scilab vs Octave – Matlab compatibility
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● Octave has a bigger ecosystem (toolboxes)

● … probably because Scilab was not free for a 
while

● Octave has no structure behind while Scilab 
has full time (paid) engineers
ie : the classical « community driven » vs 
« integrated team driven »

Scilab vs Octave – Community
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Scilab for non-geeks
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● Allows users to increase the number of features

● Provide easy access to extension mechanisms

You never know what a user is going to do with your 
software

Extensibility objectives
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● Allows developers to create simple modules/toolboxes
● From basic macros for a single function
● To C, C++, Java or Python based modules

with full documentation, unitary tests, non reg tests...
● Provides module/toolbox skeleton

KISS
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● Very easy to write. Just write a .sci file in the macros/ 
directory

● Various mechanism to publish the code:
● File exchange: http://fileexchange.scilab.org/
● Scilab packaging system: http://atoms.scilab.org/
● Forge: http://forge.scilab.org/

KISS – A module with only Scilab macros

http://fileexchange.scilab.org/
http://atoms.scilab.org/
http://forge.scilab.org/
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● API_Scilab is a full API to manage reading/writing data 
from/to Scilab memory.

● Easy to use

● Lot of error managements (unlike Matlab with the mex)

● Fully documented with examples

● Unitary tests

=> Help non-experienced C or C++ developpers

Common API is provided
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● Multiplateform code (should build and run on the 
three official OS)

● Provides helper functions to hide the build 
process with the ilib_* functions

● Detects the compilers (C, C++ or Fortran) on each OS
● Launch the compilation
● Generate some loaders
● Load the new libraires

A module with native code
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Example

f1=['int ext1c(int *n, double *a, double *b, double *c)'
    '{int k;'
    '  for (k = 0; k < *n; ++k) '
    '      c[k] = a[k] + b[k];'
    '  return(0);}'];

mputl(f1,'fun1.c')

ilib_for_link('ext1c','fun1.c',[],"c") 

exec loader.sce 

http://help.scilab.org/docs/5.3.3/en_US/mputl.html
http://help.scilab.org/docs/5.3.3/en_US/exec.html
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● GNU/Linux, Mac OS X & Unix : 
Based on the autotools
Detects many compilers + options on many 
OS/distro
Private message : Many thanks to Ralf 
Wildenhues

● Microsoft Windows : 
Auto-generated Visual projects

Native module : How to handle such things
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● We tackled the compilation issue

● Not that hard to debug

However :

● Some parts look like magic (can be frustrating 
for developers)

● If it is not packaged in ATOMS, it is hard for 
normal user to build it

Perception for user
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Science oriented language
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● Global and local variables are managed in a 
lazy (and sometime, weird) way

● A lot of ways to do the same thing

● No scalar values : everything is matrix

● ...

Nightmare for language specialist
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How to migrate a software from the 
academic world to the software world?
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● From politic perspective
● Objectives ?
● New features ?
● Roadmap
● Time constraints

Transition from a research project to a software editor
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● From the human perspective
● Hard to change the mentalities

– Most of the developers hate constraints!

● Being a developer is an actual job as researcher is
● Engineers stay longer (INRIA: 2 to 5 years)
● Some contributors do not accept that
● Some users do not accept that

Transition from a research project to a software editor
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● From a technical perspective
● Things are not done the same way
● Uniformisation
● Importance of the technological choices
● Importance of the dependencies (libraries)
● Clean process

Transition from a research project to a software editor
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● Classic example: Inclusion of thirdparty 
sources into the source tree

Pro:
● Can be patched
● Do not need thirdparty libraries installed on the 

system (do not need of a complex ./configure)
● Do not need to interact with upstream

Con:
● Unmaintainable on a long run
● Hard to follow new upstream releases
● Some bugs are not forwarded upstream

Transition from a research project to a software editor
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● Clean process ?
● How to close a bug ?
● How to remove a deprecated feature from the 

language ?
● How to handle major and minor releases ?
● How to integrate a new feature into the language ?
● ...

Transition from a research project to a software editor
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● Example: How to integrate a new feature ?
● Write a SEP – Scilab Enhancement Proposal

– What is it supposed to do ?

– What would be the profile of the function ? (when applies)

– How is it going to work ?

– What is the excepted behaviour with other existing functions ?

– Which version is targeted ?

● Validation

Transition from a research project to a software editor
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● Example: How to integrate a new feature ? - 2
● The implementation
● The documentation
● The unitary tests
● The integration

Transition from a research project to a software editor
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Thanks for your attention

www.scilab.org
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