
1

Free Platform
For Numerical Computation

August, 25th, 2011

2

Sylvestre Ledru
● In charge of the R&D projects

● Responsible of GNU/Linux & Mac OS X

● Developer

● Community manager for Scilab

● … and also for IRILL

● Debian Developer

Presentation

3

● Engineer against researcher
● IT people against non-it people
● Academic against non-academic

Disclaimer

4

Scilab as a consortium

5

● Started in the mid 80

● Inspired by the Matlab fortran

● Fortran was too complex to handle matrices

● Needed to do some researchs at the INRIA

History of Scilab

6

● Developed by a research project at the INRIA since
1990

● From 2003 to 2008, through the Scilab consortium

● Since 2008, the Scilab consortium is hosted by the
Digiteo foundation

● 2011 : Scilab entreprises created for the classical
open source business model (most of the current
employees being founders)

● Currently ~15 persons

History of Scilab

7

The Consortium

8

The Scilab Software

9

● Numerical computing software

● Interpreted language

● Weakly dynamically typed

● About 2300 functions available from the
language

Scilab

10

● Opensource (Scilab licence) since 1994 and
free since Scilab 5.0 (under the CeCILL
license – GPL compatible)

● Multiplatform (GNU/Linux, Mac OS X,
Windows, Unix...)

● Current version: 5.3.3

Scilab

11

● Many libraries are binded/wrappers in Scilab
● Hide complexity
● Provides a common language
● Allow interactions between incompatible libraires
● Remove the need to know C, C++ or Fortran

programmation
● ...

Scilab

12

● Students in engineering

● Engineers (spatial, avionics, car industry, etc)

● Traders and bankers

● Researchers

● ...

Who is using Scilab (or Octave) ?

13

● Scilab can be used:
● To develop complex applications
● As a prototyping application
● Link and use a load level library into a high level

language
● A powerfull calculator
● Computing engine
● Control external devices

What for ?

14

Scilab – CLI

15

Scilab GUI

16

Scilab – Graphics + doc

17

Scilab – Xcos

18

Scilab & Octave

19

● A lot of in common

● Scilab provides an equivalent to Simulink called Xcos.
A simulation and modeling for complex systems.
Only free alternative in the FOSS world

● Scilab provides out of the box graphics

Scilab vs Octave – Features

20

● Octave focus on Matlab compatibility

● Scilab: Matlab is a source of inspiration when
they are doing good things

● Scilab has some important differences:
● // for comments instead of %
● 2./ <> 2 ./
● Different function profiles
● Different graphics features

Scilab vs Octave – Matlab compatibility

21

● Octave has a bigger ecosystem (toolboxes)

● … probably because Scilab was not free for a
while

● Octave has no structure behind while Scilab
has full time (paid) engineers
ie : the classical « community driven » vs
« integrated team driven »

Scilab vs Octave – Community

22

Scilab for non-geeks

23

● Allows users to increase the number of features

● Provide easy access to extension mechanisms

You never know what a user is going to do with your
software

Extensibility objectives

24

● Allows developers to create simple modules/toolboxes
● From basic macros for a single function
● To C, C++, Java or Python based modules

with full documentation, unitary tests, non reg tests...
● Provides module/toolbox skeleton

KISS

25

● Very easy to write. Just write a .sci file in the macros/
directory

● Various mechanism to publish the code:
● File exchange: http://fileexchange.scilab.org/
● Scilab packaging system: http://atoms.scilab.org/
● Forge: http://forge.scilab.org/

KISS – A module with only Scilab macros

http://fileexchange.scilab.org/
http://atoms.scilab.org/
http://forge.scilab.org/

26

● API_Scilab is a full API to manage reading/writing data
from/to Scilab memory.

● Easy to use

● Lot of error managements (unlike Matlab with the mex)

● Fully documented with examples

● Unitary tests

=> Help non-experienced C or C++ developpers

Common API is provided

27

● Multiplateform code (should build and run on the
three official OS)

● Provides helper functions to hide the build
process with the ilib_* functions

● Detects the compilers (C, C++ or Fortran) on each OS
● Launch the compilation
● Generate some loaders
● Load the new libraires

A module with native code

28

Example

f1=['int ext1c(int *n, double *a, double *b, double *c)'
 '{int k;'
 ' for (k = 0; k < *n; ++k) '
 ' c[k] = a[k] + b[k];'
 ' return(0);}'];

mputl(f1,'fun1.c')

ilib_for_link('ext1c','fun1.c',[],"c")

exec loader.sce

http://help.scilab.org/docs/5.3.3/en_US/mputl.html
http://help.scilab.org/docs/5.3.3/en_US/exec.html

29

● GNU/Linux, Mac OS X & Unix :
Based on the autotools
Detects many compilers + options on many
OS/distro
Private message : Many thanks to Ralf
Wildenhues

● Microsoft Windows :
Auto-generated Visual projects

Native module : How to handle such things

30

● We tackled the compilation issue

● Not that hard to debug

However :

● Some parts look like magic (can be frustrating
for developers)

● If it is not packaged in ATOMS, it is hard for
normal user to build it

Perception for user

31

Science oriented language

32

● Global and local variables are managed in a
lazy (and sometime, weird) way

● A lot of ways to do the same thing

● No scalar values : everything is matrix

● ...

Nightmare for language specialist

33

How to migrate a software from the
academic world to the software world?

34

● From politic perspective
● Objectives ?
● New features ?
● Roadmap
● Time constraints

Transition from a research project to a software editor

35

● From the human perspective
● Hard to change the mentalities

– Most of the developers hate constraints!

● Being a developer is an actual job as researcher is
● Engineers stay longer (INRIA: 2 to 5 years)
● Some contributors do not accept that
● Some users do not accept that

Transition from a research project to a software editor

36

● From a technical perspective
● Things are not done the same way
● Uniformisation
● Importance of the technological choices
● Importance of the dependencies (libraries)
● Clean process

Transition from a research project to a software editor

37

● Classic example: Inclusion of thirdparty
sources into the source tree

Pro:
● Can be patched
● Do not need thirdparty libraries installed on the

system (do not need of a complex ./configure)
● Do not need to interact with upstream

Con:
● Unmaintainable on a long run
● Hard to follow new upstream releases
● Some bugs are not forwarded upstream

Transition from a research project to a software editor

38

● Clean process ?
● How to close a bug ?
● How to remove a deprecated feature from the

language ?
● How to handle major and minor releases ?
● How to integrate a new feature into the language ?
● ...

Transition from a research project to a software editor

39

● Example: How to integrate a new feature ?
● Write a SEP – Scilab Enhancement Proposal

– What is it supposed to do ?

– What would be the profile of the function ? (when applies)

– How is it going to work ?

– What is the excepted behaviour with other existing functions ?

– Which version is targeted ?

● Validation

Transition from a research project to a software editor

40

● Example: How to integrate a new feature ? - 2
● The implementation
● The documentation
● The unitary tests
● The integration

Transition from a research project to a software editor

41

Thanks for your attention

www.scilab.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

