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1 Introduction

GNU roff (or groff) is a programming system for typesetting documents.
It is highly flexible and has been used extensively for over thirty years.

1.1 Background
M. Douglas McIlroy, formerly of AT&T Bell Laboratories and present at
the creation of the Unix operating system, offers an authoritative historical
summary.

The prime reason for Unix was the desire of Ken [Thompson], Den-
nis [Ritchie], and Joe Ossanna to have a pleasant environment for
software development. The fig leaf that got the nod from . . .
management was that an early use would be to develop a “stand-
alone” word-processing system for use in typing pools and secre-
tarial offices. Perhaps they had in mind “dedicated”, as distinct
from “stand-alone”; that’s what eventuated in various cases, most
notably in the legal/patent department and in the AT&T CEO’s
office.

Both those systems were targets of opportunity, not foreseen from
the start. When Unix was up and running on the PDP-11, Joe got
wind of the legal department having installed a commercial word
processor. He went to pitch Unix as an alternative and clinched a
trial by promising to make roff able to number lines by tomorrow
in order to fulfill a patent-office requirement that the commercial
system did not support.

Modems were installed so legal-department secretaries could try the
Research machine. They liked it and Joe’s superb customer service.
Soon the legal department got a system of their own. Joe went
on to create nroff and troff. Document preparation became a
widespread use of Unix, but no stand-alone word-processing system
was ever undertaken.

A history relating groff to its predecessors roff, nroff, and troff is
available in the roff(7) man page.

1.2 What Is groff?
groff (GNU roff) is a typesetting system that reads plain text input files
that include formatting commands to produce output in PostScript, PDF,
HTML, DVI, or other formats, or for display to a terminal. Formatting
commands can be low-level typesetting primitives, macros from a supplied
package, or user-defined macros. All three approaches can be combined.

A reimplementation and extension of the typesetter from AT&T Unix,
groff is present on most POSIX systems owing to its long association with
Unix manuals (including man pages). It and its predecessor are notable for
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their production of several best-selling software engineering texts. groff
is capable of producing typographically sophisticated documents while con-
suming minimal system resources.

1.3 groff Capabilities
GNU troff is a typesetting document formatter; it provides a wide range
of low-level text and page operations within the framework of a program-
ming language. These operations compose to generate footnotes, tables of
contents, mathematical equations, diagrams, multi-column text, and other
elements of typeset works. Here is a survey of formatter features; all are
under precise user control.

• text filling, breaking, alignment to the left or right margin; centering

• adjustment of inter-word space size to justify text, and of inter-sentence
space size to suit local style conventions

• automatic and manual determination of hyphenation break points

• pagination

• selection of any font available to the output device

• adjustment of type size and vertical spacing (or “leading”)

• configuration of line length and indentation amounts; columnation

• drawing of geometric primitives (lines, arcs, polygons, circles, . . . )

• setup of stroke and fill colors (where supported by the output device)

• embedding of hyperlinks, images, document metadata, and other inclu-
sions (where supported by the output device)

1.4 Macro Packages
Elemental typesetting functions can be be challenging to use directly with
complex documents. A macro facility specifies how certain routine opera-
tions, such as starting paragraphs, or printing headers and footers, should
be performed in terms of those low-level instructions. Macros can be specific
to one document or collected together into a macro package for use by many.
Several macro packages available; the most widely used are provided with
groff. They are man, mdoc, me, mm, mom, and ms.

1.5 Preprocessors
An alternative approach to complexity management, particularly when con-
structing tables, setting mathematics, or drawing diagrams, lies in prepro-
cessing. A preprocessor employs a domian-specific language to ease the
generation of tables, equations, and so forth in terms that are convenient
for human entry. Each preprocessor reads a document and translates the
parts of it that apply to it into GNU troff input. Command-line options
to groff tell it which preprocessors to use.
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groff provides preprocessors for laying out tables (gtbl), typesetting
equations (geqn), drawing diagrams (gpic and ggrn), inserting bibliographic
references (grefer), and drawing chemical structures (gchem). An associ-
ated program that is useful when dealing with preprocessors is gsoelim.1

groff also supports grap, a preprocessor for drawing graphs. A free
implementation of it can be obtained separately.

Unique to groff is the preconv preprocessor that enables groff to han-
dle documents in a variety of input encodings.

Other preprocessors exist, but no free implementations are known. An
example is ideal, which draws diagrams using a mathematical constraint
language.

1.6 Output Devices
GNU troff’s output is in a device-independent page description language,
which is then read by an output driver that translates this language into
a file format or byte stream that a piece of (possibly emulated) hardware
understands. groff features output drivers for PostScript devices, terminal
emulators (and other simple typewriter-like machines), X11 (for previewing),
TEX DVI, HP LaserJet 4/PCL5 and Canon LBP printers (which use CaPSL),
HTML, XHTML, and PDF.

1.7 Installation
Locate installation instructions in the files INSTALL, INSTALL.extra, and
INSTALL.REPO in the groff source distribution. Being a GNU project, groff
supports the familiar ‘./configure && make’ command sequence.

1.8 Conventions Used in This Manual
We apply the term “groff” to the language documented here, the GNU
implementation of the overall system, the project that develops that system,
and the command of that name. In the first sense, groff is an extended
dialect of the roff language, for which many similar implementations exist.

The roff language features several major categories for which many items
are predefined. Presentations of these items feature the form in which the
item is most commonly used on the left, and, aligned to the right margin,
the name of the category in brackets.

[Register]\n[example]
The register ‘example’ is one that that groff doesn’t predefine. You can
create it yourself, though; see Section 5.8.1 [Setting Registers], page 92.

To make this document useful as a reference and not merely amiable
bedtime reading, we tend to present these syntax items in exhaustive detail

1 The ‘g’ prefix is not used on all systems; see Chapter 2 [Invoking groff], page 5.
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when they arise. References to topics discussed later in the text are frequent;
skip material you don’t understand yet.

We use Texinfo’s “result” (⇒) and error notations to present output
written to the standard output and standard error streams, respectively.
Diagnostic messages from the GNU troff formatter and other programs
are examples of the latter, but the formatter can also be directed to write
user-specified messages to the standard error stream. The notation then
serves to identify the output stream and does not necessarily mean that an
error has occurred.2

$ echo "Twelve o'clock and" | groff -Tascii | sed '/^$/d'
⇒ Twelve o'clock and

$ echo '.tm all is well.' | groff > /dev/null
error all is well.

Sometimes we use ⇒ somewhat abstractly to represent formatted text
that you will need to use a PostScript or PDF viewer program (or a printer)
to observe. While arguably an abuse of notation, we think this preferable
to requiring the reader to understand the syntax of these page description
languages.

We also present diagnostic messages in an abbreviated form, often omit-
ting the name of the program issuing them, the input file name, and line
number or other positional information when such data do not serve to illu-
minate the topic under discussion.

Most examples are of roff language input that would be placed in a text
file. Occasionally, we start an example with a ‘$’ character to indicate a
shell prompt, as seen above.

You are encouraged to try the examples yourself, and to alter them to
better learn groff’s behavior. Our examples frequently need to direct the
formatter to set a line length (with ‘.ll’) that will fit within the page margins
of this manual. We mention this so that you know why it is there before we
discuss the ll request formally.3

1.9 Credits
We adapted portions of this manual from existing documents. James Clark’s
man pages were an essential resource; we have updated them in parallel with
the development of this manual. We based the tutorial for macro users on
Eric Allman’s introduction to his me macro package (which we also provide,
little altered from 4.4BSD). Larry Kollar contributed much of the material
on the ms macro package.

2 Unix and related operating systems distinguish standard output and standard er-
ror streams because of troff: https://minnie.tuhs.org/pipermail/tuhs/

2013-December/006113.html.
3 See Section 5.15 [Line Layout], page 122.

https://minnie.tuhs.org/pipermail/tuhs/2013-December/006113.html
https://minnie.tuhs.org/pipermail/tuhs/2013-December/006113.html
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2 Invoking groff

This chapter focuses on how to invoke the groff front end. This front end
takes care of the details of constructing the pipeline among the preprocessors,
gtroff and the postprocessor.

It has become a tradition that GNU programs get the prefix ‘g’ to dis-
tinguish them from their original counterparts provided by the host (see
Section 2.2 [Environment], page 10). Thus, for example, geqn is GNU eqn.
On operating systems like GNU/Linux or the Hurd, which don’t contain
proprietary versions of troff, and on MS-DOS/MS-Windows, where troff
and associated programs are not available at all, this prefix is omitted since
GNU troff is the only incarnation of troff used. Exception: ‘groff’ is
never replaced by ‘roff’.

In this document, we consequently say ‘gtroff’ when talking about the
GNU troff program. All other implementations of troff are called AT&T
troff, which is the common origin of almost all troff implementations1

(with more or less compatible changes). Similarly, we say ‘gpic’, ‘geqn’,
and so on.

2.1 Options
groff normally runs the gtroff program and a postprocessor appropriate
for the selected device. The default device is ‘ps’ (but it can be changed
when groff is configured and built). It can optionally preprocess with any
of gpic, geqn, gtbl, ggrn, grap, gchem, grefer, gsoelim, or preconv.

This section documents only options to the groff front end. Many of
the arguments to groff are passed on to gtroff; therefore, those are also
included. Arguments to preprocessors and output drivers can be found in
the man pages gpic(1), geqn(1), gtbl(1), ggrn(1), grefer(1), gchem(1), gsoe-
lim(1), preconv(1), grotty(1), grops(1), gropdf(1), grohtml(1), grodvi(1),
grolj4(1), grolbp(1), and gxditview(1).

The command-line format for groff is:

groff [ -abceghijklpstvzCEGNRSUVXZ ] [ -dcs ] [ -Darg ]
[ -ffam ] [ -Fdir ] [ -Idir ] [ -Karg ]
[ -Larg ] [ -mname ] [ -Mdir ] [ -nnum ]
[ -olist ] [ -Parg ] [ -rcn ] [ -Tdev ]
[ -wname ] [ -Wname ] [ files... ]

The command-line format for gtroff is as follows.

gtroff [ -abcivzCERU ] [ -dcs ] [ -ffam ] [ -Fdir ]
[ -mname ] [ -Mdir ] [ -nnum ] [ -olist ]
[ -rcn ] [ -Tname ] [ -wname ] [ -Wname ]
[ files... ]

Obviously, many of the options to groff are actually passed on to gtroff.

1 Besides groff, neatroff is an exception.
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Options without an argument can be grouped behind a single -. A file-
name of - denotes the standard input. Whitespace is permitted between an
option and its argument.

The grog command can be used to guess the correct groff command to
format a file. See its man page grog(1); type ‘man grog’ at the command
line to view it.

groff’s command-line options are as follows.

‘-a’ Generate a plain text approximation of the typeset output. The
read-only register .A is set to 1. See Section 5.8.5 [Built-in Reg-
isters], page 98. This option produces a sort of abstract preview
of the formatted output.

• Page breaks are marked by a phrase in angle brackets; for
example, ‘<beginning of page>’.

• Lines are broken where they would be in the formatted out-
put.

• A horizontal motion of any size is represented as one space.
Adjacent horizontal motions are not combined. Inter-
sentence space nodes (those arising from the second argu-
ment to the ss request) are not represented.

• Vertical motions are not represented.

• Special characters are rendered in angle brackets; for exam-
ple, the default soft hyphen character appears as ‘<hy>’.

The above description should not be considered a specification;
the details of -a output are subject to change.

‘-b’ Write a backtrace reporting the state of gtroff’s input parser
to the standard error stream with each diagnostic message. The
line numbers given in the backtrace might not always be cor-
rect, because gtroff’s idea of line numbers can be confused by
requests that append to macros.

‘-c’ Start with color output disabled.

‘-C’ Enable AT&T troff compatibility mode; implies -c. See Sec-
tion 5.38 [Implementation Differences], page 223, for the list of
incompatibilities between groff and AT&T troff.

‘-dctext’
‘-dstring=text’

Define roff string c or string as t or text. c must be one char-
acter; string can be of arbitrary length. Such string assignments
happen before any macro file is loaded, including the startup file.
Due to getopt_long limitations, c cannot be, and string cannot
contain, an equals sign, even though that is a valid character in
a roff identifier.
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‘-Denc’ Set fallback input encoding used by preconv to enc; implies -k.

‘-e’ Run geqn preprocessor.

‘-E’ Inhibit gtroff error messages. This option does not suppress
messages sent to the standard error stream by documents or
macro packages using tm or related requests.

‘-ffam’ Use fam as the default font family. See Section 5.19.2 [Font
Families], page 132.

‘-Fdir’ Search in directory dir for the selected output device’s directory
of device and font description files. See the description of GROFF_
FONT_PATH in Section 2.2 [Environment], page 10, below for the
default search locations and ordering.

‘-g’ Run ggrn preprocessor.

‘-G’ Run grap preprocessor; implies -p.

‘-h’ Display a usage message and exit.

‘-i’ Read the standard input after all the named input files have
been processed.

‘-Idir’ Search the directory dir for files named in several contexts; im-
plies -g and -s.

• gsoelim replaces so requests with the contents of their file
name arguments.

• gtroff searches for files named as operands in its command
line and as arguments to psbb, so, and soquiet requests.

• Output drivers may search for files; for instance, grops
looks for files named in ‘\X'ps: import . . .'’, ‘\X'ps:
file . . .'’, and ‘\X'pdf: pdfpic . . .'’ device control es-
cape sequences.

This option may be specified more than once; the directories
are searched in the order specified. If you want to search the
current directory before others, add ‘-I .’ at the desired place.
The current working directory is otherwise searched last. -I
works similarly to, and is named for, the “include” option of
Unix C compilers.

-I options are passed to gsoelim, gtroff, and output drivers;
with the flag letter changed to -M, they are also passed to ggrn.

‘-j’ Run gchem preprocessor. Implies -p.

‘-k’ Run preconv preprocessor. Refer to its man page for its behav-
ior if neither of groff’s -K or -D options is also specified.

‘-Kenc’ Set input encoding used by preconv to enc; implies -k.
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‘-l’ Send the output to a spooler for printing. The print directive
in the device description file specifies the default command to
be used; see Section 6.2 [Device and Font Description Files],
page 242. See options -L and -X.

‘-Larg’ Pass arg to the print spooler program. If multiple args are
required, pass each with a separate -L option. groff does not
prefix an option dash to arg before passing it to the spooler
program.

‘-mname’ Process the file name.tmac prior to any input files. If not found,
tmac.name is attempted. name (in both arrangements) is pre-
sumed to be a macro file; see the description of GROFF_TMAC_
PATH in Section 2.2 [Environment], page 10, below for the default
search locations and ordering. This option and its argument are
also passed to geqn, grap, and ggrn.

‘-Mdir’ Search directory dir for macro files; see the description of
GROFF_TMAC_PATH in Section 2.2 [Environment], page 10, be-
low for the default search locations and ordering. This option
and its argument are also passed to geqn, grap, and ggrn.

‘-nnum’ Number the first page num.

‘-N’ Prohibit newlines between eqn delimiters: pass -N to geqn.

‘-olist’ Output only pages in list, which is a comma-separated list of
page ranges; ‘n’ means page n, ‘m-n’ means every page between
m and n, ‘-n’ means every page up to n, ‘n-’ means every page
from n on. gtroff stops processing and exits after formatting
the last page enumerated in list.

‘-p’ Run gpic preprocessor.

‘-Parg’ Pass arg to the postprocessor. If multiple args are required,
pass each with a separate -P option. groff does not prefix an
option dash to arg before passing it to the postprocessor.

‘-rcnumeric-expression’
‘-rregister=expr’

Set roff register c or register to the value numeric-expression
(see Section 5.4 [Numeric Expressions], page 77). c must be
one character; register can be of arbitrary length. Such register
assignments happen before any macro file is loaded, including
the startup file. Due to getopt_long limitations, c cannot be,
and register cannot contain, an equals sign, even though that is
a valid character in a roff identifier.

‘-R’ Run grefer preprocessor. No mechanism is provided for passing
arguments to grefer because most grefer options have equiv-
alent language elements that can be specified within the docu-
ment.
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gtroff also accepts a -R option, which is not accessible via
groff. This option prevents the loading of the troffrc and
troffrc-end files.

‘-s’ Run gsoelim preprocessor.

‘-S’ Operate in “safer” mode; see -U below for its opposite. For
security reasons, safer mode is enabled by default.

‘-t’ Run gtbl preprocessor.

‘-Tdev’ Direct gtroff to format the input for the output device dev.
groff then calls an output driver to convert gtroff’s output
to a form appropriate for dev. The following output devices are
available.

ps For PostScript printers and previewers.

pdf For PDF viewers or printers.

dvi For TEX DVI format.

X75 For a 75 dpi X11 previewer.

X75-12 For a 75 dpi X11 previewer with a 12-point base font
in the document.

X100 For a 100 dpi X11 previewer.

X100-12 For a 100 dpi X11 previewer with a 12-point base
font in the document.

ascii For typewriter-like devices using the (7-bit) ASCII
(ISO 646) character set.

latin1 For typewriter-like devices that support the Latin-1
(ISO 8859-1) character set.

utf8 For typewriter-like devices that use the Unicode
(ISO 10646) character set with UTF-8 encoding.

cp1047 For typewriter-like devices that use the EBCDIC en-
coding IBM code page 1047.

lj4 For HP LaserJet4-compatible (or other PCL5-
compatible) printers.

lbp For Canon CaPSL printers (LBP-4 and LBP-8 series
laser printers).

html
xhtml To produce HTML and XHTML output, re-

spectively. This driver consists of two parts, a
preprocessor (pre-grohtml) and a postprocessor
(post-grohtml).
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The predefined GNU troff string .T contains the name of the
output device; the read-only register .T is set to 1 if this option is
used (which is always true if groff is used to call GNU troff).
See Section 5.8.5 [Built-in Registers], page 98.

The postprocessor to be used for a device is specified by the
postpro command in the device description file. (See Section 6.2
[Device and Font Description Files], page 242.) This can be
overridden with the -X option.

‘-U’ Operate in unsafe mode, which enables the open, opena, pi, pso,
and sy requests. These requests are disabled by default because
they allow an untrusted input document to write to arbitrary
file names and run arbitrary commands. This option also adds
the current directory to the macro package search path; see the
-m option above. -U is passed to gpic and gtroff.

‘-v’ Write version information for groff and all programs run by it
to the standard output stream; that is, the given command line
is processed in the usual way, passing -v to the formatter and
any pre- or postprocessors invoked.

‘-V’ Output the pipeline that would be run by groff (as a wrapper
program) to the standard output stream, but do not execute
it. If given more than once, the pipeline is both written to the
standard error stream and run.

‘-wcategory’
Enable warnings in category. Categories are listed in Sec-
tion 5.37.1 [Warnings], page 221.

‘-Wcategory’
Inhibit warnings in category. Categories are listed in Sec-
tion 5.37.1 [Warnings], page 221.

‘-X’ Use gxditview instead of the usual postprocessor to (pre)view a
document on an X11 display. Combining this option with -Tps
uses the font metrics of the PostScript device, whereas the -TX75
and -TX100 options use the metrics of X11 fonts.

‘-z’ Suppress formatted output from gtroff.

‘-Z’ Disable postprocessing. gtroff output will appear on the stan-
dard output stream (unless suppressed with -z; see Section 6.1
[gtroff Output], page 229, for a description of this format.

2.2 Environment
There are also several environment variables (of the operating system, not
within gtroff) that can modify the behavior of groff.
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GROFF_BIN_PATH
This search path, followed by PATH, is used for commands exe-
cuted by groff.

GROFF_COMMAND_PREFIX
If this is set to X, then groff runs Xtroff instead of
gtroff. This also applies to tbl, pic, eqn, grn, chem, refer,
and soelim. It does not apply to grops, grodvi, grotty,
pre-grohtml, post-grohtml, preconv, grolj4, gropdf, and
gxditview.

The default command prefix is determined during the installa-
tion process. If a non-GNU troff system is found, prefix ‘g’ is
used, none otherwise.

GROFF_ENCODING
The value of this variable is passed to the preconv preproces-
sor’s -e option to select the character encoding of input files.
This variable’s existence implies the groff option -k. If set
but empty, groff calls preconv without an -e option. groff’s
-K option overrides GROFF_ENCODING. See the preconv(7) man
page; type ‘man preconv’ at the command line to view it.

GROFF_FONT_PATH
A list of directories in which to seek the selected output device’s
directory of device and font description files. GNU troff will
search directories given as arguments to any specified -F op-
tions before these, and a built-in list of directories after them.
See Section 2.4 [Font Directories], page 12, and the troff(1) or
gtroff(1) man pages.

GROFF_TMAC_PATH
A list of directories in which to seek macro files. GNU troff
will search directories given as arguments to any specified -M
options before these, and a built-in list of directories after them.
See Section 2.3 [Macro Directories], page 12, and the troff(1) or
gtroff(1) man pages.

GROFF_TMPDIR
The directory in which groff creates temporary files. If this
is not set and TMPDIR is set, temporary files are created in
that directory. Otherwise temporary files are created in a
system-dependent default directory (on Unix and GNU/Linux
systems, this is usually /tmp). grops, grefer, pre-grohtml,
and post-grohtml can create temporary files in this directory.

GROFF_TYPESETTER
Sets the default output device. If empty or not set, a build-time
default (often ps) is used. The -Tdev option overrides GROFF_
TYPESETTER.
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SOURCE_DATE_EPOCH
A timestamp (expressed as seconds since the Unix epoch) to
use as the output creation timestamp in place of the current
time. The time is converted to human-readable form using lo-
caltime(3) when the formatter starts up and stored in regis-
ters usable by documents and macro packages (see Section 5.8.5
[Built-in Registers], page 98).

TZ The time zone to use when converting the current time (or value
of SOURCE_DATE_EPOCH) to human-readable form; see tzset(3).

MS-DOS and MS-Windows ports of groff use semicolons, rather than
colons, to separate the directories in the lists described above.

2.3 Macro Directories
A macro file must have a name in the form name.tmac or tmac.name and
be placed in a tmac directory to be found by the -mname command-line
option.2 Together, these directories constitute the tmac path. Each directory
is searched in the following order until the desired macro file is found or the
list is exhausted.

• Directories specified with GNU troff’s or groff’s -M command-line
option.

• Directories listed in the GROFF_TMAC_PATH environment variable.

• The current working directory (only if in unsafe mode using the -U
command-line option).

• The user’s home directory, HOME.

• A platform-dependent directory, a site-local (platform-independent) di-
rectory, and the main tmac directory. The locations corresponding to
your installation are listed in section “Environment” of gtroff(1). If not
otherwise configured, they are as follows.

/usr/local/lib/groff/site-tmac
/usr/local/share/groff/site-tmac
/usr/local/share/groff/1.23.0/tmac

The foregoing assumes that the version of groff is 1.23.0, and that
the installation prefix was /usr/local. It is possible to fine-tune these
locations during the source configuration process.

2.4 Font Directories
groff enforces few restrictions on how font description files are named.
For its family/style mechanism to work (see Section 5.19.2 [Font Families],
page 132), the names of fonts within a family should start with the family
name, followed by the style. For example, the Times family uses ‘T’ for the

2 The mso request does not have these limitations. See Section 5.33 [I/O], page 206.
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family name and ‘R’, ‘B’, ‘I’, and ‘BI’ to indicate the styles ‘roman’, ‘bold’,
‘italic’, and ‘bold italic’, respectively. Thus the final font names are ‘TR’,
‘TB’, ‘TI’, and ‘TBI’.

Font description files are kept in font directories, which together con-
stitute the font path. The search procedure always appends the directory
devname, where name is the name of the output device. Assuming TEX
DVI output, and /foo/bar as a font directory, the font description files for
grodvi must be in /foo/bar/devdvi. Each directory in the font path is
searched in the following order until the desired font description file is found
or the list is exhausted.

• Directories specified with GNU troff’s or groff’s -f command-line op-
tion. All output drivers (and some preprocessors) support this option as
well, because they require information about the glyphs to be rendered
in the document.

• Directories listed in the GROFF_FONT_PATH environment variable.

• A site-local directory and the main font description directory. The lo-
cations corresponding to your installation are listed in section “Envi-
ronment” of gtroff(1). If not otherwise configured, they are as follows.

/usr/local/share/groff/site-font
/usr/local/share/groff/1.23.0/font

The foregoing assumes that the version of groff is 1.23.0, and that
the installation prefix was /usr/local. It is possible to fine-tune these
locations during the source configuration process.

2.5 Paper Format
In groff, the page dimensions for the formatter GNU troff and for output
devices are handled separately. See Section 5.17 [Page Layout], page 126, for
vertical manipulation of the page size, and See Section 5.15 [Line Layout],
page 122, for horizontal changes. The papersize macro package, normally
loaded by troffrc at startup, provides an interface for configuring page
dimensions by convenient names, like ‘letter’ or ‘a4’; see groff tmac(5).
The default used by the formatter depends on its build configuration, but is
usually one of the foregoing, as geographically appropriate.

It is up to each macro package to respect the page dimensions configured
in this way.

For each output device, the size of the output medium can be set in its
DESC file. Most output drivers also recognize a command-line option -p to
override the default dimensions and an option -l to use landscape orienta-
tion. See Section 6.2.1 [DESC File Format], page 242, for a description of
the papersize keyword, which takes an argument of the same form as -p.
The output driver’s man page, such as grops(1), may also be helpful.
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groff uses the command-line option -P to pass options to postprocessors;
for example, use the following for PostScript output on A4 paper in landscape
orientation.

groff -Tps -dpaper=a4l -P-pa4 -P-l -ms foo.ms > foo.ps

2.6 Invocation Examples
roff systems are best known for formatting man pages. Once a man librarian
program has located a man page, it may execute a groff command much
like the following.

groff -t -man -Tutf8 /usr/share/man/man1/groff.1

The librarian will also pipe the output through a pager, which might
not interpret the SGR terminal escape sequences groff emits for boldface,
underlining, or italics; see the grotty(1) man page for a discussion.

To process a roff input file using the preprocessors gtbl and gpic and
the me macro package in the way to which AT&T troff users were accus-
tomed, one would type (or script) a pipeline.

gpic foo.me | gtbl | gtroff -me -Tutf8 | grotty

Using groff, this pipe can be shortened to an equivalent command.

groff -p -t -me -T utf8 foo.me

An even easier way to do this is to use grog to guess the preprocessor
and macro options and execute the result by using the command substitution
feature of the shell.

$(grog -Tutf8 foo.me)

Each command-line option to a postprocessor must be specified with
any required leading dashes ‘-’ because groff passes the arguments as-is to
the postprocessor; this permits arbitrary arguments to be transmitted. For
example, to pass a title to the gxditview postprocessor, the shell commands

groff -X -P -title -P 'trial run' mydoc.t

and

groff -X -Z mydoc.t | gxditview -title 'trial run' -

are equivalent.
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3 Tutorial for Macro Users

Most users of the roff language employ a macro package to format their
documents. Successful macro packages ease the composition process; their
users need not have mastered the full formatting language, nor understand
features like diversions, traps, and environments. This chapter aims to fa-
miliarize you with basic concepts and mechanisms common to many macro
packages (like “displays”). If you prefer a meticulous and comprehensive
presentation, try Chapter 5 [GNU troff Reference], page 63, instead.

3.1 Basics
Let us first survey some basic concepts necessary to use a macro package
fruitfully.1 References are made throughout to more detailed information.

GNU troff reads an input file prepared by the user and outputs a for-
matted document suitable for publication or framing. The input consists of
text, or words to be printed, and embedded commands (requests and escape
sequences), which tell GNU troff how to format the output. See Section 5.6
[Formatter Instructions], page 83.

The word argument is used in this chapter to mean a word or number
that appears on the same line as a request, and which modifies the meaning
of that request. For example, the request

.sp

spaces one line, but

.sp 4

spaces four lines. The number 4 is an argument to the sp request, which
says to space four lines instead of one. Arguments are separated from the
request and from each other by spaces (not tabs). See Section 5.6.2 [Invoking
Requests], page 84.

The primary function of GNU troff is to collect words from input lines,
fill output lines with those words, adjust the line to the right-hand margin
by widening spaces, and output the result. For example, the input:

Now is the time
for all good men
to come to the aid
of their party.
Four score and seven
years ago, etc.

is read, packed onto output lines, and justified to produce:

⇒ Now is the time for all good men to come to the aid of
⇒ their party. Four score and seven years ago, etc.

1 The remainder of this chapter is based on Writing Papers with nroff using -me by
Eric P. Allman, which is distributed with groff as meintro.me.
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Sometimes a new output line should be started even though the current
line is not yet full—for example, at the end of a paragraph. To do this it is
possible to force a break, starting a new output line. Some requests cause
a break automatically, as do (normally) blank input lines and input lines
beginning with a space or tab.

Not all input lines are text lines—words to be formatted. Some are
control lines that tell a macro package (or GNU troff directly) how to
format the text. Control lines start with a dot (‘.’) or an apostrophe (‘'’)
as the first character, and can be followed by a macro call.

The formatter also does more complex things, such as automatically num-
bering pages, skipping over page boundaries, putting footnotes in the correct
place, and so forth.

Here are a few hints for preparing text for input to GNU troff.

• First, keep the input lines short. Short input lines are easier to edit,
and GNU troff packs words onto longer lines anyhow.

• In keeping with this, it is helpful to begin a new line after every comma
or phrase, since common corrections are to add or delete sentences or
phrases.

• End each sentence with two spaces—or better, start each sentence on a
new line. GNU troff recognizes characters that usually end a sentence,
and inserts inter-sentence space accordingly.

• Do not hyphenate words at the end of lines—GNU troff is smart
enough to hyphenate words as needed, but is not smart enough to
take hyphens out and join a word back together. Also, words such
as “mother-in-law” should not be broken over a line, since then a space
can occur where not wanted, such as “mother- in-law”.

We offer further advice in Section 5.1.10 [Input Conventions], page 71.

GNU troff permits alteration of the distance between lines of text. This
is termed vertical spacing and is expressed in the same units as the type
size—the point. The default is 10-point type on 12-point spacing. To get
double-spaced text you would set the vertical spacing to 24 points. Some,
but not all, macro packages expose a macro or register to configure the
vertical spacing.

A number of requests allow you to change the way the output is arranged
on the page, sometimes called the layout of the output page. Most macro
packages don’t supply macros for performing these (at least not without per-
forming other actions besides), as they are such basic operations. The macro
packages for writing man pages, man and mdoc, don’t encourage explicit use
of these requests at all.

The request ‘.sp N’ leaves N lines of blank space. N can be omitted
(skipping a single line) or can be of the form N i (for N inches) or Nc (for
N centimeters). For example, the input:
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.sp 1.5i
My thoughts on the subject
.sp

leaves one and a half inches of space, followed by the line “My thoughts on
the subject”, followed by a single blank line (more measurement units are
available; see Section 5.3 [Measurements], page 75).

If you seek precision in spacing, be advised when using a macro package
that it might not honor sp requests as you expect; it can use a formatter fea-
ture called no-space mode to prevent excess space from accumulating. Macro
packages typically offer registers to control spacing between paragraphs, be-
fore section headings, and around displays (discussed below); use these fa-
cilities preferentially. See Section 5.11 [Manipulating Spacing], page 112.

Text lines can be centered by using the ce request. The line after ce
is centered (horizontally) on the page. To center more than one line, use
‘.ce N’ (where N is the number of lines to center), followed by the N lines.
To center many lines without counting them, type:

.ce 1000
lines to center
.ce 0

The ‘.ce 0’ request tells GNU troff to center zero more lines, in other
words, stop centering.

GNU troff also offers the rj request for right-aligning text. It works
analogously to ce and is convenient for setting epigraphs.

The bp request starts a new page; this necessarily implies an ordinary
(line) break.

All of these requests cause a break; that is, they always start a new line.
To start a new line without performing any other action, use br. If you
invoke them with the apostrophe ‘'’, the no-break control character, the
(initial) break they normally perform is suppressed. ‘'br’ does nothing.

3.2 Common Features
GNU troff provides low-level operations for formatting a document. Many
routine operations are undertaken in nearly all documents that require a
series of such primitive operations to be performed. These common tasks
are grouped into macros, which are then collected into a macro package.

Macro packages come in two varieties: “major” or “full-service” ones that
manage page layout, and “minor” or “auxiliary” ones that do not, instead
fulfilling narrow, specific tasks. Find a list in the groff tmac(5) man page.
Type ‘man groff_tmac’ at the command line to view it.

We survey several capabilities of full-service macro package below. Each
package employs its own macros to exercise them. For details, consult its
man page or, for ms, see Section 4.6 [ms], page 24.
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3.2.1 Paragraphs

Paragraphs can be separated and indented in various ways. Some start with
a blank line and have a first-line indentation, like most of the ones in this
manual. Block paragraphs omit the indentation.

⇒ Some men look at constitutions with sanctimonious
⇒ reverence, and deem them like the ark of the
⇒ covenant, too sacred to be touched.

We also frequently encounter tagged paragraphs, which begin with a tag or
label at the left margin and indent the remaining text.

⇒ one This is the first paragraph. Notice how the
⇒ first line of the resulting paragraph lines
⇒ up with the other lines in the paragraph.

If the tag is too wide for the indentation, the line is broken.

⇒ longlabel
⇒ The label does not align with the subsequent
⇒ lines, but they align with each other.

A variation of the tagged paragraph is the itemized or enumerated para-
graph, which might use punctuation or a digit for a tag, respectively. These
are frequently used to construct lists.

⇒ o This list item starts with a bullet. When
⇒ producing output for a device using the ASCII
⇒ character set, an 'o' is formatted instead.

Often, use of the same macro without a tag continues such a discussion.

⇒ -xyz This option is recognized but ignored.
⇒
⇒ It had a security hole that we don't discuss.

3.2.2 Sections and Chapters

The simplest kind of section heading is unnumbered, set in a bold or italic
style, and occupies a line by itself. Others possess automatically numbered
multi-level headings and/or different typeface styles or sizes at different lev-
els. More sophisticated macro packages supply macros for designating chap-
ters and appendices.

3.2.3 Headers and Footers

Headers and footers occupy the top and bottom of each page, respectively,
and contain data like the page number and the article or chapter title. Their
appearance is not affected by the running text. Some packages allow for dif-
ferent titles on even- and odd-numbered pages (for printed, bound material).

Headers and footers are together called titles, and comprise three parts:
left-aligned, centered, and right-aligned. A ‘%’ character appearing anywhere
in a title is automatically replaced by the page number. See Section 5.17
[Page Layout], page 126.
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3.2.4 Page Layout

Most macro packages let the user specify the size of the page margins. The
top and bottom margins are typically handled differently than the left and
right margins; the latter two are derived from the page offset, indentation,
and line length. See Section 5.15 [Line Layout], page 122. Commonly, pack-
ages support registers to tune these values.

3.2.5 Displays and Keeps

Displays are sections of text set off from the surrounding material (typically
paragraphs), often differing in indentation, and/or spacing. Tables, block
quotations, and figures are displayed. Equations and code examples, when
not much shorter than an output line, often are. Lists may or may not be.
Packages for setting man pages support example displays but not keeps.

A keep is a group of output lines, often a display, that is formatted on a
single page if possible; it causes a page break to happen early so as to not
interrupt the kept material.

Floating keeps can move, or “float”, relative to the text around them in
the input. They are useful for displays that are captioned and referred to
by name, as with “See figure 3”. Depending on the package, a floating keep
appears at the bottom of the current page if it fits, and at the top of the
next otherwise. Alternatively, floating keeps might be deferred to the end of
a section. Using a floating keep can avoid the large vertical spaces that may
precede a tall keep of the ordinary sort when it won’t fit on the page.

3.2.6 Footnotes and Endnotes

Footnotes and endnotes are forms of delayed formatting. They are recorded
at their points of relevance in the input, but not formatted there. Instead,
a mark cues the reader to check the “foot”, or bottom, of the current page,
or in the case of endnotes, an annotation list later in the document. Macro
packages that support these features also supply a means of automatically
numbering either type of annotation.

3.2.7 Table of Contents

A package may handle a table of contents by directing section heading
macros to save section heading text and the page number where it occurs for
use in a later entry for a table of contents. It writes the collected entries at
the end of the document, once all are known, upon request. A row of dots
(a leader) bridges the text on the left with its location on the right. Other
collections might work in this manner, providing lists of figures or tables.

A table of contents is often found at the end of a GNU troff document
because the formatter processes the document in a single pass. The gropdf
output driver supports a PDF feature that relocates pages at the time the
document is rendered; see the gropdf(1) man page. Type ‘man gropdf’ at
the command line to view it.
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3.2.8 Indexing

An index is similar to a table of contents, in that entry labels and locations
must be collected, but poses a greater challenge because it needs to be sorted
before it is output. Here, processing the document in multiple passes is
inescapable, and tools like the makeindex program are necessary.

3.2.9 Document Formats

Some macro packages supply stock configurations of certain documents, like
business letters and memoranda. These often also have provision for a cover
sheet, which may be rigid in its format. With these features, it is even
more important to use the package’s macros in preference to the formatter
requests presented earlier, where possible.

3.2.10 Columnation

Macro packages apart from man and mdoc for man page formatting offer a
facility for setting multiple columns on the page.

3.2.11 Font and Size Changes

The formatter’s requests and escape sequences for setting the typeface and
size are not always intuitive, so all macro packages provide macros to make
these operations simpler. They also make it more convenient to change type-
faces in the middle of a word and can handle italic corrections automatically.
See Section 5.19.9 [Italic Corrections], page 147.

3.2.12 Predefined Text

Most macro packages supply predefined strings to set prepared text like the
date, or to perform operations like super- and subscripting.

3.2.13 Preprocessor Support

All macro packages provide support for various preprocessors and may ex-
tend their functionality by defining macros to set their contents in displays.
Examples include TS and TE for gtbl, EQ and EN for geqn, and PS and PE
for gpic.

3.2.14 Configuration and Customization

Packages provide means of customizing many of the details of how the pack-
age behaves. These range from setting the default type size to changing the
appearance of section headers.
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4 Macro Packages

This chapter surveys the “major” macro packages that come with groff.
One, ms, is presented in detail.

Major macro packages are also sometimes described as full-service due to
the breadth of features they provide and because more than one cannot be
used by the same document; for example

groff -m man foo.man -m ms bar.doc

doesn’t work. Option arguments are processed before non-option arguments;
the above (failing) sample is thus reordered to

groff -m man -m ms foo.man bar.doc

Many auxiliary, or “minor”, macro packages are also available. They
may in general be used with any full-service macro package and handle a
variety of tasks from character encoding selection, to language localization,
to inlining of raster images. See the groff tmac(5) man page for a list. Type
‘man groff_tmac’ at the command line to view it.

4.1 man

The man macro package is the most widely used and probably the most
important ever developed for troff. It is easy to use, and a vast majority
of manual pages (“man pages”) are written in it.

groff’s implementation is documented in the groff man(7) man page.
Type ‘man groff_man’ at the command line to view it.

4.1.1 Optional man extensions

Use the file man.local for local extensions to the man macros or for style
changes.

Custom headers and footers

In groff versions 1.18.2 and later, you can specify custom headers and
footers by redefining the following macros in man.local.

[Macro].PT
Control the content of the headers. Normally, the header prints the com-
mand name and section number on either side, and the optional fifth
argument to TH in the center.

[Macro].BT
Control the content of the footers. Normally, the footer prints the page
number and the third and fourth arguments to TH.

Use the FT register to specify the footer position. The default is −0.5 i.
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Ultrix-specific man macros

The groff source distribution includes a file named man.ultrix, contain-
ing macros compatible with the Ultrix variant of man. Copy this file into
man.local (or use the mso request to load it) to enable the following macros.

[Macro].CT key
Print ‘<CTRL/key>’.

[Macro].CW
Print subsequent text using a “constant-width” (monospaced) typeface
(Courier roman).

[Macro].Ds
Begin a non-filled display.

[Macro].De
End a non-filled display started with Ds.

[Macro].EX [indent]
Begin a non-filled display using a monospaced typeface (Courier roman).
Use the optional indent argument to indent the display.

[Macro].EE
End a non-filled display started with EX.

[Macro].G [text]
Set text in Helvetica. If no text is present on the line where the macro is
called, then the text of the next line appears in Helvetica.

[Macro].GL [text]
Set text in Helvetica oblique. If no text is present on the line where
the macro is called, then the text of the next line appears in Helvetica
Oblique.

[Macro].HB [text]
Set text in Helvetica bold. If no text is present on the line where the
macro is called, then all text up to the next HB appears in Helvetica bold.

[Macro].TB [text]
Identical to HB.

[Macro].MS title sect [punct]
Set a man page reference in Ultrix format. The title is in Courier instead
of italic. Optional punctuation follows the section number without an
intervening space.

[Macro].NT [C] [title]
Begin a note. Print the optional title, or the word “Note”, centered on
the page. Text following the macro makes up the body of the note, and
is indented on both sides. If the first argument is C, the body of the
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note is printed centered (the second argument replaces the word “Note”
if specified).

[Macro].NE
End a note begun with NT.

[Macro].PN path [punct]
Set the path name in a monospaced typeface (Courier roman), followed
by optional punctuation.

[Macro].Pn [punct] path [punct]
If called with two arguments, identical to PN. If called with three ar-
guments, set the second argument in a monospaced typeface (Courier
roman), bracketed by the first and third arguments in the current font.

[Macro].R
Switch to roman font and turn off any underlining in effect.

[Macro].RN
Print the string ‘<RETURN>’.

[Macro].VS [4]
Start printing a change bar in the margin if the number 4 is specified.
Otherwise, this macro does nothing.

[Macro].VE
End printing the change bar begun by VS.

Simple example

The following example man.local file alters the SH macro to add some extra
vertical space before printing the heading. Headings are printed in Helvetica
bold.

.\" Make the heading fonts Helvetica

.ds HF HB

.

.\" Put more space in front of headings.

.rn SH SH-orig

.de SH

. if t .sp (u;\\n[PD]*2)

. SH-orig \\$*

..

4.2 mdoc

groff’s implementation of the BSD doc package for man pages is docu-
mented in the groff mdoc(7) man page. Type ‘man groff_mdoc’ at the com-
mand line to view it.
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4.3 me

groff’s implementation of the BSD me macro package is documented us-
ing itself. A tutorial, meintro.me, and reference, meref.me, are available
in groff’s documentation directory. A groff me(7) man page is also avail-
able and identifies the installation path for these documents. Type ‘man
groff_me’ at the command line to view it.

A French translation of the tutorial is available as meintro_fr.me and
installed parallel to the English version.

4.4 mm

groff’s implementation of the AT&T memorandum macro package is docu-
mented in the groff mm(7) man page. Type ‘man groff_mm’ at the command
line) to view it.

A Swedish localization of mm is also available; see groff mmse(7).

4.5 mom

The main documentation files for the mom macros are in HTML format. Ad-
ditional, useful documentation is in PDF format. See the groff(1) man page,
section “Installation Directories”, for their location.

• toc.html Entry point to the full mom manual.

• macrolist.html Hyperlinked index of macros with brief descriptions,
arranged by category.

• mom-pdf.pdf PDF features and usage.

The mom macros are in active development between groff releases. The
most recent version, along with up-to-date documentation, is available at
http://www.schaffter.ca/mom/mom-05.html.

The groff mom(7) man page (type ‘man groff_mom’ at the command line)
contains a partial list of available macros, however their usage is best under-
stood by consulting the HTML documentation.

4.6 ms

The ms (“manuscript”) package is suitable for the preparation of letters,
memoranda, reports, and books. These groff macros feature cover page
and table of contents generation, automatically numbered headings, several
paragraph styles, a variety of text styling options, footnotes, and multi-
column page layouts. ms supports the tbl, eqn, pic, and refer prepro-
cessors for inclusion of tables, mathematical equations, diagrams, and stan-
dardized bibliographic citations. This implementation is mostly compatible
with the documented interface and behavior of AT&T Unix Version 7 ms.
Many extensions from 4.2BSD (Berkeley) and Tenth Edition Research Unix
have been recreated.

http://www.schaffter.ca/mom/mom-05.html
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4.6.1 Introduction

The msmacros are the oldest surviving package for roff systems.1 While the
man package was designed for brief reference documents, the ms macros are
also suitable for longer works intended for printing and possible publication.

4.6.1.1 Basic information

ms documents are plain text files; prepare them with your preferred text
editor. If you’re in a hurry to start, know that ms needs one of its macros
called at the beginning of a document so that it can initialize. A macro is a
formatting instruction to ms. Put a macro call on a line by itself. Use ‘.PP’
if you want your paragraph’s first line to be indented, or ‘.LP’ if you don’t.

After that, start typing normally. It is a good practice to start each sen-
tence on a new line, or to put two spaces after sentence-ending punctuation,
so that the formatter knows where the sentence boundaries are. You can
separate paragraphs with further paragraphing macros, or with blank lines,
and you can indent with tabs. When you need one of the features mentioned
earlier (see Section 4.6 [ms], page 24), return to this part of the manual.

Format the document with the groff command. nroff can be useful for
previewing.� �

$ editor radical.ms
$ nroff -ww -z -ms radical.ms # check for errors
$ nroff -ms radical.ms | less -R
$ groff -T ps -ms radical.ms > radical.ps
$ see radical.ps
 	

Our radical.ms document might look like this.� �
.LP
Radical novelties are so disturbing that they tend to be
suppressed or ignored, to the extent that even the
possibility of their existence in general is more often
denied than admitted.

→That's what Dijkstra said, anyway.
 	
ms exposes many aspects of document layout to user control via groff’s

registers and strings, which store numbers and text, respectively. Measure-
ments in groff are expressed with a suffix called a scaling unit.

1 While manual pages are older, early ones used macros supplanted by the man pack-
age of Seventh Edition Unix (1979). ms shipped with Sixth Edition (1975) and was
documented by Mike Lesk in a Bell Labs internal memorandum.
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i inches

c centimeters

p points (1/72 inch)

P picas (1/6 inch)

v vees; current vertical spacing

m ems; width of an “M” in the current font

n ens; one-half em

Set registers with the nr request and strings with the ds request. Re-
quests are like macro calls; they go on lines by themselves and start with
the control character, a dot (.). The difference is that they directly instruct
the formatter program, rather than the macro package. We’ll discuss a few
as applicable. It is wise to specify a scaling unit when setting any register
that represents a length, size, or distance.� �

.nr PS 10.5p \" Use 10.5-point type.

.ds FAM P \" Use Palatino font family.
 	
In the foregoing, we see that \" begins a comment. This is an example of an
escape sequence, the other kind of formatting instruction. Escape sequences
can appear anywhere. They begin with the escape character (\) and are
followed by at least one more character. ms documents tend to use only a
few of groff’s many requests and escape sequences; see Appendix B [Request
Index], page 259, and Appendix C [Escape Sequence Index], page 263, or the
groff(7) man page for complete lists.

\" Begin comment; ignore remainder of line.

\n[reg] Interpolate value of register reg.

\*[str] Interpolate contents of string str.

\*s abbreviation of \*[s]; the name s must be only one character

\[char] Interpolate glyph of special character named char.

\& dummy character

\~ Insert an unbreakable space that is adjustable like a normal
space.

\| Move horizontally by one-sixth em (“thin space”).

Prefix any words that start with a dot ‘.’ or neutral apostrophe ‘'’ with
\& if they are at the beginning of an input line (or might become that
way in editing) to prevent them from being interpreted as macro calls or
requests. Suffix ‘.’, ‘?’, and ‘!’ with \& when needed to cancel end-of-
sentence detection.
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� �
My exposure was \&.5 to \&.6 Sv of neutrons, said Dr.\&
Wallace after the criticality incident.
 	

4.6.2 Document Structure

The ms macro package expects a certain amount of structure: a well-formed
document contains at least one paragraphing or heading macro call. Longer
documents have a structure as follows.

Document type
Calling the RPmacro at the beginning of your document puts the
document description (see below) on a cover page. Otherwise,
ms places the information (if any) on the first page, followed
immediately by the body text. Some document types found in
other ms implementations are specific to AT&T or Berkeley, and
are not supported by groff ms.

Format and layout
By setting registers and strings, you can configure your doc-
ument’s typeface, margins, spacing, headers and footers, and
footnote arrangement. See Section 4.6.3 [ms Document Control
Settings], page 28.

Document description
A document description consists of any of: a title, one or more
authors’ names and affiliated institutions, an abstract, and a
date or other identifier. See Section 4.6.4 [ms Document De-
scription Macros], page 33.

Body text The main matter of your document follows its description (if
any). ms supports highly structured text consisting of para-
graphs interspersed with multi-level headings (chapters, sec-
tions, subsections, and so forth) and augmented by lists, foot-
notes, tables, diagrams, and similar material. See Section 4.6.5
[ms Body Text], page 35.

Tables of contents
Macros enable the collection of entries for a table of contents
(or index) as the material they discuss appears in the document.
You then call a macro to emit the table of contents at the end
of your document. The table of contents must necessarily follow
the rest of the text since GNU troff is a single-pass formatter;
it thus cannot determine the page number of a division of the
text until it has been set and output. Since ms was designed
for the production of hard copy, the traditional procedure was
to manually relocate the pages containing the table of contents
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between the cover page and the body text. Today, page rese-
quencing is more often done in the digital domain. An index
works similarly, but because it typically needs to be sorted after
collection, its preparation requires separate processing.

4.6.3 Document Control Settings

ms exposes many aspects of document layout to user control via groff re-
quests. To use them, you must understand how to define registers and
strings.

[Request].nr reg value
Set register reg to value. If reg doesn’t exist, GNU troff creates it.

[Request].ds name contents
Set string name to contents.

A list of document control registers and strings follows. For any parame-
ter whose default is unsatisfactory, define its register or string before calling
any ms macro other than RP.

Margin settings

[Register]\n[PO]
Defines the page offset (i.e., the left margin).

Effective: next page.

Default: Varies by output device and paper format; 1 i is used for type-
setters using U.S. letter paper, and zero for terminals. See Section 2.5
[Paper Format], page 13.

[Register]\n[LL]
Defines the line length (i.e., the width of the body text).

Effective: next paragraph.

Default: Varies by output device and paper format; 6.5 i is used for type-
setters using U.S. letter paper (see Section 2.5 [Paper Format], page 13)
and 65 n on terminals.

[Register]\n[LT]
Defines the title line length (i.e., the header and footer width). This is
usually the same as LL, but need not be.

Effective: next paragraph.

Default: Varies by output device and paper format; 6.5 i is used for type-
setters using U.S. letter paper (see Section 2.5 [Paper Format], page 13)
and 65 n on terminals.

[Register]\n[HM]
Defines the header margin height at the top of the page.

Effective: next page.

Default: 1 i.
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[Register]\n[FM]
Defines the footer margin height at the bottom of the page.

Effective: next page.

Default: 1 i.

Titles (headers, footers)

[String]\*[LH]
Defines the text displayed in the left header position.

Effective: next header.

Default: empty.

[String]\*[CH]
Defines the text displayed in the center header position.

Effective: next header.

Default: ‘-\n[%]-’.

[String]\*[RH]
Defines the text displayed in the right header position.

Effective: next header.

Default: empty.

[String]\*[LF]
Defines the text displayed in the left footer position.

Effective: next footer.

Default: empty.

[String]\*[CF]
Defines the text displayed in the center footer position.

Effective: next footer.

Default: empty.

[String]\*[RF]
Defines the text displayed in the right footer position.

Effective: next footer.

Default: empty.

Text settings

[Register]\n[PS]
Defines the type size of the body text.

Effective: next paragraph.

Default: 10 p.
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[Register]\n[VS]
Defines the vertical spacing (type size plus leading).

Effective: next paragraph.

Default: 12 p.

[Register]\n[HY]
Defines the automatic hyphenation mode used with the hy request. Set-
ting HY to 0 is equivalent to using the nh request. This is a Tenth Edition
Research Unix extension.

Effective: next paragraph.

Default: 6.

[String]\*[FAM]
Defines the font family used to typeset the document. This is a GNU
extension.

Effective: next paragraph.

Default: defined by the output device; often ‘T’ (see Section 4.6.5 [ms
Body Text], page 35)

Paragraph settings

[Register]\n[PI]
Defines the indentation amount used by the PP, IP (unless overridden by
an optional argument), XP, and RS macros.

Effective: next paragraph.

Default: 5 n.

[Register]\n[PD]
Defines the space between paragraphs.

Effective: next paragraph.

Default: 0.3 v (1 v on low-resolution devices).

[Register]\n[QI]
Defines the indentation amount used on both sides of a paragraph set
with the QP or between the QS and QE macros.

Effective: next paragraph.

Default: 5 n.

[Register]\n[PORPHANS]
Defines the minimum number of initial lines of any paragraph that must
be kept together to avoid isolated lines at the bottom of a page. If a new
paragraph is started close to the bottom of a page, and there is insufficient
space to accommodate PORPHANS lines before an automatic page break,
then a page break is forced before the start of the paragraph. This is a
GNU extension.

Effective: next paragraph.
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Default: 1.

Heading settings

[Register]\n[PSINCR]
Defines an increment in type size to be applied to a heading at a lesser
depth than that specified in GROWPS. The value of PSINCR should be
specified in points with the p scaling unit and may include a fractional
component; for example, ‘.nr PSINCR 1.5p’ sets a type size increment of
1.5 p. This is a GNU extension.

Effective: next heading.

Default: 1 p.

[Register]\n[GROWPS]
Defines the heading depth above which the type size increment set by
PSINCR becomes effective. For each heading depth less than the value
of GROWPS, the type size is increased by PSINCR. Setting GROWPS to any
value less than 2 disables the incremental heading size feature. This is a
GNU extension.

Effective: next heading.

Default: 0.

[Register]\n[HORPHANS]
Defines the minimum number of lines of an immediately succeeding para-
graph that should be kept together with any heading introduced by the
NH or SH macros. If a heading is placed close to the bottom of a page,
and there is insufficient space to accommodate both the heading and at
least HORPHANS lines of the following paragraph, before an automatic page
break, then the page break is forced before the heading. This is a GNU
extension.

Effective: next paragraph.

Default: 1.

[String]\*[SN-STYLE]
Defines the style used to print numbered headings. See Section 4.6.5.4
[Headings in ms], page 38. This is a GNU extension.

Effective: next heading.

Default: alias of SN-DOT

Footnote settings

[Register]\n[FI]
Defines the footnote indentation. This is a Berkeley extension.

Effective: next footnote.

Default: 2 n.
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[Register]\n[FF]
Defines the format of automatically numbered footnotes, and those for
which the FS request is given a marker argument, at the bottom of a
column or page. This is a Berkeley extension.

0 Set an automatic number2 as a superscript (on typesetter de-
vices) or surrounded by square brackets (on terminals). The
footnote paragraph is indented as with PP if there is an FS
argument or an automatic number, and as with LP otherwise.
This is the default.

1 As 0, but set the marker as regular text and follow an auto-
matic number with a period.

2 As 1, but without indentation (like LP).

3 As 1, but set the footnote paragraph with the marker hanging
(like IP).

Effective: next footnote.

Default: 0.

[Register]\n[FPS]
Defines the footnote type size.

Effective: next footnote.

Default: \n[PS] - 2p.

[Register]\n[FVS]
Defines the footnote vertical spacing.

Effective: next footnote.

Default: \n[FPS] + 2p.

[Register]\n[FPD]
Defines the footnote paragraph spacing. This is a GNU extension.

Effective: next footnote.

Default: \n[PD] / 2.

[String]\*[FR]
Defines the ratio of the footnote line length to the current line length.
This is a GNU extension.

Effective: next footnote in single-column arrangements, next page other-
wise.

Default: 11/12.

2 defined in Section 4.6.5.10 [ms Footnotes], page 49
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Display settings

[Register]\n[DD]
Sets the display distance—the vertical spacing before and after a display,
a tbl table, an eqn equation, or a pic image. This is a Berkeley extension.

Effective: next display boundary.

Default: 0.5 v (1 v on low-resolution devices).

[Register]\n[DI]
Sets the default amount by which to indent a display started with DS and
ID without arguments, to ‘.DS I’ without an indentation argument, and
to equations set with ‘.EQ I’. This is a GNU extension.

Effective: next indented display.

Default: 0.5 i.

Other settings

[Register]\n[MINGW]
Defines the default minimum width between columns in a multi-column
document. This is a GNU extension.

Effective: next page.

Default: 2 n.

[Register]\n[TC-MARGIN]
Defines the width of the field in which page numbers are set in a table
of contents entry; the right margin thus moves inboard by this amount.
This is a GNU extension.

Effective: next PX call.

Default: \w'000'

4.6.4 Document Description Macros

Only the simplest document lacks a title.3 As its level of sophistication
(or complexity) increases, it tends to acquire a date of revision, explicitly
identified authors, sponsoring institutions for authors, and, at the rarefied
heights, an abstract of its content. Define these data by calling the macros
below in the order shown; DA or ND can be called to set the document date
(or other identifier) at any time before (a) the abstract, if present, or (b) its
information is required in a header or footer. Use of these macros is optional,
except that TL is mandatory if any of RP, AU, AI, or AB is called, and AE is
mandatory if AB is called.

[Macro].RP [no-repeat-info] [no-renumber]
Use the “report” (AT&T: “released paper”) format for your document,
creating a separate cover page. The default arrangement is to place most

3 Distinguish a document title from “titles”, which are what roff systems call headers
and footers collectively.



34 The GNU Troff Manual

of the document description (title, author names and institutions, and
abstract, but not the date) at the top of the first page. If the optional
no-repeat-info argument is given, ms produces a cover page but does
not repeat any of its information subsequently (but see the DA macro be-
low regarding the date). Normally, RP sets the page number following
the cover page to 1. Specifying the optional no-renumber argument sup-
presses this alteration. Optional arguments can occur in any order. no is
recognized as a synonym of no-repeat-info for AT&T compatibility.

[Macro].TL
Specify the document title. ms collects text on input lines following this
call into the title until reaching AU, AB, or a heading or paragraphing
macro call.

[Macro].AU
Specify an author’s name. ms collects text on input lines following this call
into the author’s name until reaching AI, AB, another AU, or a heading or
paragraphing macro call. Call it repeatedly to specify multiple authors.

[Macro].AI
Specify the preceding author’s institution. An AU call is usefully followed
by at most one AI call; if there are more, the last AI call controls. ms
collects text on input lines following this call into the author’s institution
until reaching AU, AB, or a heading or paragraphing macro call.

[Macro].DA [x . . . ]
Typeset the current date, or any arguments x, in the center footer, and,
if RP is also called, left-aligned at the end of the description information
on the cover page.

[Macro].ND [x . . . ]
Typeset the current date, or any arguments x, if RP is also called, left-
aligned at the end of the document description on the cover page. This
is groff ms’s default.

[Macro].AB [no]
Begin the abstract. ms collects text on input lines following this call into
the abstract until reaching an AE call. By default, ms places the word
“ABSTRACT” centered and in italics above the text of the abstract.
The optional argument no suppresses this heading.

[Macro].AE
End the abstract.

An example document description, using a cover page, follows.
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� �
.RP
.TL
The Inevitability of Code Bloat
in Commercial and Free Software
.AU
J.\& Random Luser
.AI
University of West Bumblefuzz
.AB
This report examines the long-term growth of the code
bases in two large,
popular software packages;
the free Emacs and the commercial Microsoft Word.
While differences appear in the type or order of
features added,
due to the different methodologies used,
the results are the same in the end.
.PP
The free software approach is shown to be superior in
that while free software can become as bloated as
commercial offerings,
free software tends to have fewer serious bugs and the
added features are more in line with user demand.
.AE

. . . the rest of the paper. . .
 	
4.6.5 Body Text

A variety of macros, registers, and strings can be used to structure and
style the body of your document. They organize your text into paragraphs,
headings, footnotes, and inclusions of material such as tables and figures.

4.6.5.1 Text settings

The FAM string, a GNU extension, sets the font family for body text; the
default is ‘T’. The PS and VS registers set the type size and vertical spacing
(distance between text baselines), respectively. The font family and type size
are ignored on terminal devices. Setting these parameters before the first
call of a heading, paragraphing, or (non-date) document description macro
also applies them to headers, footers, and (for FAM) footnotes.

Which font families are available depends on the output device; as a
convention, T selects a serif family (“Times”), H a sans-serif family (“Hel-
vetica”), and C a monospaced family (“Courier”). The man page for the
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output driver documents its font repertoire. Consult the groff(1) man page
for lists of available output devices and their drivers.

The hyphenation mode (as used by the hy request) is set from the HY
register. Setting HY to ‘0’ is equivalent to using the nh request. This is a
Tenth Edition Research Unix extension.

4.6.5.2 Typographical symbols

ms provides a few strings to obtain typographical symbols not easily entered
with the keyboard. These and many others are available as special character
escape sequences—see the groff char(7) man page.

[String]\*[-]
Interpolate an em dash.

[String]\*[Q]
[String]\*[U]

Interpolate typographer’s quotation marks where available, and neutral
double quotes otherwise. \*Q is the left quote and \*U the right.

4.6.5.3 Paragraphs

Paragraphing macros break, or terminate, any pending output line so that
a new paragraph can begin. Several paragraph types are available, differing
in how indentation applies to them: to left, right, or both margins; to the
first output line of the paragraph, all output lines, or all but the first. All
paragraphing macro calls cause the insertion of vertical space in the amount
stored in the PD register, except at page or column breaks. Alternatively, a
blank input line breaks the output line and vertically spaces by one vee.

[Macro].LP
Set a paragraph without any (additional) indentation.

[Macro].PP
Set a paragraph with a first-line left indentation in the amount stored in
the PI register.

[Macro].IP [marker [width]]
Set a paragraph with a left indentation. The optional marker is not
indented and is empty by default. It has several applications; see Sec-
tion 4.6.5.6 [Lists in ms], page 42. width overrides the indentation amount
stored in the PI register; its default unit is ‘n’. Once specified, width ap-
plies to further IP calls until specified again or a heading or different
paragraphing macro is called.

[Macro].QP
Set a paragraph indented from both left and right margins by the amount
stored in the QI register.
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[Macro].QS
[Macro].QE

Begin (QS) and end (QE) a region where each paragraph is indented from
both margins by the amount stored in the QI register. The text between
QS and QE can be structured further by use of other paragraphing macros.

[Macro].XP
Set an “exdented” paragraph—one with a left indentation in the amount
stored in the PI register on every line except the first (also known as a
hanging indent). This is a Berkeley extension.

The following example illustrates the use of paragraphing macros.� �
.NH 2
Cases used in the 2001 study
.LP
Two software releases were considered for this report.
.PP
The first is commercial software;
the second is free.
.IP \[bu]
Microsoft Word for Windows,
starting with version 1.0 through the current version
(Word 2000).
.IP \[bu]
GNU Emacs,
from its first appearance as a standalone editor through
the current version (v20).
See [Bloggs 2002] for details.
.QP
Franklin's Law applied to software:
software expands to outgrow both RAM and disk space over
time.
.SH
Bibliography
.XP
Bloggs, Joseph R.,
.I "Everyone's a Critic" ,
Underground Press, March 2002.
A definitive work that answers all questions and
criticisms about the quality and usability of free
software.
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4.6.5.4 Headings

Use headings to create a sequential or hierarchical structure for your doc-
ument. The ms macros print headings in bold using the same font family
and, by default, type size as the body text. Headings are available with and
without automatic numbering. Text on input lines following the macro call
becomes the heading’s title. Call a paragraphing macro to end the heading
text and start the section’s content.

[Macro].NH [depth]
[Macro].NH S heading-depth-index . . .

Set an automatically numbered heading.

ms produces a numbered heading the form a.b.c. . . , to any depth desired,
with the numbering of each depth increasing automatically and being
reset to zero when a more significant level is increased. “1” is the most
significant or coarsest division of the document. Only non-zero values are
output. If depth is omitted, it is taken to be ‘1’.

If you specify depth such that an ascending gap occurs relative to the
previous NH call—that is, you “skip a depth”, as by ‘.NH 1’ and then ‘.NH
3’—groff ms emits a warning on the standard error stream.

Alternatively, you can give NH a first argument of S, followed by integers
to number the heading depths explicitly. Further automatic numbering,
if used, resumes using the specified indices as their predecessors. This
feature is a Berkeley extension.

An example may be illustrative.� �
.NH 1
Animalia
.NH 2
Arthropoda
.NH 3
Crustacea
.NH 2
Chordata
.NH S 6 6 6
Daimonia
.NH 1
Plantae
 	

The above results in numbering as follows; the vertical space that nor-
mally precedes each heading is omitted.
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1. Animalia
1.1. Arthropoda
1.1.1. Crustacea
1.2. Chordata
6.6.6. Daimonia
7. Plantae

[String]\*[SN-STYLE]
[String]\*[SN-DOT]
[String]\*[SN-NO-DOT]
[String]\*[SN]

After NH is called, the assigned number is made available in the strings
SN-DOT (as it appears in a printed heading with default formatting, fol-
lowed by a terminating period) and SN-NO-DOT (with the terminating
period omitted). These are GNU extensions.

You can control the style used to print numbered headings by defining an
appropriate alias for the string SN-STYLE. By default, SN-STYLE is aliased
to SN-DOT. If you prefer to omit the terminating period from numbers
appearing in numbered headings, you may define the alias as follows.

.als SN-STYLE SN-NO-DOT

Any such change in numbering style becomes effective from the next use
of NH following redefinition of the alias for SN-STYLE. The formatted
number of the current heading is available in the SN string (a feature first
documented by Berkeley), which facilitates its inclusion in, for example,
table captions, equation labels, and XS/XA/XE table of contents entries.

[Macro].SH [depth]
Set an unnumbered heading.

The optional depth argument is a GNU extension indicating the heading
depth corresponding to the depth argument of NH. It matches the type
size at which the heading is set to that of a numbered heading at the same
depth when the GROWPS and PSINCR heading size adjustment mechanism
is in effect.

If the GROWPS register is set to a value greater than the level argument
to NH or SH, the type size of a heading produced by these macros increases
by PSINCR units over the size specified by PS multiplied by the difference of
GROWPS and level. The value stored in PSINCR is interpreted in groff basic
units; the p scaling unit should be employed when assigning a value specified
in points. For example, the sequence
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� �
.nr PS 10
.nr GROWPS 3
.nr PSINCR 1.5p
.NH 1
Carnivora
.NH 2
Felinae
.NH 3
Felis catus
.SH 2
Machairodontinae
 	

will cause “1. Carnivora” to be printed in 13-point text, followed by “1.1.
Felinae” in 11.5-point text, while “1.1.1. Felis catus” and all more deeply
nested heading levels will remain in the 10-point text specified by the PS
register. “Machairodontinae” is printed at 11.5 points, since it corresponds
to heading level 2.

The HORPHANS register operates in conjunction with the NH and SH macros
to inhibit the printing of isolated headings at the bottom of a page; it specifies
the minimum number of lines of an immediately subsequent paragraph that
must be kept on the same page as the heading. If insufficient space remains
on the current page to accommodate the heading and this number of lines
of paragraph text, a page break is forced before the heading is printed.
Any display macro call or tbl, pic, or eqn region between the heading and
the subsequent paragraph suppresses this grouping. See Section 4.6.5.8 [ms
keeps and displays], page 46, and Section 4.6.5.9 [ms Insertions], page 48.

4.6.5.5 Typeface and decoration

The ms macros provide a variety of ways to style text. Attend closely to the
ordering of arguments labeled pre and post, which is not intuitive. Support
for pre arguments is a GNU extension.4

[Macro].B [text [post [pre]]]
Style text in bold, followed by post in the previous font style without
intervening space, and preceded by pre similarly. Without arguments, ms
styles subsequent text in bold until the next paragraphing, heading, or
no-argument typeface macro call.

4 This idiosyncrasy arose through feature accretion; for example, the Bmacro in Version 6
Unix ms (1975) accepted only one argument, the text to be set in boldface. By Version 7
(1979) it recognized a second argument; in 1990, groff ms added a “pre” argument,
placing it third to avoid breaking support for older documents.
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[Macro].R [text [post [pre]]]
As B, but use the roman style (upright text of normal weight) instead of
bold. Argument recognition is a GNU extension.

[Macro].I [text [post [pre]]]
As B, but use an italic or oblique style instead of bold.

[Macro].BI [text [post [pre]]]
As B, but use a bold italic or bold oblique style instead of upright bold.
This is a Tenth Edition Research Unix extension.

[Macro].CW [text [post [pre]]]
As B, but use a constant-width (monospaced) roman typeface instead
of bold. This is a Tenth Edition Research Unix extension.

[Macro].BX [text]
Typeset text and draw a box around it. On terminal devices, reverse
video is used instead. If you want text to contain space, use unbreakable
space or horizontal motion escape sequences (\~, \SP, \^, \|, \0 or \h).

[Macro].UL [text [post]]
Typeset text with an underline. post, if present, is set after text with no
intervening space.

[Macro].LG
Set subsequent text in larger type (two points larger than the current
size) until the next type size, paragraphing, or heading macro call. You
can specify this macro multiple times to enlarge the type size as needed.

[Macro].SM
Set subsequent text in smaller type (two points smaller than the current
size) until the next type size, paragraphing, or heading macro call. You
can specify this macro multiple times to reduce the type size as needed.

[Macro].NL
Set subsequent text at the normal type size (the amount in the PS regis-
ter).

pre and post arguments are typically used to simplify the attachment
of punctuation to styled words. When pre is used, a hyphenation control
escape sequence \% that would ordinarily start text must start pre instead
to have the desired effect.� �

The CS course's students found one C language keyword
.CW static ) \%(
most troublesome.
 	

The foregoing example produces output as follows.
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� �
The CS course’s students found one C language keyword (static)
most troublesome.
 	

You can use the output line continuation escape sequence \c to achieve
the same result (see Section 5.16 [Line Continuation], page 125). It is also
portable to older ms implementations.� �

The CS course's students found one C language keyword
\%(\c
.CW \%static )
most troublesome.
 	

groff ms also offers strings to begin and end super- and subscripting.
These are GNU extensions.

[String]\*[{]
[String]\*[}]

Begin and end superscripting, respectively.

[String]\*[<]
[String]\*[>]

Begin and end subscripting, respectively.

Rather than calling the CW macro, in groff ms you might prefer to change
the font family to Courier by setting the FAM string to ‘C’. You can then
use all four style macros above, returning to the default family (Times) with
‘.ds FAM T’. Because changes to FAM take effect only at the next paragraph,
CW remains useful to “inline” a change to the font family, similarly to the
practice of this document in noting syntactical elements of ms and groff.

4.6.5.6 Lists

The marker argument to the IP macro can be employed to present a variety
of lists; for instance, you can use a bullet glyph (\[bu]) for unordered lists,
a number (or auto-incrementing register) for numbered lists, or a word or
phrase for glossary-style or definition lists. If you set the paragraph inden-
tation register PI before calling IP, you can later reorder the items in the
list without having to ensure that a width argument remains affixed to the
first call.

The following is an example of a bulleted list.
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� �
.nr PI 2n
A bulleted list:
.IP \[bu]
lawyers
.IP \[bu]
guns
.IP \[bu]
money
 	
A bulleted list:

• lawyers

• guns

• money

The following is an example of a numbered list.� �
.nr step 0 1
.nr PI 3n
A numbered list:
.IP \n+[step]
lawyers
.IP \n+[step]
guns
.IP \n+[step]
money
 	
A numbered list:

1. lawyers

2. guns

3. money

Here we have employed the nr request to create a register of our own,
‘step’. We initialized it to zero and assigned it an auto-increment of 1.
Each time we use the escape sequence ‘\n+[PI]’ (note the plus sign), the
formatter applies the increment just before interpolating the register’s value.
Preparing the PI register as well enables us to rearrange the list without the
tedium of updating macro calls.

The next example illustrates a glossary-style list.
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� �
A glossary-style list:
.IP lawyers 0.4i
Two or more attorneys.
.IP guns
Firearms,
preferably large-caliber.
.IP money
Gotta pay for those
lawyers and guns!
 	
A glossary-style list:

lawyers
Two or more attorneys.

guns Firearms, preferably large-caliber.

money
Gotta pay for those lawyers and guns!

In the previous example, observe how the IP macro places the definition
on the same line as the term if it has enough space. If this is not what
you want, there are a few workarounds we will illustrate by modifying the
example. First, you can use a br request to force a break after printing the
term or label.� �

.IP guns

.br
Firearms,
 	

Second, you could apply the \p escape sequence to force a break. The
space following the escape sequence is important; if you omit it, groff prints
the first word of the paragraph text on the same line as the term or label (if
it fits) then breaks the line.� �

.IP guns
\p Firearms,
 	

Finally, you may append a horizontal motion to the marker with the \h
escape sequence; using the same amount as the indentation will ensure that
the marker is too wide for groff to treat it as “fitting” on the same line as
the paragraph text.
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� �
.IP guns\h'0.4i'
Firearms,
 	

In each case, the result is the same.

A glossary-style list:

lawyers
Two or more attorneys.

guns
Firearms, preferably large-caliber.

money
Gotta pay for those lawyers and guns!

4.6.5.7 Indented regions

You may need to indent a region of text while otherwise formatting it nor-
mally. Indented regions can be nested; you can change \n[PI] before each
call to vary the amount of inset.

[Macro].RS
Begin a region where headings, paragraphs, and displays are indented
(further) by the amount stored in the PI register.

[Macro].RE
End the (next) most recent indented region.

This feature enables you to easily line up text under hanging and indented
paragraphs. For example, you may wish to structure lists hierarchically.� �

.IP \[bu] 2
Lawyers:
.RS
.IP \[bu]
Dewey,
.IP \[bu]
Cheatham,
and
.IP \[bu]
and Howe.
.RE
.IP \[bu]
Guns
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• Lawyers:

• Dewey,

• Cheatham, and

• Howe.

• Guns

4.6.5.8 Keeps, boxed keeps, and displays

On occasion, you may want to keep several lines of text, or a region of a
document, together on a single page, preventing an automatic page break
within certain boundaries. This can cause a page break to occur earlier
than it normally would. For example, you may want to keep two paragraphs
together, or a paragraph that refers to a table, list, or figure adjacent to the
item it discusses. ms provides the KS and KE macros for this purpose.

You can alternatively specify a floating keep: if a keep cannot fit on the
current page, ms holds its contents and allows material following the keep
(in the source document) to fill the remainder of the current page. When
the page breaks, whether by reaching the end or bp request, ms puts the
floating keep at the beginning of the next page. This is useful for placing
large graphics or tables that do not need to appear exactly where they occur
in the source document.

[Macro].KS
[Macro].KF
[Macro].KE

KS begins a keep, KF a floating keep, and KE ends a keep of either kind.

As an alternative to the keep mechanism, the ne request forces a page
break if there is not at least the amount of vertical space specified in its
argument remaining on the page (see Section 5.18 [Page Control], page 128).
One application of ne is to reserve space on the page for a figure or illustration
to be included later.

A boxed keep has a frame drawn around it.

[Macro].B1
[Macro].B2

B1 begins a keep with a box drawn around it. B2 ends a boxed keep.

Boxed keep macros cause breaks; if you need to box a word or phrase
within a line, see the BX macro in Section 4.6.5.5 [Typeface and decoration],
page 40. Box lines are drawn as close as possible to the text they enclose
so that they are usable within paragraphs. If you wish to box one or more
paragraphs, you may improve the appearance by calling B1 after the first
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paragraphing macro, and by adding a small amount of vertical space before
calling B2.� �

.LP

.B1

.I Warning:
Happy Fun Ball may suddenly accelerate to dangerous
speeds.
.sp \n[PD]/2 \" space by half the inter-paragraph distance
.B2
 	

If you want a boxed keep to float, you will need to enclose the B1 and B2
calls within a pair of KF and KE calls.

Displays turn off filling; lines of verse or program code are shown with
their lines broken as in the source document without requiring br requests
between lines. Displays can be kept on a single page or allowed to break
across pages. The DS macro begins a kept display of the layout specified
in its first argument; non-kept displays are begun with dedicated macros
corresponding to their layout.

[Macro].DS L
[Macro].LD

Begin (DS: kept) left-aligned display.

[Macro].DS [I [indent]]
[Macro].ID [indent]

Begin (DS: kept) display indented by indent if specified, and by the
amount of the DI register otherwise.

[Macro].DS B
[Macro].BD

Begin a (DS: kept) a block display: the entire display is left-aligned, but
indented such that the longest line in the display is centered on the page.

[Macro].DS C
[Macro].CD

Begin a (DS: kept) centered display: each line in the display is centered.

[Macro].DS R
[Macro].RD

Begin a (DS: kept) right-aligned display. This is a GNU extension.

[Macro].DE
End any display.

The distance stored in the DD register is inserted before and after each
pair of display macros; this is a Berkeley extension. In groff ms, this dis-
tance replaces any adjacent inter-paragraph distance or subsequent spacing
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prior to a section heading. The DI register is a GNU extension; its value
is an indentation applied to displays created with ‘.DS’ and ‘.ID’ without
arguments, to ‘.DS I’ without an indentation argument, and to indented
equations set with ‘.EQ’. Changes to either register take effect at the next
display boundary.

4.6.5.9 Tables, figures, equations, and references

The ms package is often used with the tbl, pic, eqn, and refer preproces-
sors. Mark text meant for preprocessors by enclosing it in pairs of tokens as
follows, with nothing between the dot and the macro name. The preproces-
sors match these tokens only at the start of an input line.

[Macro].TS [H]
[Macro].TE

Demarcate a table to be processed by the tbl preprocessor. The optional
argument H to TS instructs ms to repeat table rows (often column head-
ings) at the top of each new page the table spans, if applicable; calling
the TH macro marks the end of such rows. The GNU tbl(1) man page pro-
vides a comprehensive reference to the preprocessor and offers examples
of its use.

[Macro].PS
[Macro].PE
[Macro].PF

PS begins a picture to be processed by the gpic preprocessor; either of
PE or PF ends it, the latter with “flyback” to the vertical position at its
top. You can create pic input manually or with a program such as xfig.

[Macro].EQ [align [label]]
[Macro].EN

Demarcate an equation to be processed by the eqn preprocessor. The
equation is centered by default; align can be ‘C’, ‘L’, or ‘I’ to (explicitly)
center, left-align, or indent it by the amount stored in the DI register,
respectively. If specified, label is set right-aligned.

[Macro].[
[Macro].]

Demarcate a bibliographic citation to be processed by the refer prepro-
cessor. The GNU refer(1) man page provides a comprehensive reference
to the preprocessor and the format of its bibliographic database. Type
‘man refer’ at the command line to view it.

When refer emits collected references (as might be done on a “Works
Cited” page), it interpolates the REFERENCES string as an unnumbered head-
ing (SH).

The following is an example of how to set up a table that may print across
two or more pages.
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� �
.TS H
allbox;
Cb | Cb .
Part→Description
_
.TH
.T&
GH-1978→Fribulating gonkulator
. . . the rest of the table follows. . .
.TE
 	

Attempting to place a multi-page table inside a keep can lead to unpleasant
results, particularly if the tbl allbox option is used.

Mathematics can be typeset using the language of the eqn preprocessor.� �
.EQ C (\*[SN-NO-DOT]a)
p ~ = ~ q sqrt { ( 1 + ~ ( x / q sup 2 ) }
.EN
 	

This input formats a labelled equation. We used the SN-NO-DOT string to
base the equation label on the current heading number, giving us more flex-
ibility to reorganize the document.

Use groff options to run preprocessors on the input: -e for geqn, -p for
gpic, -R for grefer, and -t for gtbl.

4.6.5.10 Footnotes

A footnote is typically anchored to a place in the text with a marker, which
is a small integer, a symbol such as a dagger, or arbitrary user-specified text.

[String]\*[*]
Place an automatic number, an automatically generated numeric footnote
marker, in the text. Each time this string is interpolated, the number it
produces increments by one. Automatic numbers start at 1. This is a
Berkeley extension.

Enclose the footnote text in FS and FE macro calls to set it at the nearest
available “foot”, or bottom, of a text column or page.

[Macro].FS [marker]
[Macro].FE

Begin (FS) and end (FE) a footnote. FS calls FS-MARK with any supplied
marker argument, which is then also placed at the beginning of the foot-
note text. If marker is omitted, the next pending automatic footnote
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number enqueued by interpolation of the * string is used, and if none
exists, nothing is prefixed.

You may not desire automatically numbered footnotes in spite of their
convenience. You can indicate a footnote with a symbol or other text by
specifying its marker at the appropriate place (for example, by using \[dg]
for the dagger glyph) and as an argument to the FS macro. Such manual
marks should be repeated as arguments to FS or as part of the footnote text
to disambiguate their correspondence. You may wish to use \*{ and \*} to
superscript the marker at the anchor point, in the footnote text, or both.

groff ms provides a hook macro, FS-MARK, for user-determined operations
to be performed when the FSmacro is called. It is passed the same arguments
as FS itself. An application of FS-MARK is anchor placement for a hyperlink
reference, so that a footnote can link back to its referential context.5 By
default, this macro has an empty definition. FS-MARK is a GNU extension.

Footnotes can be safely used within keeps and displays, but you should
avoid using automatically numbered footnotes within floating keeps. You can
place a second \** interpolation between a \** and its corresponding FS call
as long as each FS call occurs after the corresponding \** and occurrences
of FS are in the same order as corresponding occurrences of \**.

Footnote text is formatted as paragraphs are, using analogous parame-
ters. The registers FI, FPD, FPS, and FVS correspond to PI, PD, PS, and CS,
respectively; FPD, FPS, and FVS are GNU extensions.

The FF register controls the formatting of automatically numbered foot-
note paragraphs and those for which FS is given a marker argument. See
Section 4.6.3 [ms Document Control Settings], page 28.

The default footnote line length is 11/12ths of the normal line length for
compatibility with the expectations of historical ms documents; you may wish
to set the FR string to ‘1’ to align with contemporary typesetting practices. In
the past,6 an FL register was used for the line length in footnotes; however,
setting this register at document initialization time had no effect on the
footnote line length in multi-column arrangements.7

FR should be used in preference to the old FL register in contem-
porary documents. The footnote line length is effectively computed as
‘column-width * \*[FR]’. If an absolute footnote line length is required,
recall that arithmetic expressions in roff input are evaluated strictly from
left to right, with no operator precedence (parentheses are honored).

.ds FR 0+3i \" Set footnote line length to 3 inches.

5 “Portable Document Format Publishing with GNU Troff”, pdfmark.ms in the groff

distribution, uses this technique.
6 Unix Version 7 ms, its descendants, and GNU ms prior to groff version 1.23.0
7 You could reset it after each call to .1C, .2C, or .MC.
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4.6.5.11 Language and localization

groff ms provides several strings that you can customize for your own pur-
poses, or redefine to adapt the macro package to languages other than En-
glish. It is already localized for Czech, German, French, Italian, and Swedish.
Load the desired localization macro package after ms; see the groff tmac(5)
man page.� �

$ groff -ms -mfr bienvenue.ms
 	
The following strings are available.

[String]\*[REFERENCES]
Contains the string printed at the beginning of a references (bibliography)
page produced with GNU refer(1). The default is ‘References’.

[String]\*[ABSTRACT]
Contains the string printed at the beginning of the abstract. The default
is ‘\f[I]ABSTRACT\f[]’; it includes font selection escape sequences to set
the word in italics.

[String]\*[TOC]
Contains the string printed at the beginning of the table of contents. The
default is ‘Table of Contents’.

[String]\*[MONTH1]
[String]\*[MONTH2]
[String]\*[MONTH3]
[String]\*[MONTH4]
[String]\*[MONTH5]
[String]\*[MONTH6]
[String]\*[MONTH7]
[String]\*[MONTH8]
[String]\*[MONTH9]
[String]\*[MONTH10]
[String]\*[MONTH11]
[String]\*[MONTH12]

Contain the full names of the calendar months. The defaults are in En-
glish: ‘January’, ‘February’, and so on.

4.6.6 Page layout

ms’s default page layout arranges text in a single column with the page
number between hyphens centered in a header on each page except the first,
and produces no footers. You can customize this arrangement.
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4.6.6.1 Headers and footers

There are multiple ways to produce headers and footers. One is to de-
fine the strings LH, CH, and RH to set the left, center, and right headers,
respectively; and LF, CF, and RF to set the left, center, and right footers.
This approach suffices for documents that do not distinguish odd- and even-
numbered pages.

Another method is to call macros that set headers or footers for odd-
or even-numbered pages. Each such macro takes a delimited argument sep-
arating the left, center, and right header or footer texts from each other.
You can replace the neutral apostrophes (') shown below with any charac-
ter not appearing in the header or footer text. These macros are Berkeley
extensions.

[Macro].OH 'left'center'right'
[Macro].EH 'left'center'right'
[Macro].OF 'left'center'right'
[Macro].EF 'left'center'right'

The OH and EH macros define headers for odd- (recto) and even-numbered
(verso) pages, respectively; the OF and EF macros define footers for them.

With either method, a percent sign % in header or footer text is replaced
by the current page number. By default, ms places no header on a page
numbered “1” (regardless of its number format).

[Macro].P1
Typeset the header even on page 1. To be effective, this macro must
be called before the header trap is sprung on any page numbered “1”;
in practice, unless your page numbering is unusual, this means that you
should call it early, before TL or any heading or paragraphing macro. This
is a Berkeley extension.

For even greater flexibility, ms is designed to permit the redefinition of
the macros that are called when the groff traps that ordinarily cause the
headers and footers to be output are sprung. PT (“page trap”) is called
by ms when the header is to be written, and BT (“bottom trap”) when the
footer is to be. The groff page location trap that ms sets up to format the
header also calls the (normally undefined) HD macro after PT; you can define
HD if you need additional processing after setting the header (for example,
to draw a line below it). The HD hook is a Berkeley extension. Any such
macros you (re)define must implement any desired specialization for odd-,
even-, or first numbered pages.

4.6.6.2 Tab stops

Use the ta request to define tab stops as needed. See Section 5.12 [Tabs and
Fields], page 115.
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[Macro].TA
Reset the tab stops to the ms default (every 5 ens). Redefine this macro
to create a different set of default tab stops.

4.6.6.3 Margins

Control margins using the registers summarized in “Margin settings” in Sec-
tion 4.6.3 [ms Document Control Settings], page 28, above. There is no
setting for the right margin; the combination of page offset \n[PO] and line
length \n[LL] determines it.

4.6.6.4 Multiple columns

ms can set text in as many columns as reasonably fit on the page. The
following macros force a page break if a multi-column layout is active when
they are called. The MINGW register stores the default minimum gutter width;
it is a GNU extension. When multiple columns are in use, keeps and the
HORPHANS and PORPHANS registers work with respect to column breaks instead
of page breaks.

[Macro].1C
Arrange page text in a single column (the default).

[Macro].2C
Arrange page text in two columns.

[Macro].MC [column-width [gutter-width]]
Arrange page text in multiple columns. If you specify no arguments, it
is equivalent to the 2C macro. Otherwise, column-width is the width of
each column and gutter-width is the minimum distance between columns.

4.6.6.5 Creating a table of contents

Because roff formatters process their input in a single pass, material on
page 50, for example, cannot influence what appears on page 1—this poses
a challenge for a table of contents at its traditional location in front matter,
if you wish to avoid manually maintaining it. ms enables the collection of
material to be presented in the table of contents as it appears, saving its
page number along with it, and then emitting the collected contents on
demand toward the end of the document. The table of contents can then
be resequenced to its desired location by physically rearranging the pages
of a printed document, or as part of post-processing—with a sed(1) script
to reorder the pages in troff’s output, with pdfjam(1), or with gropdf(1)’s
‘.pdfswitchtopage’ feature, for example.

Define an entry to appear in the table of contents by bracketing its text
between calls to the XS and XE macros. A typical application is to call them
immediately after NH or SH and repeat the heading text within them. The
XA macro, used within ‘.XS’/‘.XE’ pairs, supplements an entry—for instance,
when it requires multiple output lines, whether because a heading is too long
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to fit or because style dictates that page numbers not be repeated. You may
wish to indent the text thus wrapped to correspond to its heading depth; this
can be done in the entry text by prefixing it with tabs or horizontal motion
escape sequences, or by providing a second argument to the XA macro. XS
and XA automatically associate the page number where they are called with
the text following them, but they accept arguments to override this behavior.
At the end of the document, call TC or PX to emit the table of contents; TC
resets the page number to ‘i’ (Roman numeral one), and then calls PX. All
of these macros are Berkeley extensions.

[Macro].XS [page-number]
[Macro].XA [page-number [indentation]]
[Macro].XE

Begin, supplement, and end a table of contents entry. Each entry is as-
sociated with page-number (otherwise the current page number); a page-
number of ‘no’ prevents a leader and page number from being emitted
for that entry. Use of XA within XS/XE is optional; it can be repeated. If
indentation is present, a supplemental entry is indented by that amount;
ens are assumed if no unit is indicated. Text on input lines between XS
and XE is stored for later recall by PX.

[Macro].PX [no]
Switch to single-column layout. Unless no is specified, center and inter-
polate the TOC string in bold and two points larger than the body text.
Emit the table of contents entries.

[Macro].TC [no]
Set the page number to 1, the page number format to lowercase Roman
numerals, and call PX (with a no argument, if present).

Here’s an example of typical ms table of contents preparation. We employ
horizontal escape sequences \h to indent the entries by sectioning depth.
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� �
.NH 1
Introduction
.XS
Introduction
.XE
. . .
.NH 2
Methodology
.XS
\h'2n'Methodology
.XA
\h'4n'Fassbinder's Approach
\h'4n'Kahiu's Approach
.XE
. . .
.NH 1
Findings
.XS
Findings
.XE
. . .
.TC
 	

The remaining features in this subsubsection are GNU extensions. groff
ms obviates the need to repeat heading text after XS calls. Call XN and XH
after NH and SH, respectively.

[Macro].XN heading-text
[Macro].XH depth heading-text

Format heading-text and create a corresponding table of contents entry.
XN computes the indentation from the depth of the preceding NH call; XH
requires a depth argument to do so.

groff ms encourages customization of table of contents entry production.

[Macro].XN-REPLACEMENT heading-text
[Macro].XH-REPLACEMENT depth heading-text

These hook macros implement XN and XH, respectively. They call XN-INIT
and pass their heading-text arguments to XH-UPDATE-TOC.

[Macro].XN-INIT
[Macro].XH-UPDATE-TOC depth heading-text

The XN-INIT hook macro does nothing by default. XH-UPDATE-TOC brack-
ets heading-text with XS and XE calls, indenting it by 2 ens per level of
depth beyond the first.



56 The GNU Troff Manual

We could therefore produce a table of contents similar to that in the
previous example with fewer macro calls. (The difference is that this input
follows the “Approach” entries with leaders and page numbers.)� �

.NH 1

.XN Introduction

. . .

.NH 2

.XN Methodology

.XH 3 "Fassbinder's Approach"

.XH 3 "Kahiu's Approach"

. . .

.NH 1

.XN Findings

. . .
 	
To get the section number of the numbered headings into the table of

contents entries, we might define XN-REPLACEMENT as follows. (We obtain
the heading depth from groff ms’s internal register nh*hl.)� �

.de XN-REPLACEMENT

.XN-INIT

.XH-UPDATE-TOC \\n[nh*hl] \\$@
\&\\*[SN] \\$*
..
 	

You can change the style of the leader that bridges each table of contents
entry with its page number; define the TC-LEADER special character by using
the char request. A typical leader combines the dot glyph ‘.’ with a hor-
izontal motion escape sequence to spread the dots. The width of the page
number field is stored in the TC-MARGIN register.

4.6.7 Differences from AT&T ms

The groff ms macros are an independent reimplementation, using no AT&T
code. Since they take advantage of the extended features of groff, they
cannot be used with AT&T troff. groff ms supports features described
above as Berkeley and Tenth Edition Research Unix extensions, and adds
several of its own.

• The internals of groff ms differ from the internals of AT&T ms. Doc-
uments that depend upon implementation details of AT&T ms may not
format properly with groff ms. Such details include macros whose
function was not documented in the AT&T ms manual.8

8 Typing Documents on the UNIX System: Using the -ms Macros with Troff and Nroff,
M. E. Lesk, Bell Laboratories, 1978
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• The error-handling policy of groff ms is to detect and report errors,
rather than to ignore them silently.

• Tenth Edition Research Unix supported P1/P2 macros to bracket code
examples; groff ms does not.

• groff ms does not work in GNU troff’s AT&T compatibility mode. If
loaded when that mode is enabled, it aborts processing with a diagnostic
message.

• Multiple line spacing is not supported. Use a larger vertical spacing
instead.

• groff ms uses the same header and footer defaults in both nroff and
troff modes as AT&T ms does in troff mode; AT&T’s default in nroff
mode is to put the date, in U.S. traditional format (e.g., “January 1,
2021”), in the center footer (the CF string).

• Many groff ms macros, including those for paragraphs, headings, and
displays, cause a reset of paragraph rendering parameters, and may
change the indentation; they do so not by incrementing or decrement-
ing it, but by setting it absolutely. This can cause problems for docu-
ments that define additional macros of their own that try to manipulate
indentation. Use the ms RS and RE macros instead of the in request.

• AT&T ms interpreted the values of the registers PS and VS in points,
and did not support the use of scaling units with them. groff ms in-
terprets values of the registers PS, VS, FPS, and FVS equal to or larger
than 1,000 (one thousand) as decimal fractions multiplied by 1,000.9

This threshold makes use of a scaling unit with these parameters prac-
tical for high-resolution devices while preserving backward compatibil-
ity. It also permits expression of non-integral type sizes. For example,
‘groff -rPS=10.5p’ at the shell prompt is equivalent to placing ‘.nr PS
10.5p’ at the beginning of the document.

• AT&T ms’s AU macro supported arguments used with some document
types; groff ms does not.

• Right-aligned displays are available. The AT&T ms manual observes
that “it is tempting to assume that ‘.DS R’ will right adjust lines, but
it doesn’t work”. In groff ms, it does.

• To make groff ms use the default page offset (which also specifies the
left margin), the PO register must stay undefined until the first ms macro
is called.

This implies that ‘\n[PO]’ should not be used early in the document,
unless it is changed also: accessing an undefined register automatically
defines it.

9 Register values are converted to and stored as basic units. See Section 5.3 [Measure-
ments], page 75.
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• groff ms supports the PN register, but it is not necessary; you can access
the page number via the usual % register and invoke the af request to
assign a different format to it if desired.10

• The AT&T ms manual documents registers CW and GW as setting the
default column width and “intercolumn gap”, respectively, and which
applied when MC was called with fewer than two arguments. groff
ms instead treats MC without arguments as synonymous with 2C; there
is thus no occasion for a default column width register. Further, the
MINGW register and the second argument to MC specify a minimum space
between columns, not the fixed gutter width of AT&T ms.

• The AT&T ms manual did not document the QI register; Berkeley and
groff ms do.

[Register]\n[GS]
The register GS is set to 1 by the groff ms macros, but is not used by the
AT&T ms package. Documents that need to determine whether they are
being formatted with groff ms or another implementation should test
this register.

4.6.7.1 Unix Version 7 ms macros not implemented by
groff ms

Several macros described in the Unix Version 7 ms documentation are unim-
plemented by groff ms because they are specific to the requirements of
documents produced internally by Bell Laboratories, some of which also re-
quire a glyph for the Bell System logo that groff does not support. These
macros implemented several document type formats (EG, IM, MF, MR, TM, TR),
were meaningful only in conjunction with the use of certain document types
(AT, CS, CT, OK, SG), stored the postal addresses of Bell Labs sites (HO, IH,
MH, PY, WH), or lacked a stable definition over time (UX). To compatibly ren-
der historical ms documents using these macros, we advise your documents
to invoke the rm request to remove any such macros it uses and then define
replacements with an authentically typeset original at hand.11 For informal
purposes, a simple definition of UX should maintain the readability of the
document’s substance.� �

.rm UX

.ds UX Unix\"
 	
10 If you redefine the ms PT macro and desire special treatment of certain page numbers

(like ‘1’), you may need to handle a non-Arabic page number format, as groff ms’s PT
does; see the macro package source. groff ms aliases the PN register to %.

11 The removal beforehand is necessary because groff ms aliases these macros to a diag-
nostic macro, and you want to redefine the aliased name, not its target.
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4.6.8 Legacy Features

groff ms retains some legacy features solely to support formatting of histor-
ical documents; contemporary ones should not use them because they can
render poorly. See the groff char(7) man page.

AT&T accent mark strings

AT&T ms defined accent mark strings as follows.

[String]\*[']
Apply acute accent to subsequent glyph.

[String]\*[`]
Apply grave accent to subsequent glyph.

[String]\*[:]
Apply dieresis (umlaut) to subsequent glyph.

[String]\*[^]
Apply circumflex accent to subsequent glyph.

[String]\*[~]
Apply tilde accent to subsequent glyph.

[String]\*[C]
Apply caron to subsequent glyph.

[String]\*[,]
Apply cedilla to subsequent glyph.

Berkeley accent mark and glyph strings

Berkeley ms offered an AM macro; calling it redefined the AT&T accent mark
strings (except for ‘\*C’), applied them to the preceding glyph, and defined
additional strings, some for spacing glyphs.

[Macro].AM
Enable alternative accent mark and glyph-producing strings.

[String]\*[']
Apply acute accent to preceding glyph.

[String]\*[`]
Apply grave accent to preceding glyph.

[String]\*[:]
Apply dieresis (umlaut) to preceding glyph.

[String]\*[^]
Apply circumflex accent to preceding glyph.
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[String]\*[~]
Apply tilde accent to preceding glyph.

[String]\*[,]
Apply cedilla to preceding glyph.

[String]\*[/]
Apply stroke (slash) to preceding glyph.

[String]\*[v]
Apply caron to preceding glyph.

[String]\*[_]
Apply macron to preceding glyph.

[String]\*[.]
Apply underdot to preceding glyph.

[String]\*[o]
Apply ring accent to preceding glyph.

[String]\*[?]
Interpolate inverted question mark.

[String]\*[!]
Interpolate inverted exclamation mark.

[String]\*[8]
Interpolate small letter sharp s.

[String]\*[q]
Interpolate small letter o with hook accent (ogonek).

[String]\*[3]
Interpolate small letter yogh.

[String]\*[d-]
Interpolate small letter eth.

[String]\*[D-]
Interpolate capital letter eth.

[String]\*[th]
Interpolate small letter thorn.

[String]\*[Th]
Interpolate capital letter thorn.

[String]\*[ae]
Interpolate small æ ligature.
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[String]\*[Ae]
Interpolate capital Æ ligature.

[String]\*[oe]
Interpolate small oe ligature.

[String]\*[OE]
Interpolate capital OE ligature.

4.6.9 Naming Conventions

The following conventions are used for names of macros, strings, and regis-
ters. External names available to documents that use the groff ms macros
contain only uppercase letters and digits.

Internally, the macros are divided into modules. Conventions for identifier
names are as follows.

• Names used only within one module are of the form module*name.

• Names used outside the module in which they are defined are of the
form module@name.

• Names associated with a particular environment are of the form envi-
ronment:name; these are used only within the par module.

• name does not have a module prefix.

• Constructed names used to implement arrays are of the form ar-
ray!index.

Thus the groff ms macros reserve the following names.

• Names containing the characters *, @, and :.

• Names containing only uppercase letters and digits.
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5 GNU troff Reference

This chapter covers all of the facilities of the GNU troff formatting engine.
Users of macro packages may skip it if not interested in details.

5.1 Text
AT&T troff was designed to take input as it would be composed on a type-
writer, including the teletypewriters used as early computer terminals, and
relieve the user drafting a document of concern with details like line length,
hyphenation breaking, and the achievement of straight margins. Early in
its development, the program gained the ability to prepare output for a
phototypesetter; a document could then be prepared for output to either
a teletypewriter, a phototypesetter, or both. GNU troff continues this
tradition of permitting an author to compose a single master version of a
document which can then be rendered for a variety of output formats or
devices.

roff input files contain text interspersed with instructions to control
the formatter. Even in the absence of such instructions, GNU troff still
processes its input in several ways, by filling, hyphenating, breaking, and
adjusting it, and supplementing it with inter-sentence space.

5.1.1 Filling

When GNU troff starts up, it obtains information about the device for
which it is preparing output.1 An essential property is the length of the
output line, such as “6.5 inches”.

GNU troff interprets plain text files employing the Unix line-ending
convention. It reads input a character at a time, collecting words as it goes,
and fits as many words together on an output line as it can—this is known
as filling. To GNU troff, a word is any sequence of one or more characters
that aren’t spaces or newlines. The exceptions separate words.2 To disable
filling, see Section 5.9 [Manipulating Filling and Adjustment], page 99.

It is a truth universally acknowledged
that a single man in possession of a
good fortune must be in want of a wife.

⇒ It is a truth universally acknowledged that a
⇒ single man in possession of a good fortune must
⇒ be in want of a wife.

1 See Section 6.2 [Device and Font Description Files], page 242.
2 Tabs and leaders also separate words. Escape sequences can function as word charac-

ters, word separators, or neither—the last simply have no effect on GNU troff’s idea
of whether an input character is within a word. We’ll discuss all of these in due course.
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5.1.2 Sentences

A passionate debate has raged for decades among writers of the English lan-
guage over whether more space should appear between adjacent sentences
than between words within a sentence, and if so, how much, and what other
circumstances should influence this spacing.3 GNU troff follows the exam-
ple of AT&T troff; it attempts to detect the boundaries between sentences,
and supplies additional inter-sentence space between them.

Hello, world!
Welcome to groff.

⇒ Hello, world! Welcome to groff.

GNU troff flags certain characters (normally ‘!’, ‘?’, and ‘.’) as poten-
tially ending a sentence. When GNU troff encounters one of these end-of-
sentence characters at the end of an input line, or one of them is followed
by two (unescaped) spaces on the same input line, it appends an inter-word
space followed by an inter-sentence space in the output.

R. Harper subscribes to a maxim of P. T. Barnum.
⇒ R. Harper subscribes to a maxim of P. T. Barnum.

In the above example, inter-sentence space is not added after ‘P.’ or ‘T.’
because the periods do not occur at the end of an input line, nor are they
followed by two or more spaces. Let’s imagine that we’ve heard something
about defamation from Mr. Harper’s attorney, recast the sentence, and re-
flowed it in our text editor.

I submit that R. Harper subscribes to a maxim of P. T.
Barnum.

⇒ I submit that R. Harper subscribes to a maxim of
⇒ P. T. Barnum.

“Barnum” doesn’t begin a sentence! What to do? Let us meet our first
escape sequence, a series of input characters that give instructions to GNU
troff instead of being used to construct output device glyphs.4 An escape
sequence begins with the backslash character \ by default, an uncommon
character in natural language text, and is always followed by at least one
other character, hence the term “sequence”.

The dummy character escape sequence \& can be used after an end-
of-sentence character to defeat end-of-sentence detection on a per-instance
basis. We can therefore rewrite our input more defensively.

3 A well-researched jeremiad appreciated by groff contributors on both sides of the
sentence-spacing debate can be found at https://web.archive.org/web/

20171217060354/http://www.heracliteanriver.com/?p=324.
4 This statement oversimplifies; there are escape sequences whose purpose is precisely to

produce glyphs on the output device, and input characters that aren’t part of escape
sequences can undergo a great deal of processing before getting to the output.

https://web.archive.org/web/20171217060354/http://www.heracliteanriver.com/?p=324
https://web.archive.org/web/20171217060354/http://www.heracliteanriver.com/?p=324
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I submit that R.\& Harper subscribes to a maxim of P.\&
T.\& Barnum.

⇒ I submit that R. Harper subscribes to a maxim of
⇒ P. T. Barnum.

Adding text caused our input to wrap; now, we don’t need \& after ‘T.’
but we do after ‘P.’. Consistent use of the escape sequence ensures that
potential sentence boundaries are robust to editing activities. Further advice
along these lines will follow in Section 5.1.10 [Input Conventions], page 71.

Normally, the occurrence of a visible non-end-of-sentence character (as
opposed to a space or tab) immediately after an end-of-sentence character
cancels detection of the end of a sentence. For example, it would be incorrect
for GNU troff to infer the end of a sentence after the dot in ‘3.14159’.
However, several characters are treated transparently after the occurrence of
an end-of-sentence character. That is, GNU troff does not cancel end-of-
sentence detection when it processes them. This is because such characters
are often used as footnote markers or to close quotations and parentheticals.
The default set is ‘"’, ‘'’, ‘)’, ‘]’, ‘*’, \[dg], \[dd], \[rq], and \[cq]. The
last four are examples of special characters, escape sequences whose purpose
is to obtain glyphs that are not easily typed at the keyboard, or which have
special meaning to GNU troff (like \ itself).5

\[lq]The idea that the poor should have leisure has always
been shocking to the rich.\[rq]
(Bertrand Russell, 1935)

⇒ �The idea that the poor should have
⇒ leisure has always been shocking to
⇒ the rich.� (Bertrand Russell, 1935)

The sets of characters that potentially end sentences or are transparent to
sentence endings are configurable. See the cflags request in Section 5.19.4
[Using Symbols], page 135. To change the additional inter-sentence space
amount—even to remove it entirely—see Section 5.9 [Manipulating Filling
and Adjustment], page 99.

5.1.3 Hyphenation

When an output line is nearly full, it is uncommon for the next word collected
from the input to exactly fill it—typically, there is room left over only for part
of the next word. The process of splitting a word so that it appears partially
on one line (with a hyphen to indicate to the reader that the word has been
broken) with its remainder on the next is hyphenation. Hyphenation points
can be manually specified; GNU troff also uses a hyphenation algorithm
and language-specific pattern files (based on those used in TEX) to decide
which words can be hyphenated and where.

5 The mnemonics for the special characters shown here are “dagger”, “double dagger”,
“right (double) quote”, and “closing (single) quote”. See the groff char(7) man page.
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Hyphenation does not always occur even when the hyphenation rules for
a word allow it; it can be disabled, and when not disabled there are several
parameters that can prevent it in certain circumstances. See Section 5.10
[Manipulating Hyphenation], page 105.

5.1.4 Breaking

Once an output line is full, the next word (or remainder of a hyphenated
one) is placed on a different output line; this is called a break. In this manual
and in roff discussions generally, a “break” if not further qualified always
refers to the termination of an output line. When the formatter is filling
text, it introduces breaks automatically to keep output lines from exceeding
the configured line length. After an automatic break, GNU troff adjusts
the line if applicable (see below), and then resumes collecting and filling text
on the next output line.

Sometimes, a line cannot be broken automatically. This usually does
not happen with natural language text unless the output line length has
been manipulated to be extremely short, but it can with specialized text
like program source code. We can use perl at the shell prompt to contrive
an example of failure to break the line. We also employ the -z option to
suppress normal output.

$ perl -e 'print "#" x 80, "\n";' | nroff -z
error warning: cannot break line

The remedy for these cases is to tell GNU troff where the line may
be broken without hyphens. This is done with the non-printing break point
escape sequence ‘\:’; see Section 5.10 [Manipulating Hyphenation], page 105.

What if the document author wants to stop filling lines temporarily, for
instance to start a new paragraph? There are several solutions. A blank
input line not only causes a break, but by default it also outputs a one-
line vertical space (effectively a blank output line). This behavior can be
modified; see Section 5.28.3 [Blank Line Traps], page 193. Macro packages
may discourage or disable the blank line method of paragraphing in favor of
their own macros.

A line that begins with one or more spaces causes a break. The spaces are
output at the beginning of the next line without being adjusted (see below);
however, this behavior can be modified (see Section 5.28.4 [Leading Space
Traps], page 193). Again, macro packages may provide other methods of
producing indented paragraphs. Trailing spaces on text lines are discarded.6

What if the file ends before enough words have been collected to fill an
output line? Or the output line is exactly full but not yet broken, and
there is no more input? GNU troff interprets the end of input as a break.
Certain requests also cause breaks, implicitly or explicitly. This is discussed
in Section 5.9 [Manipulating Filling and Adjustment], page 99.

6 “Text lines” are defined in Section 5.1.7 [Requests and Macros], page 67.
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5.1.5 Adjustment

After GNU troff performs an automatic break, it may then adjust the
line, widening inter-word spaces until the text reaches the right margin.
Extra spaces between words are preserved. Leading and trailing spaces are
handled as noted above. Text can be aligned to the left or right margin only,
or centered; see Section 5.9 [Manipulating Filling and Adjustment], page 99.

5.1.6 Tabs and Leaders

GNU troff translates input horizontal tab characters (“tabs”) and
Control+A characters (“leaders”) into movements to the next tab stop.
Tabs simply move to the next tab stop; leaders place enough periods to
fill the space. Tab stops are by default located every half inch measured
from the drawing position corresponding to the beginning of the input line;
see Section 5.2 [Page Geometry], page 74. Tabs and leaders do not cause
breaks and therefore do not interrupt filling. Below, we use arrows → and
bullets • to indicate input tabs and leaders, respectively.

1
→ 2 → 3 • 4
→ • 5
⇒ 1 2 3.......4 ........5

Tabs and leaders lend themselves to table construction.7 The tab and
leader glyphs can be configured, and further facilities for sophisticated ta-
ble composition are available; see Section 5.12 [Tabs and Fields], page 115.
There are many details to track when using such low-level features, so most
users turn to the tbl(1) preprocessor to lay out tables.

5.1.7 Requests and Macros

We have now encountered almost all of the syntax there is in the roff
language, with an exception already noted in passing. A request is an in-
struction to the formatter that occurs after a control character, which is
recognized at the beginning of an input line. The regular control character
is a dot (.). Its counterpart, the no-break control character, a neutral apos-
trophe ('), suppresses the break that is implied by some requests. These
characters were chosen because it is uncommon for lines of text in natural
languages to begin with them. If you require a formatted period or apostro-
phe (closing single quotation mark) where GNU troff is expecting a control
character, prefix the dot or neutral apostrophe with the dummy character
escape sequence, ‘\&’.

An input line beginning with a control character is called a control line.
Every line of input that is not a control line is a text line.8

7 “Tab” is short for “tabulation”, revealing the term’s origin as a spacing mechanism for
table arrangement.

8 The \RET escape sequence can alter how an input line is classified; see Section 5.16
[Line Continuation], page 125.
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Requests often take arguments, words (separated from the request name
and each other by spaces) that specify details of the action GNU troff is
expected to perform. If a request is meaningless without arguments, it is
typically ignored.

GNU troff’s requests and escape sequences comprise the control lan-
guage of the formatter. Of key importance are the requests that define
macros. Macros are invoked like requests, enabling the request repertoire to
be extended or overridden.9

A macro can be thought of as an abbreviation you can define for a col-
lection of control and text lines. When the macro is called by giving its
name after a control character, it is replaced with what it stands for. The
process of textual replacement is known as interpolation.10 Interpolations
are handled as soon as they are recognized, and once performed, a roff for-
matter scans the replacement for further requests, macro calls, and escape
sequences.

In roff systems, the de request defines a macro.11

.de DATE
2020-11-14
..

The foregoing input produces no output by itself; all we have done is store
some information. Observe the pair of dots that ends the macro definition.
This is a default; you can specify your own terminator for the macro defini-
tion as the second argument to the de request.

.de NAME ENDNAME
Heywood Jabuzzoff
.ENDNAME

In fact, the ending marker is itself the name of a macro to be called, or
a request to be invoked, if it is defined at the time its control line is read.

.de END
Big Rip
..
.de START END
Big Bang
.END
.START

⇒ Big Rip Big Bang

In the foregoing example, “Big Rip” printed before “Big Bang” because its
macro was called first. Consider what would happen if we dropped END from
the ‘.de START’ line and added .. after .END. Would the order change?

9 Argument handling in macros is more flexible but also more complex. See Section 5.6.3
[Calling Macros], page 86.

10 Some escape sequences undergo interpolation as well.
11 GNU troff offers additional ones. See Section 5.24 [Writing Macros], page 167.
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Let us consider a more elaborate example.

.de DATE
2020-10-05
..
.
.de BOSS
D.\& Kruger,
J.\& Peterman
..
.
.de NOTICE
Approved:
.DATE
by
.BOSS
..
.
Insert tedious regulatory compliance paragraph here.

.NOTICE

Insert tedious liability disclaimer paragraph here.

.NOTICE
⇒ Insert tedious regulatory compliance paragraph here.
⇒
⇒ Approved: 2020-10-05 by D. Kruger, J. Peterman
⇒
⇒ Insert tedious liability disclaimer paragraph here.
⇒
⇒ Approved: 2020-10-05 by D. Kruger, J. Peterman

The above document started with a series of control lines. Three macros were
defined, with a de request declaring each macro’s name, and the “body” of
the macro starting on the next line and continuing until a line with two
dots ‘..’ marked its end. The text proper began only after the macros
were defined; this is a common pattern. Only the NOTICE macro was called
“directly” by the document; DATE and BOSS were called only by NOTICE itself.
Escape sequences were used in BOSS, two levels of macro interpolation deep.

The advantage in typing and maintenance economy may not be obvious
from such a short example, but imagine a much longer document with dozens
of such paragraphs, each requiring a notice of managerial approval. Consider
what must happen if you are in charge of generating a new version of such
a document with a different date, for a different boss. With well-chosen
macros, you only have to change each datum in one place.
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In practice, we would probably use strings (see Section 5.22 [Strings],
page 156) instead of macros for such simple interpolations; what is impor-
tant here is to glimpse the potential of macros and the power of recursive
interpolation.

We could have defined DATE and BOSS in the opposite order; perhaps
less obviously, we could also have defined them after NOTICE. “Forward
references” like this are acceptable because the body of a macro definition
is not (completely) interpreted, but stored instead (see Section 5.24.2 [Copy
Mode], page 173). While a macro is being defined (or appended to), requests
are not interpreted and macros not interpolated, whereas some commonly
used escape sequences are interpreted. roff systems also support recursive
macro calls, as long as you have a way to break the recursion (see Section 5.23
[Conditionals and Loops], page 160). Maintainable roff documents tend to
arrange macro definitions to minimize forward references.

5.1.8 Macro Packages

Macro definitions can be collected into macro files, roff input files designed
to produce no output themselves but instead ease the preparation of other
roff documents. There is no syntactical difference between a macro file
and any other roff document; only its purpose distinguishes it. When
a macro file is installed at a standard location and suitable for use by a
general audience, it is often termed a macro package.12 Macro packages can
be loaded by supplying the -m option to GNU troff or a groff front end.
Alternatively, a document requiring a macro package can load it with the
mso (“macro source”) request.

5.1.9 Input Encodings

The groff command’s -k option calls the preconv preprocessor to perform
input character encoding conversions. Input to the GNU troff formatter
itself, on the other hand, must be in one of two encodings it can recognize.

cp1047 The code page 1047 input encoding works only on EBCDIC plat-
forms (and conversely, the other input encodings don’t work with
EBCDIC); the file cp1047.tmac is loaded at startup.

latin1 ISO Latin-1, an encoding for Western European languages, is
the default input encoding on non-EBCDIC platforms; the file
latin1.tmac is loaded at startup.

Any document that is encoded in ISO 646:1991 (a descendant of USAS
X3.4-1968 or “US-ASCII”), or, equivalently, uses only code points from the
“C0 Controls” and “Basic Latin” parts of the Unicode character set is also a

12 Macro files and packages frequently define registers and strings as well.



Chapter 5: GNU troff Reference 71

valid ISO Latin-1 document; the standards are interchangeable in their first
128 code points.13

Other encodings are supported by means of macro packages.

latin2 To use ISO Latin-2, an encoding for Central and Eastern Euro-
pean languages, invoke ‘.mso latin2.tmac’ at the beginning of
your document or supply ‘-mlatin2’ as a command-line argu-
ment to groff.

latin5 To use ISO Latin-5, an encoding for the Turkish language, in-
voke ‘.mso latin5.tmac’ at the beginning of your document or
supply ‘-mlatin5’ as a command-line argument to groff.

latin9 ISO Latin-9 succeeds Latin-1; it includes a Euro sign and bet-
ter glyph coverage for French. To use this encoding, invoke
‘.mso latin9.tmac’ at the beginning of your document or sup-
ply ‘-mlatin9’ as a command-line argument to groff.

Some characters from an input encoding may not be available with a
particular output driver, or their glyphs may not have representation in
the font used. For terminal devices, fallbacks are defined, like ‘EUR’ for the
Euro sign and ‘(C)’ for the copyright sign. For typesetter devices, you may
need to “mount” fonts that support glyphs required by the document. See
Section 5.19.3 [Font Positions], page 134.

Because a Euro glyph was not historically defined in PostScript fonts,
groff comes with a font called freeeuro.pfa that provides the Euro in
several styles. Standard PostScript fonts contain the glyphs from Latin-5
and Latin-9 that Latin-1 lacks, so these encodings are supported for the ps
and pdf output devices as groff ships, while Latin-2 is not.

Unicode supports characters from all other input encodings; the utf8
output driver for terminals therefore does as well. The DVI output driver
supports the Latin-2 and Latin-9 encodings if the command-line option -mec
is used as well.14

5.1.10 Input Conventions

Since GNU troff fills text automatically, it is common practice in the roff
language to avoid visual composition of text in input files: the esthetic appeal
of the formatted output is what matters. Therefore, roff input should be
arranged such that it is easy for authors and maintainers to compose and
develop the document, understand the syntax of roff requests, macro calls,
and preprocessor languages used, and predict the behavior of the formatter.
Several traditions have accrued in service of these goals.

13 The semantics of certain punctuation code points have gotten stricter with the suc-
cessive standards, a cause of some frustration among man page writers; see the
groff char(7) man page.

14 The DVI output device defaults to using the Computer Modern (CM) fonts; ec.tmac
loads the EC fonts instead, which provide Euro ‘\[Eu]’ and per mille ‘\[%0]’ glyphs.



72 The GNU Troff Manual

• Follow sentence endings in the input with newlines to ease their recogni-
tion (see Section 5.1.2 [Sentences], page 64). It is frequently convenient
to end text lines after colons and semicolons as well, as these typically
precede independent clauses. Consider doing so after commas; they
often occur in lists that become easy to scan when itemized by line,
or constitute supplements to the sentence that are added, deleted, or
updated to clarify it. Parenthetical and quoted phrases are also good
candidates for placement on text lines by themselves.

• Set your text editor’s line length to 72 characters or fewer.15 This
limit, combined with the previous item of advice, makes it less common
that an input line will wrap in your text editor, and thus will help
you perceive excessively long constructions in your text. Recall that
natural languages originate in speech, not writing, and that punctuation
is correlated with pauses for breathing and changes in prosody.

• Use \& after ‘!’, ‘?’, and ‘.’ if they are followed by space, tab, or newline
characters and don’t end a sentence.

• In filled text lines, use \& before ‘.’ and ‘'’ if they are preceded by
space, so that reflowing the input doesn’t turn them into control lines.

• Do not use spaces to perform indentation or align columns of a table.
Leading spaces are reliable when text is not being filled.

• Comment your document. It is never too soon to apply comments
to record information of use to future document maintainers (including
your future self). We thus introduce another escape sequence, \", which
causes GNU troff to ignore the remainder of the input line.

• Use the empty request—a control character followed immediately by a
newline—to visually manage separation of material in input files. Many
of the groff project’s own documents use an empty request between
sentences, after macro definitions, and where a break is expected, and
two empty requests between paragraphs or other requests or macro calls
that will introduce vertical space into the document.

You can combine the empty request with the comment escape sequence
to include whole-line comments in your document, and even “comment
out” sections of it.

We conclude this section with an example sufficiently long to illustrate
most of the above suggestions in practice. For the purpose of fitting the
example between the margins of this manual with the font used for its typeset
version, we have shortened the input line length to 56 columns. As before,
an arrow → indicates a tab character.

15 Emacs: fill-column: 72; Vim: textwidth=72
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� �
.\" nroff this_file.roff | less
.\" groff -T ps this_file.roff > this_file.ps
→The theory of relativity is intimately connected with
the theory of space and time.
.
I shall therefore begin with a brief investigation of
the origin of our ideas of space and time,
although in doing so I know that I introduce a
controversial subject. \" remainder of paragraph elided
.
.

→The experiences of an individual appear to us arranged
in a series of events;
in this series the single events which we remember
appear to be ordered according to the criterion of
\[lq]earlier\[rq] and \[lq]later\[rq], \" punct swapped
which cannot be analysed further.
.
There exists,
therefore,
for the individual,
an I-time,
or subjective time.
.
This itself is not measurable.
.
I can,
indeed,
associate numbers with the events,
in such a way that the greater number is associated with
the later event than with an earlier one;
but the nature of this association may be quite
arbitrary.
.
This association I can define by means of a clock by
comparing the order of events furnished by the clock
with the order of a given series of events.
.
We understand by a clock something which provides a
series of events which can be counted,
and which has other properties of which we shall speak
later.
.\" Albert Einstein, _The Meaning of Relativity_, 1922
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5.2 Page Geometry
roff systems format text under certain assumptions about the size of the
output medium, or page. For the formatter to correctly break a line it is
filling, it must know the line length, which it derives from the page width
(see Section 5.15 [Line Layout], page 122). For it to decide whether to write
an output line to the current page or wait until the next one, it must know
the page length (see Section 5.17 [Page Layout], page 126).

A device’s resolution converts practical units like inches or centimeters
to basic units, a convenient length measure for the output device or file
format. The formatter and output driver use basic units to reckon page
measurements. The device description file defines its resolution and page
dimensions (see Section 6.2.1 [DESC File Format], page 242).

A page is a two-dimensional structure upon which a roff system imposes
a rectangular coordinate system with its upper left corner as the origin. Co-
ordinate values are in basic units and increase down and to the right. Useful
ones are therefore always positive and within numeric ranges corresponding
to the page boundaries.

While the formatter (and, later, output driver) is processing a page, it
keeps track of its drawing position, which is the location at which the next
glyph will be written, from which the next motion will be measured, or where
a geometric object will commence rendering. Notionally, glyphs are drawn
from the text baseline upward and to the right.16 The text baseline is a
(usually invisible) line upon which the glyphs of a typeface are aligned. A
glyph therefore “starts” at its bottom-left corner. If drawn at the origin, a
typical letter glyph would lie partially or wholly off the page, depending on
whether, like “g”, it features a descender below the baseline.

Such a situation is nearly always undesirable. It is furthermore conven-
tional not to write or draw at the extreme edges of the page. Therefore the
initial drawing position of a roff formatter is not at the origin, but below
and to the right of it. This rightward shift from the left edge is known as
the page offset.17 The downward shift leaves room for a text output line.

Text is arranged on a one-dimensional lattice of text baselines from the
top to the bottom of the page. Vertical spacing is the distance between
adjacent text baselines. Typographic tradition sets this quantity to 120%
of the type size. The initial drawing position is one unit of vertical spacing
below the page top. Typographers term this unit a vee.

Vertical spacing has an impact on page-breaking decisions. Generally,
when a break occurs, the formatter moves the drawing position to the next
text baseline automatically. If the formatter were already writing to the last
line that would fit on the page, advancing by one vee would place the next
text baseline off the page. Rather than let that happen, roff formatters

16 groff does not yet support right-to-left scripts.
17 groff’s terminal output devices have page offsets of zero.
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instruct the output driver to eject the page, start a new one, and again set
the drawing position to one vee below the page top; this is a page break.

When the last line of input text corresponds to the last output line that
fits on the page, the break caused by the end of input will also break the page,
producing a useless blank one. Macro packages keep users from having to
confront this difficulty by setting “traps” (see Section 5.28 [Traps], page 186);
moreover, all but the simplest page layouts tend to have headers and footers,
or at least bear vertical margins larger than one vee.

5.3 Measurements
The formatter sometimes requires the input of numeric parameters to specify
measurements. These are specified as integers or decimal fractions with an
optional scaling unit suffixed. A scaling unit is a letter that immediately
follows the last digit of a number. Digits after the decimal point are optional.
Measurement expressions include ‘10.5p’, ‘11i’, and ‘3.c’.

Measurements are scaled by the scaling unit and stored internally (with
any fractional part discarded) in basic units. The device resolution can
therefore be obtained by storing a value of ‘1i’ to a register. The only
constraint on the basic unit is that it is at least as small as any other unit.

u Basic unit.

i Inch; defined as 2.54 centimeters.

c Centimeter; a centimeter is about 0.3937 inches.

p Point; a typesetter’s unit used for measuring type size. There
are 72 points to an inch.

P Pica; another typesetter’s unit. There are 6 picas to an inch and
12 points to a pica.

s
z See Section 5.20.3 [Using Fractional Type Sizes], page 152, for a

discussion of these units.

f GNU troff defines this unit to scale decimal fractions in the
interval [0, 1] to 16-bit unsigned integers. It multiplies a quantity
by 65,536. See Section 5.21 [Colors], page 154, for usage.

The magnitudes of other scaling units depend on the text formatting
parameters in effect. These are useful when specifying measurements that
need to scale with the typeface or vertical spacing.

m Em; an em is equal to the current type size in points. It is named
thus because it is approximately the width of the letter ‘M’.

n En; an en is one-half em.

v Vee; recall Section 5.2 [Page Geometry], page 74.

M Hundredth of an em.
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5.3.1 Motion Quanta

An output device’s basic unit u is not necessarily its smallest addressable
length; u can be smaller to avoid problems with integer roundoff. The min-
imum distances that a device can work with in the horizontal and vertical
directions are termed its motion quanta. Measurements are rounded to ap-
plicable motion quanta. Half-quantum fractions round toward zero.

[Register]\n[.H]
[Register]\n[.V]

These read-only registers interpolate the horizontal and vertical motion
quanta, respectively, of the output device in basic units.

For example, we might draw short baseline rules on a terminal device as
follows. See Section 5.26 [Drawing Geometric Objects], page 181.

.tm \n[.H]
error 24

.nf
\l'36u' 36u
\l'37u' 37u

⇒ _ 36u
⇒ __ 37u

5.3.2 Default Units

A general-purpose register (one created or updated with the nr request; see
see Section 5.8 [Registers], page 92) is implicitly dimensionless, or reckoned in
basic units if interpreted in a measurement context. But it is convenient for
many requests and escape sequences to infer a scaling unit for an argument
if none is specified. An explicit scaling unit (not after a closing parenthesis)
can override an undesirable default. Effectively, the default unit is suffixed
to the expression if a scaling unit is not already present. GNU troff’s use
of integer arithmetic should also be kept in mind (see Section 5.4 [Numeric
Expressions], page 77).

The ll request interprets its argument in ems by default. Consider several
attempts to set a line length of 3.5 inches when the type size is 10 points on
a terminal device with a resolution of 240 basic units and horizontal motion
quantum of 24. Some expressions become zero; the request clamps them to
that quantum.

.ll 3.5i \" 3.5i (= 840u)

.ll 7/2 \" 7u/2u -> 3u -> 3m -> 0, clamped to 24u

.ll (7 / 2)u \" 7u/2u -> as above

.ll 7/2i \" 7u/2i -> 7u/480u -> 0 -> as above

.ll 7i/2 \" 7i/2u -> 1680u/2m -> 1680u/24u -> 35u

.ll 7i/2u \" 3.5i (= 840u)

The safest way to specify measurements is to attach a scaling unit. To
multiply or divide by a dimensionless quantity, use ‘u’ as its scaling unit.
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5.4 Numeric Expressions
A numeric expression evaluates to an integer: it can be as simple as a literal
‘0’ or it can be a complex sequence of register and string interpolations
interleaved with measurements and operators.

GNU troff provides a set of mathematical and logical operators familiar
to programmers—as well as some unusual ones—but supports only integer
arithmetic.18 The internal data type used for computing results is usually a
32-bit signed integer, which suffices to represent magnitudes within a range
of ±2 billion.19

Arithmetic infix operators perform a function on the numeric expressions
to their left and right; they are + (addition), - (subtraction), * (multiplica-
tion), / (truncating division), and % (modulus). Truncating division rounds
to the integer nearer to zero, no matter how large the fractional portion.
Overflow and division (or modulus) by zero are errors and abort evaluation
of a numeric expression.

Arithmetic unary operators operate on the numeric expression to their
right; they are - (negation) and + (assertion—for completeness; it does noth-
ing). The unary minus must often be used with parentheses to avoid confu-
sion with the decrementation operator, discussed below.

Observe the rounding behavior and effect of negative operands on the
modulus and truncating division operators.

.nr T 199/100

.nr U 5/2

.nr V (-5)/2

.nr W 5/-2

.nr X 5%2

.nr Y (-5)%2

.nr Z 5%-2
T=\n[T] U=\n[U] V=\n[V] W=\n[W] X=\n[X] Y=\n[Y] Z=\n[Z]

⇒ T=1 U=2 V=-2 W=-2 X=1 Y=-1 Z=1

The sign of the modulus of operands of mixed signs is determined by the sign
of the first. Division and modulus operators satisfy the following property:
given a dividend a and a divisor b, a quotient q formed by ‘(a / b)’ and a
remainder r by ‘(a % b)’, then qb+ r = a.

GNU troff’s scaling operator, used with parentheses as (c;e), evaluates
a numeric expression e using c as the default scaling unit. If c is omitted,
scaling units are ignored in the evaluation of e. This operator can save typing
by avoiding the attachment of scaling units to every operand out of caution.
Your macros can select a sensible default unit in case the user neglects to
supply one.

18 Provision is made for interpreting and reporting decimal fractions in certain cases.
19 If that’s not enough, see the groff tmac(5) man page for the 62bit.tmacmacro package.
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.\" Indent by amount given in first argument; assume ens.

.de Indent

. in (n;\\$1)

..

Without the scaling operator, the foregoing macro would, if called with a
unitless argument, cause indentation by the in request’s default scaling unit
(ems). The result would be twice as much indentation as expected.

GNU troff also provides a pair of operators to compute the extrema of
two operands: >? (maximum) and <? (minimum).

.nr slots 5

.nr candidates 3

.nr salaries (\n[slots] <? \n[candidates])
Looks like we'll end up paying \n[salaries] salaries.

⇒ Looks like we'll end up paying 3 salaries.

Comparison operators comprise < (less than), > (greater than), <= (less
than or equal), >= (greater than or equal), and = (equal). == is a synonym
for =. When evaluated, a comparison is replaced with ‘0’ if it is false and ‘1’
if true. In the roff language, positive values are true, others false.

We can operate on truth values with the logical operators & (logical con-
junction or “and”) and : (logical disjunction or “or”). They evaluate as
comparison operators do.

A logical complementation (“not”) operator, !, works only within if, ie,
and while requests. Furthermore, ! is recognized only at the beginning of a
numeric expression not contained by another numeric expression. In other
words, it must be the “outermost” operator. Including it elsewhere in the
expression produces a warning in the ‘number’ category (see Section 5.37.1
[Warnings], page 221), and its expression evaluates false. This unfortunate
limitation maintains compatibility with AT&T troff. Test a numeric ex-
pression for falsity by comparing it to a false value.20

.nr X 1

.nr Y 0

.\" This does not work as expected.

.if (\n[X])&(!\n[Y]) .nop A: X is true, Y is false

.

.\" Use this construct instead.

.if (\n[X])&(\n[Y]<=0) .nop B: X is true, Y is false
error warning: expected numeric expression, got '!'
⇒ B: X is true, Y is false

The roff language has no operator precedence: expressions are evalu-
ated strictly from left to right, in contrast to schoolhouse arithmetic. Use
parentheses ( ) to impose a desired precedence upon subexpressions.

20 See Section 5.23 [Conditionals and Loops], page 160.
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.nr X 3+5*4

.nr Y (3+5)*4

.nr Z 3+(5*4)
X=\n[X] Y=\n[Y] Z=\n[Z]

⇒ X=32 Y=32 Z=23

For many requests and escape sequences that cause motion on the page,
the unary operators + and - work differently when leading a numeric expres-
sion. They then indicate a motion relative to the drawing position: positive
is down in vertical contexts, right in horizontal ones.

+ and - are also treated differently by the following requests and escape
sequences: bp, in, ll, lt, nm, nr, pl, pn, po, ps, pvs, rt, ti, \H, \R,
and \s. Here, leading plus and minus signs serve as incrementation and
decrementation operators, respectively. To negate an expression, subtract it
from zero or include the unary minus in parentheses with its argument. See
Section 5.8.1 [Setting Registers], page 92, for examples.

A leading | operator indicates a motion relative not to the drawing posi-
tion but to a boundary. For horizontal motions, the measurement specifies
a distance relative to a drawing position corresponding to the beginning of
the input line. By default, tab stops reckon movements in this way. Most
escape sequences do not; | tells them to do so.

Mind the \h'1.2i'gap.
.br
Mind the \h'|1.2i'gap.
.br
Mind the
\h'|1.2i'gap.

⇒ Mind the gap.
⇒ Mind the gap.
⇒ Mind the gap.

One use of this feature is to define macros whose scope is limited to the
output they format.

.\" underline word $1 with trailing punctuation $2

.de Underline

. nop \\$1\l'|0\[ul]'\\$2

..
Typographical emphasis is best used
.Underline sparingly .

In the above example, ‘|0’ specifies a negative motion from the current
position (at the end of the argument just emitted, \$1) to the beginning
of the input line. Thus, the \l escape sequence in this case draws a line
from right to left. A macro call occurs at the beginning of an input line;21

21 Control structure syntax creates an exception to this rule, but is designed to remain
useful: recalling our example, ‘.if 1 .Underline this’ would underline only “this”,
precisely. See Section 5.23 [Conditionals and Loops], page 160.
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if the | operator were omitted, then the underline would be drawn at zero
distance from the current position, producing device-dependent, and likely
undesirable, results. On the ‘ps’ output device, it underlines the period.

For vertical motions, the | operator specifies a distance from the first text
baseline on the page or in the current diversion,22 using the current vertical
spacing.

A
.br
B \Z'C'\v'|0'D

⇒ A D
⇒ B C

In the foregoing example, we’ve used the \Z escape sequence (see Sec-
tion 5.25 [Page Motions], page 176) to restore the drawing position after
formatting ‘C’, then moved vertically to the first text baseline on the page.

[Escape sequence]\B'anything'
Interpolate 1 if anything is a valid numeric expression, and 0 otherwise.
The delimiter need not be a neutral apostrophe; see Section 5.6.5 [Delim-
iters], page 89.

You might use \B along with the if request to filter out invalid macro or
string arguments. See Section 5.23 [Conditionals and Loops], page 160.

.\" Indent by amount given in first argument; assume ens.

.de Indent

. if \B'\\$1' .in (n;\\$1)

..

A register interpolated as an operand in a numeric expression must have
an Arabic format; luckily, this is the default. See Section 5.8.4 [Assigning
Register Formats], page 96.

Because spaces separate arguments to requests, spaces are not allowed
in numeric expressions unless the (sub)expression containing them is sur-
rounded by parentheses. See Section 5.6.2 [Invoking Requests], page 84, and
Section 5.23 [Conditionals and Loops], page 160.

.nf

.nr a 1+2 + 2+1
\na

error expected numeric expression, got a space
⇒ 3

.nr a 1+(2 + 2)+1
\na

⇒ 6

The nr request (see Section 5.8.1 [Setting Registers], page 92) expects
its second and optional third arguments to be numeric expressions; a bare +
does not qualify, so our first attempt got a warning.

22 See Section 5.29 [Diversions], page 196.
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5.5 Identifiers
An identifier labels a GNU troff datum such as a register, name (macro,
string, or diversion), typeface, color, special character, character class, envi-
ronment, or stream. Valid identifiers consist of one or more ordinary char-
acters. An ordinary character is an input character that is not the escape
character, a leader, tab, newline, or invalid as GNU troff input.

Invalid input characters are a subset of control characters (from the sets
“C0 Controls” and “C1 Controls” as Unicode describes them). When GNU
troff encounters one in an identifier, it produces a warning in category
‘input’ (see Section 5.37.1 [Warnings], page 221). They are removed during
interpretation: an identifier ‘foo’, followed by an invalid character and then
‘bar’, is processed as ‘foobar’.

On a machine using the ISO 646, 8859, or 10646 character encodings,
invalid input characters are 0x00, 0x08, 0x0B, 0x0D–0x1F, and 0x80–0x9F.
On an EBCDIC host, they are 0x00–0x01, 0x08, 0x09, 0x0B, 0x0D–0x14,
0x17–0x1F, and 0x30–0x3F.23 Some of these code points are used by GNU
troff internally, making it non-trivial to extend the program to accept
UTF-8 or other encodings that use characters from these ranges.24

Thus, the identifiers ‘br’, ‘PP’, ‘end-list’, ‘ref*normal-print’, ‘|’, ‘@_’,
and ‘!"#$%'()*+,-./’ are all valid. Discretion should be exercised to pre-
vent confusion. Identifiers starting with ‘(’ or ‘[’ require care.

.nr x 9

.nr y 1

.nr (x 2

.nr [y 3

.nr sum1 (\n(x + \n[y])
error a space character is not allowed in an escape
error sequence parameter

A:2+3=\n[sum1]
.nr sum2 (\n((x + \n[[y])
B:2+3=\n[sum2]
.nr sum3 (\n[(x] + \n([y)
C:2+3=\n[sum3]

⇒ A:2+3=1 B:2+3=5 C:2+3=5

23 Historically, control characters like ASCII STX, ETX, and BEL (Control+B,
Control+C, and Control+G) have been observed in roff documents, particularly in
macro packages employing them as delimiters with the output comparison operator
to try to avoid collisions with the content of arbitrary user-supplied parameters (see
Section 5.23.1 [Operators in Conditionals], page 160). We discourage this expedient;
in GNU troff it is unnecessary (outside of compatibility mode) because delimited
arguments are parsed at a different input level than the surrounding context. See
Section 5.38 [Implementation Differences], page 223.

24 Consider what happens when a C1 control 0x80–0x9F is necessary as a continuation
byte in a UTF-8 sequence.
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An identifier with a closing bracket (‘]’) in its name can’t be accessed with
bracket-form escape sequences that expect an identifier as a parameter. For
example, ‘\[foo]]’ accesses the glyph ‘foo’, followed by ‘]’ in whatever the
surrounding context is, whereas ‘\C'foo]'’ formats a glyph named ‘foo]’.
Similarly, the identifier ‘(’ can’t be interpolated except with bracket forms.

If you begin a macro, string, or diversion name with either of the charac-
ters ‘[’ or ‘]’, you foreclose use of the grefer preprocessor, which recognizes
‘.[’ and ‘.]’ as bibliographic reference delimiters.

[Escape sequence]\A'anything'
Interpolate 1 if anything is a valid identifier, and 0 otherwise. The de-
limiter need not be a neutral apostrophe; see Section 5.6.5 [Delimiters],
page 89. Because invalid input characters are removed (see above), invalid
identifiers are empty or contain spaces, tabs, or newlines.

You can employ \A to validate a macro argument before using it to con-
struct another escape sequence or identifier.

.\" usage: .init-coordinate-pair name val1 val2

.\" Create a coordinate pair where name!x=val1 and

.\" name!y=val2.

.de init-coordinate-pair

. if \A'\\$1' \{\

. if \B'\\$2' .nr \\$1!x \\$2

. if \B'\\$3' .nr \\$1!y \\$3

. \}

..

.init-coordinate-pair center 5 10
The center is at (\n[center!x], \n[center!y]).
.init-coordinate-pair "poi→nt" trash garbage \" ignored
.init-coordinate-pair point trash garbage \" ignored

⇒ The center is at (5, 10).

In this example, we also validated the numeric arguments; the registers
‘point!x’ and ‘point!y’ remain undefined. See Section 5.4 [Numeric
Expressions], page 77, for the \B escape sequence.

How GNU troff handles the interpretation of an undefined identifier
depends on the context. There is no way to invoke an undefined request;
such syntax is interpreted as a macro call instead. If the identifier is in-
terpreted as a string, macro, or diversion, GNU troff emits a warning in
category ‘mac’, defines it as empty, and interpolates nothing. If the iden-
tifier is interpreted as a register, GNU troff emits a warning in category
‘reg’, initializes it to zero, and interpolates that value. See Section 5.37.1
[Warnings], page 221, Section 5.8.2 [Interpolating Registers], page 94, and
Section 5.22 [Strings], page 156. Attempting to use an undefined typeface,
special character, color, character class, environment, or stream generally
provokes an error diagnostic.
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Identifiers for requests, macros, strings, and diversions share one name
space; special characters and character classes another. No other object
types do.

.de xxx

. nop foo

..

.di xxx
bar
.br
.di
.
.xxx

⇒ bar

The foregoing example shows that GNU troff reuses the identifier ‘xxx’,
changing it from a macro to a diversion. No warning is emitted, and the
previous contents of ‘xxx’ are lost.

5.6 Formatter Instructions
To support documents that require more than filling, automatic line breaking
and hyphenation, adjustment, and supplemental inter-sentence space, the
roff language offers two means of embedding instructions to the formatter.

One is a request, which begins with a control character and takes up the
remainder of the input line. Requests often perform relatively large-scale
operations such as setting the page length, breaking the line, or starting a
new page. They also conduct internal operations like defining macros.

The other is an escape sequence, which begins with the escape character
and can be embedded anywhere in the input, even in arguments to requests
and other escape sequences. Escape sequences interpolate special characters,
strings, or registers, and handle comparatively minor formatting tasks like
sub- and superscripting.

Some operations, such as font selection and type size alteration, are avail-
able via both requests and escape sequences.

5.6.1 Control Characters

The mechanism of using roff’s control characters to invoke requests and
call macros was introduced in Section 5.1.7 [Requests and Macros], page 67.
Control characters are recognized only at the beginning of an input line, or
at the beginning of the branch of a control structure request; see Section 5.23
[Conditionals and Loops], page 160.

A few requests cause a break implicitly; use the no-break control character
to prevent the break. Break suppression is its sole behavioral distinction.
Employing the no-break control character to invoke requests that don’t cause
breaks is harmless but poor style. See Section 5.9 [Manipulating Filling and
Adjustment], page 99.
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The control ‘.’ and no-break control ‘'’ characters can each be changed
to any ordinary character25 with the cc and c2 requests, respectively.

[Request].cc [o]
Recognize the ordinary character o as the control character. If o is absent
or invalid, the default control character ‘.’ is selected. The identity of
the control character is associated with the environment (see Section 5.31
[Environments], page 203).

[Request].c2 [o]
Recognize the ordinary character o as the no-break control character.
If o is absent or invalid, the default no-break control character ‘'’ is
selected. The identity of the no-break control character is associated
with the environment (see Section 5.31 [Environments], page 203).

When writing a macro, you might wish to know which control character
was used to call it.

[Register]\n[.br]
This read-only register interpolates 1 if the currently executing macro was
called using the normal control character and 0 otherwise. If a macro is
interpolated as a string, the .br register’s value is inherited from the
context of the string interpolation. See Section 5.22 [Strings], page 156.

Use this register to reliably intercept requests that imply breaks.

.als bp*orig bp

.de bp

. ie \\n[.br] .bp*orig

. el 'bp*orig

..

Testing the .br register outside of a macro definition makes no sense.

5.6.2 Invoking Requests

A control character is optionally followed by tabs and/or spaces and then
an identifier naming a request or macro. The invocation of an unrecognized
request is interpreted as a macro call. Defining a macro with the same name
as a request replaces the request. Deleting a request name with the rm
request makes it unavailable. The als request can alias requests, permitting
them to be wrapped or non-destructively replaced. See Section 5.22 [Strings],
page 156.

There is no inherent limit on argument length or quantity. Most requests
take one or more arguments, and ignore any they do not expect. A request
may be separated from its arguments by tabs or spaces, but only spaces
can separate an argument from its successor. Only one between arguments

25 Recall Section 5.5 [Identifiers], page 81.
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is necessary; any excess is ignored. GNU troff does not allow tabs for
argument separation.26

Generally, a space within a request argument is not relevant, not meaning-
ful, or is supported by bespoke provisions, as with the tl request’s delimiters
(see Section 5.17 [Page Layout], page 126). Some requests, like ds, interpret
the remainder of the control line as a single argument. See Section 5.22
[Strings], page 156.

Spaces and tabs immediately after a control character are ignored. Com-
monly, authors structure the source of documents or macro files with them.

.de center

. if \\n[.br] \

. br

. ce \\$1

..

.

.

.de right-align

.→if \\n[.br] \

.→→br

.→rj \\$1

..

If you assign an empty blank line trap, you can separate macro definitions
(or any input lines) with blank lines.

.de do-nothing

..

.blm do-nothing \" activate blank line trap

.de center

. if \\n[.br] \

. br

. ce \\$1

..

.de right-align

.→if \\n[.br] \

.→→br

.→rj \\$1

..

.blm \" deactivate blank line trap

See Section 5.28.3 [Blank Line Traps], page 193.

26 In compatibility mode, a space is not necessary after a request or macro name of two
characters’ length. Also, Plan 9 troff allows tabs to separate arguments.
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5.6.3 Calling Macros

If a macro of the desired name does not exist when called, it is created,
assigned an empty definition, and a warning in category ‘mac’ is emitted.
Calling an undefined macro does end a macro definition naming it as its end
macro (see Section 5.24 [Writing Macros], page 167).

To embed spaces within a macro argument, enclose the argument in neu-
tral double quotes ". Horizontal motion escape sequences are sometimes a
better choice for arguments to be formatted as text.

Consider calls to a hypothetical section heading macro ‘uh’.

.uh The Mouse Problem

.uh "The Mouse Problem"

.uh The\~Mouse\~Problem

.uh The\ Mouse\ Problem

The first line calls uh with three arguments: ‘The’, ‘Mouse’, and ‘Problem’.
The remainder call the uh macro with one argument, ‘The Mouse Problem’.
The last solution, using escaped spaces, can be found in documents prepared
for AT&T troff. It can cause surprise when text is adjusted, because \SP
inserts a fixed-width, non-breaking space. GNU troff’s \~ escape sequence
inserts an adjustable, non-breaking space.27

The foregoing raises the question of how to embed neutral double quotes
or backslashes in macro arguments when those characters are desired as lit-
erals. In GNU troff, the special character escape sequence \[rs] produces
a backslash and \[dq] a neutral double quote.

In GNU troff’s AT&T compatibility mode, these characters remain avail-
able as \(rs and \(dq, respectively. AT&T troff did not consistently define
these special characters, but its descendants can be made to support them.
See Section 6.2 [Device and Font Description Files], page 242.

If even that is not feasible, options remain. To obtain a literal escape
character in a macro argument, you can simply type it if you change or dis-
able the escape character first. See Section 5.6.4 [Using Escape Sequences],
page 87. Otherwise, you must escape the escape character repeatedly to a
context-dependent extent. See Section 5.24.2 [Copy Mode], page 173.

For the (neutral) double quote, you have recourse to an obscure syntac-
tical feature of AT&T troff. Because a double quote can begin a macro
argument, the formatter keeps track of whether the current argument was
started thus, and doesn’t require a space after the double quote that ends
it.28 In the argument list to a macro, a double quote that isn’t preceded by
a space doesn’t start a macro argument. If not preceded by a double quote
that began an argument, this double quote becomes part of the argument.

27 \~ is fairly portable; see Section 5.38.3 [Other Differences], page 226.
28 Strictly, you can neglect to close the last quoted macro argument, relying on the end

of the control line to do so. We consider this lethargic practice poor style.
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Furthermore, within a quoted argument, a pair of adjacent double quotes
becomes a literal double quote.

.de eq

. tm arg1:\\$1 arg2:\\$2 arg3:\\$3

. tm arg4:\\$4 arg5:\\$5 arg6:\\$6

.. \" 4 backslashes on the next line

.eq a" "b c" "de"f\\\\g" h""i "j""k"
error arg1:a" arg2:b c arg3:de
error arg4:f\g" arg5:h""i arg6:j"k

Apart from the complexity of the rules, this traditional solution has the
disadvantage that double quotes don’t survive repeated argument expansion
in AT&T troff or GNU troff’s compatibility mode. This can frustrate
efforts to pass such arguments intact through multiple macro calls.

.cp 1

.de eq

. tm arg1:\\$1 arg2:\\$2 arg3:\\$3

. tm arg4:\\$4 arg5:\\$5 arg6:\\$6

..

.de xe

. eq \\$1 \\$2 \\$3 \\$4 \\$5 \\$6

.. \" 8 backslashes on the next line

.xe a" "b c" "de"f\\\\\\\\g" h""i "j""k"
error arg1:a" arg2:b arg3:c
error arg4:de arg5:f\g" arg6:h""i

Outside of compatibility mode, GNU troff doesn’t exhibit this prob-
lem because it tracks the nesting depth of interpolations. See Section 5.38
[Implementation Differences], page 223.

5.6.4 Using Escape Sequences

Whereas requests must occur on control lines, escape sequences can occur
intermixed with text and may appear in arguments to requests, macros, and
other escape sequences. An escape sequence is introduced by the escape
character, a backslash \ (but see the ec request below). The next character
selects the escape’s function.

Escape sequences vary in length. Some take an argument, and of those,
some have different syntactical forms for a one-character, two-character, or
arbitrary-length argument. Others accept only an arbitrary-length argu-
ment. In the former scheme, a one-character argument follows the function
character immediately, an opening parenthesis ‘(’ introduces a two-character
argument (no closing parenthesis is used), and an argument of arbitrary
length is enclosed in brackets ‘[]’. In the latter scheme, the user selects a
delimiter character. A few escape sequences are idiosyncratic, and support
both of the foregoing conventions (\s), designate their own termination se-
quence (\?), consume input until the next newline (\!, \", \#), or support
an additional modifier character (\s again, and \n). As with requests, use of



88 The GNU Troff Manual

some escape sequences in source documents may interact poorly with a macro
package you use; consult its documentation to learn of “safe” sequences or
alternative facilities it provides to achieve the desired result.

If an escape character is followed by a character that does not identify
a defined operation, the escape character is ignored (producing a diagnostic
of the ‘escape’ warning category, which is not enabled by default) and the
following character is processed normally.

$ groff -Tps -ww
.nr N 12
.ds co white
.ds animal elephant
I have \fI\nN \*(co \*[animal]s,\f[]
said \P.\&\~Pseudo Pachyderm.

error warning: escape character ignored before 'P'
⇒ I have 12 white elephants, said P. Pseudo Pachyderm.

Escape sequence interpolation is of higher precedence than escape se-
quence argument interpretation. This rule affords flexibility in using escape
sequences to construct parameters to other escape sequences.

.ds family C\" Courier

.ds style I\" oblique
Choice a typeface \f(\*[family]\*[style]wisely.

⇒ Choose a typeface wisely.

In the above, the syntax form ‘\f(’ accepts only two characters for an ar-
gument; the example works because the subsequent escape sequences are
interpolated before the selection escape sequence argument is processed, and
strings family and style interpolate one character each.29

The escape character is nearly always interpreted when encountered; it
is therefore desirable to have a way to interpolate it, disable it, or change it.

[Escape sequence]\e
Interpolate the escape character.

The \[rs] special character escape sequence formats a backslash glyph.
In macro and string definitions, the input sequences \\ and \E defer inter-
pretation of escape sequences. See Section 5.24.2 [Copy Mode], page 173.

[Request].eo
Disable the escape mechanism except in copy mode. Once this request is
invoked, no input character is recognized as starting an escape sequence
in interpretation mode.

[Request].ec [o]
Recognize the ordinary character o as the escape character. If o is absent
or invalid, the default escape character ‘\’ is selected.

29 The omission of spaces before the comment escape sequences is necessary; see Sec-
tion 5.22 [Strings], page 156.
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Switching escape sequence interpretation off to define a macro and back
on afterward can obviate the need to double the escape character within
the definition. See Section 5.24 [Writing Macros], page 167. This technique
is not available if your macro needs to interpolate values at the time it is
defined—but many do not.

.\" simplified `BR` macro from the man(7) macro package

.eo

.de BR

. ds result \&

. while (\n[.$] >= 2) \{\

. as result \fB\$1\fR\$2\"

. shift 2

. \}

. if \n[.$] .as result \fB\$1\"
\*[result]
. rm result
. ft R
..
.ec

[Request].ecs
[Request].ecr

The ecs request stores the escape character for recall with ecr. ecr sets
the escape character to ‘\’ if none has been saved.

Use these requests together to temporarily change the escape character.

Using a different escape character, or disabling it, when calling macros
not under your control will likely cause errors, since GNU troff has no
mechanism to “intern” macros—that is, to convert a macro definition into
a form independent of its representation.30 When a macro is called, its
contents are interpreted literally.

5.6.5 Delimiters

Some escape sequences that require parameters use delimiters. The neutral
apostrophe ' is a popular choice and shown in this document. The neutral
double quote " is also commonly seen. Letters, numerals, and leaders can
be used. Punctuation characters are likely better choices, except for those
defined as infix operators in numeric expressions; see below.

\l'1.5i\[bu]' \" draw 1.5 inches of bullet glyphs

The following escape sequences don’t take arguments and thus are allowed
as delimiters: \SP, \%, \|, \^, \{, \}, \', \`, \-, \_, \!, \?, \), \/, \,, \&,
\:, \~, \0, \a, \c, \d, \e, \E, \p, \r, \t, and \u. However, using them this
way is discouraged; they can make the input confusing to read.

30 TEX does have such a mechanism.
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A few escape sequences, \A, \b, \o, \w, \X, and \Z, accept a newline as
a delimiter. Newlines that serve as delimiters continue to be recognized as
input line terminators.

A caf\o
e\(aa
in Paris

⇒ A café in Paris

Use of newlines as delimiters in escape sequences is also discouraged.

Finally, the escape sequences \D, \h, \H, \l, \L, \N, \R, \s, \S, \v, and
\x prohibit many delimiters.

• the numerals 0-9 and the decimal point .

• the (single-character) operators ‘+-/*%<>=&:()’

• the space and tab characters

• any escape sequences other than \%, \:, \{, \}, \', \`, \-, \_, \!, \/,
\c, \e, and \p

Delimiter syntax is complex and flexible primarily for historical reasons;
the foregoing restrictions need be kept in mind mainly when using groff
in AT&T compatibility mode. GNU troff keeps track of the nesting depth
of escape sequence interpolations, so the only characters you need to avoid
using as delimiters are those that appear in the arguments you input, not
any that result from interpolation. Typically, ' works fine. See Section 5.38
[Implementation Differences], page 223.

$ groff -Tps
.de Mw
. nr wd \w'\\$1'
. tm "\\$1" is \\n(wd units wide.
..
.Mw Wet'suwet'en
.Mw Wet+200i
.cp 1 \" turn on compatibility mode
.Mw Wet'suwet'en
.Mw Wet'
.Mw Wet+200i

error "Wet'suwet'en" is 54740 units wide.
error "Wet'+200i" is 42610 units wide.
error "Wet'suwet'en" is 15860 units wide.
error "Wet'" is 15860 units wide.
error "Wet'+200i" is 14415860 units wide.

We see here that in compatibility mode, the part of the argument after
the ' delimiter escapes from its context and, if nefariously crafted, influences
the computation of the wd register’s value in a surprising way.
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5.7 Comments
One of the most common forms of escape sequence is the comment.31

[Escape sequence]\"
Start a comment. Everything up to the next newline is ignored.

This may sound simple, but it can be tricky to keep the comments from
interfering with the appearance of the output. If the escape sequence is to
the right of some text or a request, that portion of the line is ignored, but
spaces preceding it are processed normally by GNU troff. This affects
only the ds and as requests and their variants.

One possibly irritating idiosyncrasy is that tabs should not be used to
vertically align comments in the source document. Tab characters are
not treated as separators between a request name and its first argument,
nor between arguments.

A comment on a line by itself is treated as a blank line, because after
eliminating the comment, that is all that remains.

Test
\" comment
Test

⇒ Test
⇒
⇒ Test

To avoid this, it is common to combine the empty request with the com-
ment escape sequence as ‘.\"’, causing the input line to be ignored.

Another commenting scheme sometimes seen is three consecutive single
quotes (''') at the beginning of a line. This works, but GNU troff emits
a warning diagnostic (if enabled) about an undefined macro (namely ‘''’).

[Escape sequence]\#
Start a comment; everything up to and including the next newline is
ignored. This groff extension was introduced to avoid the problems
described above.

Test
\# comment
Test

⇒ Test Test

[Request].ig [end]
Ignore input until, in the current conditional block (if any),32 the macro
end is called at the start of a control line, or the control line ‘..’ is

31 This claim may be more aspirational than descriptive.
32 See Section 5.23.4 [Conditional Blocks], page 164.
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encountered if end is not specified. ig is parsed as if it were a macro
definition, but its contents are discarded, not stored.33

hand\c
.de TX
fasting
..
.ig TX
This is part of a large block of input that has been
temporarily(?) commented out.
We can restore it simply by removing the .ig request and
the call of its end macro.
.TX

⇒ handfasting

5.8 Registers
In the roff language, numbers can be stored in registers. Many built-in
registers exist, supplying anything from the date to details of formatting
parameters. You can also define your own. See Section 5.5 [Identifiers],
page 81, for information on constructing a valid name for a register.

5.8.1 Setting Registers

Define registers and update their values with the nr request or the \R escape
sequence.

[Request].nr ident value
[Escape sequence]\R'ident value'

Set register ident to value. If ident doesn’t exist, GNU troff creates it.
In the \R escape sequence, the delimiter need not be a neutral apostrophe;
see Section 5.6.5 [Delimiters], page 89. It also does not produce an input
token in GNU troff. See Section 5.36 [Gtroff Internals], page 216.

.nr a (((17 + (3 * 4))) % 4)
\n[a]
.\R'a (((17 + (3 * 4))) % 4)'
\n[a]

⇒ 1 1

(Later, we will discuss additional forms of nr and \R that can change a
register’s value after it is dereferenced but before it is interpolated. See
Section 5.8.3 [Auto-increment], page 95.)

The complete transparency of \R can cause surprising effects if you use
registers like .k, which get evaluated at the time they are accessed.

33 Exception: auto-incrementing registers defined outside the ignored region will be mod-
ified if interpolated with \n± inside it. See Section 5.8.3 [Auto-increment], page 95.
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.ll 1.6i

.
aaa bbb ccc ddd eee fff ggg hhh\R':k \n[.k]'
.tm :k == \n[:k]

⇒ :k == 126950
.
.br
.
aaa bbb ccc ddd eee fff ggg hhh\h'0'\R':k \n[.k]'
.tm :k == \n[:k]

⇒ :k == 15000

If you process this with the PostScript device (-Tps), there will be a line
break eventually after ggg in both input lines. However, after processing
the space after ggg, the partially collected line is not overfull yet, so GNU
troff continues to collect input until it sees the space (or in this case, the
newline) after hhh. At this point, the line is longer than the line length,
and the line gets broken.

In the first input line, since the \R escape sequence leaves no traces, the
check for the overfull line hasn’t been done yet at the point where \R gets
handled, and you get a value for the .k register that is even greater than
the current line length.

In the second input line, the insertion of \h'0' to cause a zero-width
motion forces GNU troff to check the line length, which in turn causes
the start of a new output line. Now .k returns the expected value.

nr and \R each have two additional special forms to increment or decre-
ment a register.

[Request].nr ident +value
[Request].nr ident -value

[Escape sequence]\R'ident +value'
[Escape sequence]\R'ident -value'

Increment (decrement) register ident by value. In the \R escape sequence,
the delimiter need not be a neutral apostrophe; see Section 5.6.5 [Delim-
iters], page 89.

.nr a 1

.nr a +1
\na

⇒ 2

A leading minus sign in value is always interpreted as a decrementation
operator, not an algebraic sign. To assign a register a negative value or the
negated value of another register, you can force GNU troff to interpret
‘-’ as a negation or minus, rather than decrementation, operator: enclose
it with its operand in parentheses or subtract it from zero.
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.nr a 7

.nr b 3

.nr a -\nb
\na

⇒ 4
.nr a (-\nb)
\na

⇒ -3
.nr a 0-\nb
\na

⇒ -3

If a register’s prior value does not exist (the register was undefined), an
increment or decrement is applied as if to 0.

[Request].rr ident
Remove register ident. If ident doesn’t exist, the request is ignored. Tech-
nically, only the name is removed; the register’s contents are still acces-
sible under aliases created with aln, if any.

[Request].rnn ident1 ident2
Rename register ident1 to ident2. If ident1 doesn’t exist, the request is
ignored. Renaming a built-in register does not otherwise alter its prop-
erties.

[Request].aln new old
Create an alias new for an existing register old, causing the names to
refer to the same stored object. If old is undefined, a warning in category
‘reg’ is produced and the request is ignored. See Section 5.37.1 [Warn-
ings], page 221, for information about the enablement and suppression of
warnings.

To remove a register alias, invoke rr on its name. A register’s contents
do not become inaccessible until it has no more names.

5.8.2 Interpolating Registers

Register contents are interpolated with the \n escape sequence.

[Escape sequence]\ni
[Escape sequence]\n(id
[Escape sequence]\n[ident]

Interpolate register with name ident (one-character name i, two-character
name id). \n is interpreted even in copy mode (see Section 5.24.2 [Copy
Mode], page 173). If the register is undefined, it is created and assigned a
value of ‘0’, that value is interpolated, and a warning in category ‘reg’ is
emitted. See Section 5.37.1 [Warnings], page 221, for information about
the enablement and suppression of warnings.
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.nr a 5

.nr as \na+\na
\n(as

⇒ 10

.nr a1 5

.nr ab 6

.ds str b

.ds num 1
\n[a\n[num]]

⇒ 5
\n[a\*[str]]

⇒ 6

5.8.3 Auto-increment

Registers can also be incremented or decremented by a configured amount at
the time they are interpolated. The value of the increment is specified with
a third argument to the nr request, and a special interpolation syntax is
used to alter and then retrieve the register’s value. Together, these features
are called auto-increment.34

[Request].nr ident value incr
Set register ident to value and its auto-incrementation amount to to incr.
The \R escape sequence doesn’t support an incr argument.

Auto-incrementation is not completely automatic; the \n escape sequence
in its basic form never alters the value of a register. To apply auto-
incrementation to a register, interpolate it with ‘\n±’.

[Escape sequence]\n+i
[Escape sequence]\n-i
[Escape sequence]\n+(id
[Escape sequence]\n-(id
[Escape sequence]\n+[ident]
[Escape sequence]\n-[ident]

Increment or decrement ident (one-character name i, two-character name
id) by the register’s auto-incrementation value and then interpolate the
new register value. If ident has no auto-incrementation value, interpolate
as with \n.

34 A negative auto-increment can be considered an “auto-decrement”.
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.nr a 0 1

.nr xx 0 5

.nr foo 0 -2
\n+a, \n+a, \n+a, \n+a, \n+a
.br
\n-(xx, \n-(xx, \n-(xx, \n-(xx, \n-(xx
.br
\n+[foo], \n+[foo], \n+[foo], \n+[foo], \n+[foo]

⇒ 1, 2, 3, 4, 5
⇒ -5, -10, -15, -20, -25
⇒ -2, -4, -6, -8, -10

To change the increment value without changing the value of a regis-
ter, assign the register’s value to itself by interpolating it, and specify the
desired increment normally. Apply an increment of ‘0’ to disable auto-
incrementation of the register.

5.8.4 Assigning Register Formats

A writable register’s value can be interpolated in several number formats.
By default, conventional Arabic numerals are used. Other formats see use in
sectioning and outlining schemes and alternative page numbering arrange-
ments.

[Request].af reg fmt
Use number format fmt when interpolating register reg. Valid number
formats are as follows.

0. . . Arabic numerals 0, 1, 2, and so on. Any decimal digit is equiv-
alent to ‘0’; the formatter merely counts the digits specified.
Multiple Arabic numerals in fmt cause interpolations to be
zero-padded on the left if necessary to at least as many digits
as specified (interpolations never truncate a register value).
A register with format ‘00’ interpolates values 1, 2, 3 as ‘01’,
‘02’, ‘03’. The default format for all writable registers is ‘0’.

I Uppercase Roman numerals: 0, I, II, III, IV, . . .

i Lowercase Roman numerals: 0, i, ii, iii, iv, . . .

A Uppercase letters: 0, A, B, C, . . . , Z, AA, AB, . . .

a Lowercase letters: 0, a, b, c, . . . , z, aa, ab, . . .

Omitting fmt causes a warning in category ‘missing’. See Section 5.37.1
[Warnings], page 221, for information about the enablement and suppres-
sion of warnings. Specifying an unrecognized format is an error.

Zero values are interpolated as ‘0’ in non-Arabic formats. Negative quan-
tities are prefixed with ‘-’ irrespective of format. In Arabic formats, the
sign supplements the field width. If reg doesn’t exist, it is created with
a zero value.
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.nr a 10

.af a 0 \" the default format
\na,
.af a I
\na,
.af a 321
.nr a (-\na)
\na,
.af a a
\na

⇒ 10, X, -010, -j

The representable extrema in the ‘i’ and ‘I’ formats correspond to Arabic
±39,999. GNU troff uses ‘w’ and ‘z’ to represent 5,000 and 10,000 in
Roman numerals, respectively, following the convention of AT&T troff—
currently, the correct glyphs for Roman numerals five thousand (U+2181)
and ten thousand (U+2182) are not used.

Assigning the format of a read-only register is an error. Instead, copy the
read-only register’s value to, and assign the format of, a writable register.

[Escape sequence]\gr
[Escape sequence]\g(rg
[Escape sequence]\g[reg]

Interpolate the format of the register reg (one-character name r, two-
character name rg). Zeroes represent Arabic formats. If reg is not de-
fined, reg is not created and nothing is interpolated. \g is interpreted
even in copy mode (see Section 5.24.2 [Copy Mode], page 173).

GNU troff interprets only Arabic numerals. The Roman numeral or
alphabetic formats cannot be used as operands to arithmetic operators in
expressions (see Section 5.4 [Numeric Expressions], page 77). For instance,
it may be desirable to test the page number independently of its format.

.af % i \" front matter

.de header-trap

. \" To test the page number, we need it in Arabic.

. ds saved-page-number-format \\g%\"

. af % 0

. nr page-number-in-decimal \\n%

. af % \\*[saved-page-number-format]

. ie \\n[page-number-in-decimal]=1 .do-first-page-stuff

. el \{\

. ie o .do-odd-numbered-page-stuff

. el .do-even-numbered-page-stuff

. \}

. rm saved-page-number-format

..

.wh 0 header-trap
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5.8.5 Built-in Registers

Predefined registers whose identifiers start with a dot are read-only. Many
are Boolean-valued, interpolating a true or false value testable with the if,
ie, or while requests. Some read-only registers are string-valued, meaning
that they interpolate text.

Caution: Built-in registers are subject to removal like others; once re-
moved, they can be recreated only as normal writable registers and will not
reflect formatter state.

A register name (without the dot) is often associated with a request of
the same name. A complete listing of all built-in registers can be found in
Appendix E [Register Index], page 267.

We present here a few built-in registers that are not described elsewhere
in this manual; they have to do with invariant properties of GNU troff, or
obtain information about the formatter’s command-line options, processing
progress, or the operating environment.

\n[.A] Approximate output is being formatted (Boolean-valued); see
groff -a option (Section 2.1 [Groff Options], page 5).

\n[.c]
\n[c.] Input line number. ‘c.’ is a writable synonym, affecting subse-

quent interpolations of both ‘.c’ and ‘c.’.

\n[.F] Name of input file (string-valued).

\n[.g] Always true in GNU troff (Boolean-valued). Documents can
use this to ask the formatter if it claims groff compatibility.

\n[.P] Output page selection status (Boolean-valued); see groff -o
option (Section 2.1 [Groff Options], page 5).

\n[.R] Count of available unused registers; always 10,000 in GNU
troff.35

\n[.T] Indicator of output device selection (Boolean-valued); see groff
-T option (Section 2.1 [Groff Options], page 5).

\n[.U] Unsafe mode enablement status (Boolean-valued); see groff -U
option (Section 2.1 [Groff Options], page 5).

\n[.x] Major version number of the running GNU troff formatter. For
example, if the version number is 1.23.0, then .x contains ‘1’.

\n[.y] Minor version number of the running GNU troff formatter. For
example, if the version number is 1.23.0, then .y contains ‘23’.

\n[.Y] Revision number of the running GNU troff formatter. For
example, if the version number is 1.23.0, then .Y contains ‘0’.

35 GNU troff dynamically allocates memory for as many registers as required.
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\n[$$] Process identifier (PID) of the GNU troff program in its oper-
ating environment.

Date- and time-related registers are set per the local time as determined
by localtime(3) when the formatter launches. This initialization can be
overridden by SOURCE_DATE_EPOCH and TZ; see Section 2.2 [Environment],
page 10.

\n[seconds]
Count of seconds elapsed in the minute (0–60).

\n[minutes]
Count of minutes elapsed in the hour (0–59).

\n[hours]
Count of hours elapsed since midnight (0–23).

\n[dw] Day of the week (1–7; 1 is Sunday).

\n[dy] Day of the month (1–31).

\n[mo] Month of the year (1–12).

\n[year] Gregorian year.

\n[yr] Gregorian year minus 1900. This register is incorrectly docu-
mented in the AT&T troff manual as storing the last two digits
of the current year. That claim stopped being true in 2000. Old
troff input that looks like:

'\" The year number is a surprise after 1999.
This document was formatted in 19\n(yr.

can be corrected to:

This document was formatted in \n[year].

or, for portability across many roff programs, to the following.

.nr y4 1900+\n(yr
This document was formatted in \n(y4.

5.9 Manipulating Filling and Adjustment
When an output line is pending (see below), a break moves the drawing po-
sition to the beginning of the next text baseline, interrupting filling. Various
ways of causing breaks were shown in Section 5.1.4 [Breaking], page 66. The
br request likewise causes a break. Several other requests imply breaks: bp,
ce, cf, fi, fl, in, nf, rj, sp, ti, and trf. If the no-break control character
is used with any of these requests, GNU troff suppresses the break; instead
the requested operation takes effect at the next break. ‘'br’ does nothing.
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.ll 55n
This line is normally filled and adjusted.
.br
A line's alignment is decided
'ce \" Center the next input line (no break).
when it is output.
This line returns to normal filling and adjustment.

⇒ This line is normally filled and adjusted.
⇒ A line's alignment is decided when it is output.
⇒ This line returns to normal filling and adjustment.

Output line properties like page offset, indentation, adjustment, and even
the location of its text baseline, are not determined until the line has been
broken. An output line is said to be pending if some input has been collected
but an output line corresponding to it has not yet been written; such an
output line is also termed partially collected. If no output line is pending,
it is as if a break has already happened; additional breaks, whether explicit
or implicit, have no effect. If the vertical drawing position is negative—as
it is when the formatter starts up—a break starts a new page (even if no
output line is pending) unless an end-of-input macro is being interpreted.
See Section 5.28.5 [End-of-input Traps], page 194.

[Request].br
Break the line: emit any pending output line without adjustment.

foo bar
.br
baz
'br
qux

⇒ foo bar
⇒ baz qux

Sometimes you want to prevent a break within a phrase or between a
quantity and its units.

[Escape sequence]\~
Insert an unbreakable space that is adjustable like an ordinary space. It
is discarded from the end of an output line if a break is forced.

Set the output speed to\~1.
There are 1,024\~bytes in 1\~KiB.
J.\~F.\~Ossanna wrote the original CSTR\~#54.

By default, GNU troff fills text and adjusts it to reach the output line
length. The nf request disables filling; the fi request reënables it.

[Request].fi
[Register]\n[.u]

Enable filling of output lines; a pending output line is broken. The read-
only register .u is set to 1. The filling enablement status, sometimes
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called fill mode, is associated with the environment (see Section 5.31 [En-
vironments], page 203). See Section 5.16 [Line Continuation], page 125,
for interaction with the \c escape sequence.

[Request].nf
Disable filling of output lines: the output line length (see Section 5.15
[Line Layout], page 122) is ignored and output lines are broken where the
input lines are. A pending output line is broken and adjustment is sup-
pressed. The read-only register .u is set to 0. The filling enablement sta-
tus is associated with the environment (see Section 5.31 [Environments],
page 203). See Section 5.16 [Line Continuation], page 125, for interaction
with the \c escape sequence.

[Request].ad [mode]
[Register]\n[.j]

Enable output line adjustment in mode, taking effect when the pending
(or next) output line is broken. Adjustment is suppressed when filling is.
mode can have one of the following values.

b
n Adjust “normally”: if the output line does not consume the

distance between the indentation and the configured output
line length, GNU troff stretches adjustable spaces within
the line until that length is reached. When the indentation
is zero, this mode spreads the line to both the left and right
margins. This is the GNU troff default.

c Center filled text. Contrast with the ce request, which cen-
ters text without filling it.

l Align text to the left without adjusting it.

r Align text to the right without adjusting it.

mode can also be a value previously stored in the .j register. Using
ad without an argument is the same as ‘.ad \n[.j]’; unless filling is
disabled, GNU troff resumes adjusting lines in the same way it did
before adjustment was disabled by invocation of the na request.

The adjustment mode and enablement status are encoded in the read-
only register .j. These parameters are associated with the environment
(see Section 5.31 [Environments], page 203).

The value of .j for any adjustment mode is an implementation detail and
should not be relied upon as a programmer’s interface. Do not write logic
to interpret or perform arithmetic on it.
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.ll 48n

.de AD

. br

. ad \\$1

..

.de NA

. br

. na

..
left
.AD r
.nr ad \n(.j
right
.AD c
center
.NA
left
.AD
center
.AD \n(ad
right

⇒ left
⇒ right
⇒ center
⇒ left
⇒ center
⇒ right

[Request].na
Disable output line adjustment. This produces the same output as left-
alignment, but the value of the adjustment mode register .j is altered
differently. The adjustment mode and enablement status are associated
with the environment (see Section 5.31 [Environments], page 203).

[Request].brp
[Escape sequence]\p

Break, adjusting the line per the current adjustment mode. \p schedules
a break with adjustment at the next word boundary. The escape sequence
is itself neither a break nor a space of any kind; it can thus be placed in
the middle of a word to cause a break at the end of that word.

Breaking with immediate adjustment can produce ugly results since GNU
troff doesn’t have a sophisticated paragraph-building algorithm, as TEX
has, for example. Instead, GNU troff fills and adjusts a paragraph line
by line.
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.ll 4.5i
This is an uninteresting sentence.
This is an uninteresting sentence.\p
This is an uninteresting sentence.

is formatted as follows.

This is an uninteresting sentence. This is
an uninteresting sentence.
This is an uninteresting sentence.

To clearly present the next couple of requests, we must introduce the con-
cept of “productive” input lines. A productive input line is one that directly
produces formatted output. Text lines produce output,36 as do control lines
containing requests like tl or escape sequences like \D. Macro calls are not
directly productive, and thus not counted, but their interpolated contents
can be. Empty requests, and requests and escape sequences that define reg-
isters or strings or alter the formatting environment (as with changes to the
size, face, height, slant, or color of the type) are not productive. We will also
preview the output line continuation escape sequence, \c, which “connects”
two input lines that would otherwise be counted separately.37

.de hello
Hello, world!
..
.ce \" center output of next productive input line
.
.nr junk-reg 1
.ft I
Chorus: \c
.ft
.hello
Went the day well?
⇒ Chorus: Hello, world!
⇒ Went the day well?

[Request].ce [n]
[Register]\n[.ce]

Break (unless the no-break control character is used), center the output
of the next n productive input lines with respect to the line length and
indentation without filling, then break again regardless of the invoking
control character. If the argument is not positive, centering is disabled.
Omitting the argument implies an n of ‘1’. The count of lines remaining
to be centered is stored in the read-only register .ce and is associated
with the environment (see Section 5.31 [Environments], page 203).

While the ‘.ad c’ request also centers text, it fills the text as well.

36 unless diverted; see Section 5.29 [Diversions], page 196
37 See Section 5.16 [Line Continuation], page 125.
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.de FR
This is a small text fragment that shows the differences
between the `.ce' and the `.ad c' requests.
..
.ll 4i
.ce 1000
.FR
.ce 0

.ad c

.FR
⇒ This is a small text fragment that shows
⇒ the differences
⇒ between the ‘.ce’ and the ‘.ad c’ requests.
⇒
⇒ This is a small text fragment that shows
⇒ the differences between the ‘.ce’ and
⇒ the ‘.ad c’ requests.

The previous example illustrates a common idiom of turning centering on
for a quantity of lines far in excess of what is required, and off again after
the text to be centered. This technique relieves humans of counting lines
for requests that take a count of input lines as an argument.

[Request].rj [n]
[Register]\n[.rj]

Break (unless the no-break control character is used), align the output
of the next n productive input lines to the right margin without filling,
then break again regardless of the control character. If the argument is
not positive, right-alignment is disabled. Omitting the argument implies
an n of ‘1’. The count of lines remaining to be right-aligned is stored in
the read-only register .rj and is associated with the environment (see
Section 5.31 [Environments], page 203).

.ll 49n

.rj 3
At first I hoped that such a technically unsound
project would collapse but I soon realized it was
doomed to success. \[em] C. A. R. Hoare

⇒ At first I hoped that such a technically unsound
⇒ project would collapse but I soon realized it was
⇒ doomed to success. -- C. A. R. Hoare
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[Request].ss word-space-size [additional-sentence-space-size]
[Register]\n[.ss]
[Register]\n[.sss]

Set the sizes of spaces between words and sentences38 in twelfths of font’s
space width (typically one-fourth to one-third em for Western scripts).
The default for both parameters is 12. Negative values are erroneous.
The first argument is a minimum; if an output line undergoes adjustment,
such spaces may increase in width. The optional second argument sets
the amount of additional space separating sentences on the same output
line. If omitted, this amount is set to word-space-size. The request is
ignored if there are no parameters.

Additional inter-sentence space is used only if the output line is not full
when the end of a sentence occurs in the input. If a sentence ends at
the end of an input line, then both an inter-word space and an inter-
sentence space are added to the output; if two spaces follow the end of a
sentence in the middle of an input line, then the second space becomes
an inter-sentence space in the output. Additional inter-sentence space is
not adjusted, but the inter-word space that always precedes it may be.
Further input spaces after the second, if present, are adjusted as normal.

The read-only registers .ss and .sss hold the minimal inter-word space
and additional inter-sentence space amounts, respectively. These pa-
rameters are part of the environment (see Section 5.31 [Environments],
page 203), and rounded down to the nearest multiple of 12 on terminals.

The ss request can insert discardable horizontal space; that is, space
that is discarded at a break. For example, some footnote styles collect
the notes into a single paragraph with large gaps between each note.

.ll 48n
1.\~J. Fict. Ch. Soc. 6 (2020), 3\[en]14.
.ss 12 48 \" applies to next sentence ending
Reprints no longer available through FCS.
.ss 12 \" go back to normal
2.\~Better known for other work.

⇒ 1. J. Fict. Ch. Soc. 6 (2020), 3-14. Reprints
⇒ no longer available through FCS. 2. Better
⇒ known for other work.

If undiscardable space is required, use the \h escape sequence.

5.10 Manipulating Hyphenation
When filling, GNU troff hyphenates words as needed at user-specified and
automatically determined hyphenation points. The machine-driven determi-
nation of hyphenation points in words requires algorithms and data, and is

38 Recall Section 5.1.1 [Filling], page 63, and Section 5.1.2 [Sentences], page 64, for the
definitions of word and sentence boundaries, respectively.
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susceptible to conventions and preferences. Before tackling such automatic
hyphenation, let us consider how hyphenation points can be set explicitly.

Explicitly hyphenated words such as “mother-in-law” are eligible for
breaking after each of their hyphens. Relatively few words in a language
offer such obvious break points, however, and automatic detection of syl-
labic (or phonetic) boundaries for hyphenation is not perfect,39 particularly
for unusual words found in technical literature. We can instruct GNU troff
how to hyphenate specific words if the need arises.

[Request].hw word . . .
Define each hyphenation exception word with each hyphen ‘-’ in the word
indicating a hyphenation point. For example, the request

.hw in-sa-lub-rious alpha

marks potential hyphenation points in “insalubrious”, and prevents “al-
pha” from being hyphenated at all.

Besides the space character, any character whose hyphenation code is
zero can be used to separate the arguments of hw (see the hcode request
below). In addition, this request can be used more than once.

Hyphenation points specified with hw are not subject to the within-word
placement restrictions imposed by the hy request (see below).

Hyphenation exceptions specified with the hw request are associated with
the hyphenation language (see the hla request below) and environment
(see Section 5.31 [Environments], page 203); invoking the hw request in
the absence of a hyphenation language is an error.

The request is ignored if there are no parameters.

These are known as hyphenation exceptions in the expectation that most
users will avail themselves of automatic hyphenation; these exceptions over-
ride any rules that would normally apply to a word matching a hyphenation
exception defined with hw.

Situations also arise when only a specific occurrence of a word needs its
hyphenation altered or suppressed, or when a URL or similar string needs
to be breakable in sensible places without hyphenation.

[Escape sequence]\%
[Escape sequence]\:

To tell GNU troff how to hyphenate words as they occur in input, use the
\% escape sequence; it is the default hyphenation character. Each instance
within a word indicates to GNU troff that the word may be hyphenated
at that point, while prefixing a word with this escape sequence prevents
it from being otherwise hyphenated. This mechanism affects only that
occurrence of the word; to change the hyphenation of a word for the
remainder of input processing, use the hw request.

39 Whether a perfect algorithm for this application is even possible is an unsolved problem
in computer science: https://tug.org/docs/liang/liang-thesis.pdf.

https://tug.org/docs/liang/liang-thesis.pdf
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GNU troff regards the escape sequences \X and \Y as starting a
word; that is, the \% escape sequence in, say, ‘\X'...'\%foobar’ or
‘\Y'...'\%foobar’ no longer prevents hyphenation of ‘foobar’ but in-
serts a hyphenation point just prior to it; most likely this isn’t what you
want. See Section 5.34 [Postprocessor Access], page 211.

\: inserts a non-printing break point; that is, a word can break there,
but the soft hyphen glyph (see below) is not written to the output if it
does. This escape sequence is an input word boundary, so the remainder
of the word is subject to hyphenation as normal.

You can combine \: and \% to control breaking of a file name or URL, or
to permit hyphenation only after certain explicit hyphens within a word.

The \%Lethbridge-Stewart-\:\%Sackville-Baggins divorce
was, in retrospect, inevitable once the contents of
\%/var/log/\:\%httpd/\:\%access_log on the family web
server came to light, revealing visitors from Hogwarts.

[Request].hc [char]
Change the hyphenation character to char. This character then works
as the \% escape sequence normally does, and thus no longer appears in
the output.40 Without an argument, hc resets the hyphenation character
to \% (the default). The hyphenation character is associated with the
environment (see Section 5.31 [Environments], page 203).

[Request].shc [c]
Set the soft hyphen character, inserted when a word is hyphenated au-
tomatically or at a hyphenation character, to the ordinary or special
character c.41 If the argument is omitted, the soft hyphen character is
set to the default, \[hy]. If no glyph for c exists in the font in use at a
potential hyphenation point, then the line is not broken there. Neither
character definitions (specified with the char and similar requests) nor
translations (specified with the tr request) are applied to c.

Several requests influence automatic hyphenation. Because conventions
vary, a variety of hyphenation modes is available to the hy request; these
determine whether hyphenation will apply to a word prior to breaking a line
at the end of a page (more or less; see below for details), and at which po-
sitions within that word automatically determined hyphenation points are
permissible. The places within a word that are eligible for hyphenation
are determined by language-specific data and lettercase relationships. Fur-
thermore, hyphenation of a word might be suppressed due to a limit on
consecutive hyphenated lines (hlm), a minimum line length threshold (hym),
or because the line can instead be adjusted with additional inter-word space
(hys).

40 \% itself stops marking hyphenation points but still produces no output glyph.
41 “Soft” because it appears in output only where a hyphenation break is performed; a

“hard” hyphen, as in “long-term”, always appears.
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[Request].hy [mode]
[Register]\n[.hy]

Set automatic hyphenation mode to mode, an integer encoding conditions
for hyphenation; if omitted, ‘1’ is implied. The hyphenation mode is avail-
able in the read-only register ‘.hy’; it is associated with the environment
(see Section 5.31 [Environments], page 203). The default hyphenation
mode depends on the localization file loaded when GNU troff starts up;
see the hpf request below.

Typesetting practice generally does not avail itself of every opportunity
for hyphenation, but the details differ by language and site mandates.
The hyphenation modes of AT&T troff were implemented with English-
language publishing practices of the 1970s in mind, not a scrupulous
enumeration of conceivable parameters. GNU troff extends those modes
such that finer-grained control is possible, favoring compatibility with
older implementations over a more intuitive arrangement. The means
of hyphenation mode control is a set of numbers that can be added up
to encode the behavior sought.42 The entries in the following table are
termed values; the sum of the desired values is the mode.

0 disables hyphenation.

1 enables hyphenation except after the first and before the last
character of a word.

The remaining values “imply” 1; that is, they enable hyphenation under
the same conditions as ‘.hy 1’, and then apply or lift restrictions relative
to that basis.

2 disables hyphenation of the last word on a page,43 even for
explicitly hyphenated words.

4 disables hyphenation before the last two characters of a word.

8 disables hyphenation after the first two characters of a word.

16 enables hyphenation before the last character of a word.

32 enables hyphenation after the first character of a word.

Apart from value 2, restrictions imposed by the hyphenation mode are
not respected for words whose hyphenations have been specified with the
hyphenation character (‘\%’ by default) or the hw request.

Nonzero values in the previous table are additive. For example, mode 12
causes GNU troff to hyphenate neither the last two nor the first two

42 The mode is a vector of Booleans encoded as an integer. To a programmer, this fact is
easily deduced from the exclusive use of powers of two for the configuration parameters;
they are computationally easy to “mask off” and compare to zero. To almost everyone
else, the arrangement seems recondite and unfriendly.

43 Hyphenation is prevented if the next page location trap is closer to the vertical drawing
position than the next text baseline would be. See Section 5.28.1.1 [Page Location
Traps], page 186.
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characters of a word. Some values cannot be used together because they
contradict; for instance, values 4 and 16, and values 8 and 32. As noted,
it is superfluous to add 1 to any non-zero even mode.

The automatic placement of hyphens in words is determined by pattern
files, which are derived from TEX and available for several languages.
The number of characters at the beginning of a word after which the
first hyphenation point should be inserted is determined by the patterns
themselves; it can’t be reduced further without introducing additional,
invalid hyphenation points (unfortunately, this information is not part of
a pattern file—you have to know it in advance). The same is true for the
number of characters at the end of a word before the last hyphenation
point should be inserted. For example, you can supply the following input
to ‘echo $(nroff)’.

.ll 1

.hy 48
splitting

You will get

s- plit- t- in- g

instead of the correct ‘split- ting’. English patterns as distributed with
GNU troff need two characters at the beginning and three characters at
the end; this means that value 4 of hy is mandatory. Value 8 is possible
as an additional restriction, but values 16 and 32 should be avoided, as
should mode 1. Modes 4 and 6 are typical.

A table of left and right minimum character counts for hyphenation as
needed by the patterns distributed with GNU troff follows; see the
groff tmac(5) man page for more information on GNU troff’s language
macro files.

language pattern name left min right min
Czech cs 2 2
English en 2 3
French fr 2 3
German traditional det 2 2
German reformed den 2 2
Italian it 2 2
Swedish sv 1 2

Hyphenation exceptions within pattern files (i.e., the words within a TEX
\hyphenation group) obey the hyphenation restrictions given by hy.

[Request].nh
Disable automatic hyphenation; i.e., set the hyphenation mode to 0 (see
above). The hyphenation mode of the last call to hy is not remembered.



110 The GNU Troff Manual

[Request].hpf pattern-file
[Request].hpfa pattern-file
[Request].hpfcode a b [c d] . . .

Read hyphenation patterns from pattern-file, which is sought in the same
way that macro files are with the mso request or the -mname command-
line option to groff. The pattern-file should have the same format as
(simple) TEX pattern files. More specifically, the following scanning rules
are implemented.

• A percent sign starts a comment (up to the end of the line) even if
preceded by a backslash.

• “Digraphs” like \$ are not supported.

• ^^xx (where each x is 0–9 or a–f) and ^^c (character c in the code
point range 0–127 decimal) are recognized; other uses of ^ cause an
error.

• No macro expansion is performed.

• hpf checks for the expression \patterns{...} (possibly with white-
space before or after the braces). Everything between the braces
is taken as hyphenation patterns. Consequently, { and } are not
allowed in patterns.

• Similarly, \hyphenation{...} gives a list of hyphenation exceptions.

• \endinput is recognized also.

• For backward compatibility, if \patterns is missing, the whole file is
treated as a list of hyphenation patterns (except that the % character
is recognized as the start of a comment).

The hpfa request appends a file of patterns to the current list.

The hpfcode request defines mapping values for character codes in pat-
tern files. It is an older mechanism no longer used by GNU troff’s own
macro files; for its successor, see hcode below. hpf or hpfa apply the
mapping after reading the patterns but before replacing or appending to
the active list of patterns. Its arguments are pairs of character codes—
integers from 0 to 255. The request maps character code a to code b,
code c to code d, and so on. Character codes that would otherwise be
invalid in GNU troff can be used. By default, every code maps to itself
except those for letters ‘A’ to ‘Z’, which map to those for ‘a’ to ‘z’.

The set of hyphenation patterns is associated with the language set by
the hla request (see below). The hpf request is usually invoked by a
localization file loaded by the troffrc file.44

A second call to hpf (for the same language) replaces the hyphenation
patterns with the new ones. Invoking hpf or hpfa causes an error if there
is no hyphenation language. If no hpf request is specified (either in the
document, in a file loaded at startup, or in a macro package), GNU troff
won’t automatically hyphenate at all.

44 For more on localization, see the groff tmac(5) man page.
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[Request].hcode c1 code1 [c2 code2] . . .
Set the hyphenation code of character c1 to code1, that of c2 to code2,
and so on. A hyphenation code must be an ordinary character (not a
special character escape sequence) other than a digit or a space. The
request is ignored if given no arguments.

For hyphenation to work, hyphenation codes must be set up. At startup,
GNU troff assigns hyphenation codes to the letters ‘a’–‘z’ (mapped to
themselves), to the letters ‘A’–‘Z’ (mapped to ‘a’–‘z’), and zero to all
other characters. Normally, hyphenation patterns contain only lowercase
letters which should be applied regardless of case. In other words, they
assume that the words ‘FOO’ and ‘Foo’ should be hyphenated exactly
as ‘foo’ is. The hcode request extends this principle to letters outside
the Unicode basic Latin alphabet; without it, words containing such let-
ters won’t be hyphenated properly even if the corresponding hyphenation
patterns contain them.

For example, the following hcode requests are necessary to assign hy-
phenation codes to the letters ‘ÄäÖöÜüß’, needed for German.

.hcode ä ä Ä ä

.hcode ö ö Ö ö

.hcode ü ü Ü ü

.hcode ß ß

Without these assignments, GNU troff treats the German word
‘Kindergärten’ (the plural form of ‘kindergarten’) as two words ‘kinderg’
and ‘rten’ because the hyphenation code of the umlaut a is zero by
default, just like a space. There is a German hyphenation pattern that
covers ‘kinder’, so GNU troff finds the hyphenation ‘kin-der’. The
other two hyphenation points (‘kin-der-gär-ten’) are missed.

[Request].hla lang
[Register]\n[.hla]

Set the hyphenation language to lang. Hyphenation exceptions specified
with the hw request and hyphenation patterns and exceptions specified
with the hpf and hpfa requests are associated with the hyphenation lan-
guage. The hla request is usually invoked by a localization file, which
is turn loaded by the troffrc or troffrc-end file; see the hpf request
above.

The hyphenation language is available in the read-only string-valued reg-
ister ‘.hla’; it is associated with the environment (see Section 5.31 [En-
vironments], page 203).

[Request].hlm [n]
[Register]\n[.hlm]
[Register]\n[.hlc]

Set the maximum quantity of consecutive hyphenated lines to n. If n is
negative, there is no maximum. If omitted, n is −1. This value is associ-
ated with the environment (see Section 5.31 [Environments], page 203).
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Only lines output from a given environment count toward the maxi-
mum associated with that environment. Hyphens resulting from \% are
counted; explicit hyphens are not.

The .hlm read-only register stores this maximum. The count of immedi-
ately preceding consecutive hyphenated lines is available in the read-only
register .hlc.

[Request].hym [length]
[Register]\n[.hym]

Set the (right) hyphenation margin to length. If the adjustment mode is
not ‘b’ or ‘n’, the line is not hyphenated if it is shorter than length. With-
out an argument, the hyphenation margin is reset to its default value, 0.
The default scaling unit is ‘m’. The hyphenation margin is associated with
the environment (see Section 5.31 [Environments], page 203).

A negative argument resets the hyphenation margin to zero, emitting a
warning in category ‘range’.

The hyphenation margin is available in the .hym read-only register.

[Request].hys [hyphenation-space]
[Register]\n[.hys]

Suppress hyphenation of the line in adjustment modes ‘b’ or ‘n’ if it can
be justified by adding no more than hyphenation-space extra space to
each inter-word space. Without an argument, the hyphenation space
adjustment threshold is set to its default value, 0. The default scaling
unit is ‘m’. The hyphenation space adjustment threshold is associated
with the environment (see Section 5.31 [Environments], page 203).

A negative argument resets the hyphenation space adjustment threshold
to zero, emitting a warning in category ‘range’.

The hyphenation space adjustment threshold is available in the .hys read-
only register.

5.11 Manipulating Spacing
A break causes the formatter to update the vertical drawing position at
which the new text baseline is aligned. You can alter this location.

[Request].sp [distance]
Break and move the next text baseline down by distance, or until spring-
ing a page location trap.45 If invoked with the no-break control character,
sp moves the pending output line’s text baseline by distance. A negative
distance will not reduce the position of the text baseline below zero. In-
side a diversion, any distance argument is ignored. The default scaling
unit is ‘v’. If distance is not specified, ‘1v’ is assumed.

45 See Section 5.28.1.1 [Page Location Traps], page 186.
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.pl 5v \" Set page length to 5 vees.

.de xx
\-\-\-
. br
..
.wh 0 xx \" Set a trap at the top of the page.
foo on page \n%
.sp 2v
bar on page \n%
.sp 50v \" This will cause a page break.
baz on page \n%
.pl \n(nlu \" Truncate page to current position.

⇒ ---
⇒ foo on page 1
⇒
⇒
⇒ bar on page 1
⇒ ---
⇒ baz on page 2

You might use the following macros to set the baseline of the next output
text at a given distance from the top or the bottom of the page. We
subtract one line height (\n[.v]) because the | operator moves to one
vee below the page top (recall Section 5.4 [Numeric Expressions], page 77).

.de y-from-top-down

. sp |\\$1-\\n[.v]u

..

.

.de y-from-bot-up

. sp |\\n[.p]u-\\$1-\\n[.v]u

..

A call to ‘.y-from-bot-up 10c’ means that the next text baseline will be
10 cm from the bottom edge of the paper.

[Request].ls [count]
[Register]\n[.L]

Set the line spacing; add count−1 blank lines after each line of text. With
no argument, GNU troff uses the previous value before the last ls call.
The default is 1.

The read-only register .L contains the current line spacing; it is associated
with the environment (see Section 5.31 [Environments], page 203).

The ls request is a coarse mechanism. See Section 5.20.1 [Changing the
Type Size], page 150, for the requests vs and pvs as alternatives to ls.
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[Escape sequence]\x'spacing'
[Register]\n[.a]

Sometimes, an output line requires additional vertical spacing, for in-
stance to allow room for a tall construct like an inline equation with
exponents or subscripts (particularly if they are iterated). The \x escape
sequence takes a delimited measurement (like ‘\x'3p'’) to increase the
vertical spacing of the pending output line. The default scaling unit is ‘v’.
If the measurement is positive, extra vertical space is inserted below the
current line; a negative measurement adds space above. If \x is applied
to the pending output line multiple times, the maxima of the positive and
negative adjustments are separately applied. The delimiter need not be
a neutral apostrophe; see Section 5.6.5 [Delimiters], page 89.

The .a read-only register contains the extra vertical spacing after the text
baseline of the most recently emitted output line. (In other words, it is the
largest positive argument to \x encountered on that line.) This quantity
is exposed via a register because if an output line requires this “extra
post-vertical line spacing”, and the subsequent output line requires “extra
pre-vertical line spacing” (a negative argument to \x), then applying both
can lead to excessive spacing between the output lines. Text that is piling
high on line n might not require (as much) extra pre-vertical line spacing
if line n−1 carries extra post-vertical line spacing.

Use of \x can be necessary in combination with the bracket-building es-
cape sequence \b,46 as the following example shows.

.nf
This is a test of \[rs]b (1).
This is a test of \[rs]b (2).
This is a test of \b'xyz'\x'-1m'\x'1m' (3).
This is a test of \[rs]b (4).
This is a test of \[rs]b (5).

⇒ This is a test of \b (1).
⇒ This is a test of \b (2).
⇒ x
⇒ This is a test of y (3).
⇒ z
⇒ This is a test of \b (4).
⇒ This is a test of \b (5).

Without \x, the backslashes on the lines marked ‘(2)’ and ‘(4)’ would be
overprinted.

46 See Section 5.26 [Drawing Geometric Objects], page 181.
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[Request].ns
[Request].rs
[Register]\n[.ns]

Enable no-space mode. Vertical spacing, whether by sp requests or blank
input lines, is disabled. The bp request to advance to the next page is
also disabled, unless it is accompanied by a page number (see Section 5.18
[Page Control], page 128). No-space mode ends automatically when text47

is formatted for output48 or the rs request is invoked, which ends no-space
mode. The read-only register .ns interpolates a Boolean value indicating
the enablement of no-space mode.

A paragraphing macro might ordinarily insert vertical space to separate
paragraphs. A section heading macro could invoke ns to suppress this
spacing for the first paragraph in a section.

5.12 Tabs and Fields
A tab character (ISO code point 9, EBCDIC code point 5) causes a horizontal
movement to the next tab stop, if any.

[Escape sequence]\t
Interpolate a tab in copy mode; see Section 5.24.2 [Copy Mode], page 173.

[Request].ta [[n1 n2 . . . nn ]T r1 r2 . . . rn]
[Register]\n[.tabs]

Change tab stop positions. This request takes a series of tab specifiers
as arguments (optionally divided into two groups with the letter ‘T’) that
indicate where each tab stop is to be, overriding any previous settings.
The default scaling unit is ‘m’. Invoking ta without an argument removes
all tab stops. GNU troff’s startup value is ‘T 0.5i’.

Tab stops can be specified absolutely—as distances from the left margin.
The following example sets six tab stops, one every inch.

.ta 1i 2i 3i 4i 5i 6i

Tab stops can also be specified using a leading ‘+’, which means that the
specified tab stop is set relative to the previous tab stop. For example,
the following is equivalent to the previous example.

.ta 1i +1i +1i +1i +1i +1i

GNU troff supports an extended syntax to specify repeating tab stops.
These stops appear after a ‘T’ argument. Their values are always taken as
distances relative to the previous tab stop. This is the idiomatic way to
specify tab stops at equal intervals in groff. The following is, yet again,
the same as the previous examples. It does more, in fact, since it defines
an infinite number of tab stops at one-inch intervals.

.ta T 1i

47 or geometric objects; see Section 5.26 [Drawing Geometric Objects], page 181
48 to the top-level diversion; see Section 5.29 [Diversions], page 196
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Now we are ready to interpret the full syntax given above. The ta request
sets tabs at positions n1, n2, . . . , nn, then at nn+r1, nn+r2, . . . , nn+rn,
then at nn+rn+r1, nn+rn+r2, . . . , nn+rn+rn, and so on.

For example, ‘4c +6c T 3c 5c 2c’ is equivalent to ‘4c 10c 13c 18c 20c
23c 28c 30c ...’.

Text written to a tab column (i.e., between two tab stops, or between a
tab stop and an output line boundary) may be aligned to the right or left,
or centered in the column. This alignment is determined by appending
‘R’, ‘L’, or ‘C’ to the tab specifier. The default is ‘L’.

.ta 1i 2iC 3iR

The beginning of an output line is not a tab stop; the text that begins
an output line is placed according to the configured alignment and inden-
tation; see Section 5.9 [Manipulating Filling and Adjustment], page 99,
and Section 5.15 [Line Layout], page 122.

A tab stop is converted into a non-breakable horizontal movement that
cannot be adjusted.

.ll 2i

.ds foo a\tb\tc

.ta T 1i
\*[foo]

error warning: cannot break line
⇒ a b c

The above creates a single output line that is a bit longer than two inches
(we use a string to show exactly where the tab stops are). Now consider
the following.

.ll 2i

.ds bar a\tb c\td

.ta T 1i
\*[bar]

error warning: cannot adjust line
⇒ a b
⇒ c d

GNU troff first converts the line’s tab stops into unbreakable horizontal
movements, then breaks after ‘b’. This usually isn’t what you want.

Superfluous tab characters—those that do not correspond to a tab stop—
are ignored except for the first, which delimits the characters belonging
to the last tab stop for right-alignment or centering.
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.ds Z foo\tbar\tbaz

.ds ZZ foo\tbar\tbazqux

.ds ZZZ foo\tbar\tbaz\tqux

.ta 2i 4iR
\*[Z]
.br
\*[ZZ]
.br
\*[ZZZ]
.br

⇒ foo bar baz
⇒ foo bar bazqux
⇒ foo bar bazqux

The first line right-aligns “baz” within the second tab stop. The second
line right-aligns “bazqux” within it. The third line right-aligns only “baz”
because of the additional tab character, which marks the end of the text
occupying the last tab stop defined.

Tab stops are associated with the environment (see Section 5.31 [Envi-
ronments], page 203).

The read-only register .tabs contains a string representation of the cur-
rent tab settings suitable for use as an argument to the ta request.49

.ds tab-string \n[.tabs]
\*[tab-string]

⇒ T120u

[Request].tc [c]
Set the tab repetition character to the ordinary or special character c;
normally, no glyph is written when moving to a tab stop (and some
output devices may output space characters to achieve this motion). A
tab repetition character causes the formatter to write as many instances
of c as are necessary to occupy the interval from the horizontal drawing
position to the next tab stop. With no argument, GNU troff reverts to
the default behavior. The tab repetition character is associated with the
environment (see Section 5.31 [Environments], page 203). Only a single
character of c is recognized; any excess is ignored.

[Request].linetabs n
[Register]\n[.linetabs]

If n is missing or non-zero, activate line-tabs; deactivate it otherwise (the
default). Active line-tabs cause GNU troff to compute tab distances
relative to the start of the output line instead of the input line.

49 Plan 9 troff uses the register .S for this purpose.
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.de Tabs

. ds x a\t\c

. ds y b\t\c

. ds z c

. ta 1i 3i
\\*x
\\*y
\\*z
..
.Tabs
.br
.linetabs
.Tabs

⇒ a b c
⇒ a b c

Line-tabs activation is associated with the environment (see Section 5.31
[Environments], page 203). The read-only register .linetabs interpo-
lates 1 if line-tabs are active, and 0 otherwise.

5.12.1 Leaders

Sometimes it is desirable to fill a tab stop with a given glyph, but also use tab
stops normally on the same output line. An example is a table of contents
entry that uses dots to bridge the entry name with its page number, which
is itself aligned between tab stops. The roff language provides leaders for
this purpose.50

A leader character (ISO and EBCDIC code point 1, also known as SOH or
“start of heading”), behaves similarly to a tab character: it moves to the next
tab stop. The difference is that for this movement, the default fill character
is a period ‘.’.

[Escape sequence]\a
Interpolate a leader in copy mode; see Section 5.24.2 [Copy Mode],
page 173.

[Request].lc [c]
Set the leader repetition character to the ordinary or special character
c. Recall Section 5.1.6 [Tabs and Leaders], page 67: when encountering
a leader character in the input, the formatter writes as many dots ‘.’ as
are necessary until reaching the next tab stop; this is the leader definition
character. Omitting c unsets the leader character. With no argument,
GNU troff treats leaders the same as tabs. The leader repetition charac-
ter is associated with the environment (see Section 5.31 [Environments],
page 203). Only a single c is recognized; any excess is ignored.

50 This is pronounced to rhyme with “feeder”, and refers to how the glyphs “lead” the
eye across the page to the corresponding page number or other datum.
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A table of contents, for example, may define tab stops after a section
number, a title, and a gap to be filled with leader dots. The page number
follows the leader, after a right-aligned final tab stop wide enough to house
the largest page number occurring in the document.

.ds entry1 19.\tThe Prophet\a\t98

.ds entry2 20.\tAll Astir\a\t101

.ta .5i 4.5i +.5iR

.nf
\*[entry1]
\*[entry2]

⇒ 19. The Prophet............................. 98
⇒ 20. All Astir............................... 101

5.12.2 Fields

Fields are a more general way of laying out tabular data. A field is defined as
the data between a pair of delimiting characters. It contains substrings that
are separated by padding characters. The width of a field is the distance
on the input line from the position where the field starts to the next tab
stop. A padding character inserts an adjustable space similar to TEX’s \hss
command (thus it can even be negative) to make the sum of all substring
lengths plus the adjustable space equal to the field width. If more than
one padding character is inserted, the available space is evenly distributed
among them.

[Request].fc [delim-char [padding-char]]
Define a delimiting and a padding character for fields. If the latter is
missing, the padding character defaults to a space character. If there is
no argument at all, the field mechanism is disabled (which is the default).
In contrast to, e.g., the tab repetition character, delimiting and padding
characters are not associated with the environment (see Section 5.31 [En-
vironments], page 203).

.fc # ^

.ta T 3i
#foo^bar^smurf#
.br
#foo^^bar^smurf#

⇒ foo bar smurf
⇒ foo bar smurf

5.13 Character Translations
A translation is a mapping of an input character to an output glyph. The
mapping occurs at output time, i.e., the input character gets assigned the
metric information of the mapped output character right before input tokens
are converted to nodes (see Section 5.36 [Gtroff Internals], page 216, for more
on this process).
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[Request].tr abcd. . .
[Request].trin abcd. . .

Translate character a to glyph b, character c to glyph d, and so on.
If there is an odd number of characters in the argument, the last one
is translated to a fixed-width space (the same one obtained by the \SP
escape sequence).

The trin request is identical to tr, but when you unformat a diversion
with asciify it ignores the translation. See Section 5.29 [Diversions],
page 196, for details about the asciify request.

Some notes:

• Special characters (\(xx, \[xxx], \C'xxx', \', \`, \-, \_), glyphs
defined with the char request, and numbered glyphs (\N'xxx') can
be translated also.

• The \e escape can be translated also.

• Characters can be mapped onto the \% and \~ escape sequences (but
\% and \~ can’t be mapped onto another glyph).

• The following characters can’t be translated: space (with one ex-
ception, see below), backspace, newline, leader (and \a), tab (and
\t).

• Translations are not considered for finding the soft hyphen character
set with the shc request.

• The pair ‘c\&’ (an arbitrary character c followed by the dummy
character) maps this character to “nothing”.

.tr a\&
foo bar

⇒ foo br

Even the space character can be mapped to the dummy character.

.tr aa \&
foo bar

⇒ foobar

As shown in the example, the space character can’t be the first char-
acter/glyph pair as an argument of tr. Additionally, it is not pos-
sible to map the space character to any other glyph; requests like
‘.tr aa x’ undo ‘.tr aa \&’ instead.

If justification is active, lines are justified in spite of the ‘empty’ space
character (but there is no minimal distance, i.e., the space character,
between words).

• After an output glyph has been constructed (this happens at the mo-
ment immediately before the glyph is appended to an output glyph
list, either by direct output, in a macro, diversion, or string), it is no
longer affected by tr.



Chapter 5: GNU troff Reference 121

• Translating character to glyphs where one of them or both are unde-
fined is possible also; tr does not check whether the elements of its
argument exist.

See Section 5.36 [Gtroff Internals], page 216.

• Without an argument, the tr request is ignored.

[Request].trnt abcd. . .
trnt is the same as the tr request except that the translations do not
apply to text that is transparently throughput into a diversion with \!.
See Section 5.29 [Diversions], page 196.

For example,

.tr ab

.di x
\!.tm a
.di
.x

prints ‘b’ to the standard error stream; if trnt is used instead of tr it
prints ‘a’.

5.14 troff and nroff Modes
Historically, nroff and troff were two separate programs; the former for
terminal output, the latter for typesetters. GNU troff merges both func-
tions into one executable51 that sends its output to a device driver (grotty
for terminal devices, grops for PostScript, and so on) which interprets this
intermediate output format. When discussing AT&T troff, it makes sense
to talk about nroff mode and troff mode since the differences are hard-
coded. GNU troff takes information from device and font description files
without handling requests specially if a terminal output device is used, so
such a strong distinction is unnecessary.

Usually, a macro package can be used with all output devices. Neverthe-
less, it is sometimes necessary to make a distinction between terminal and
non-terminal devices: GNU troff provides two built-in conditions ‘n’ and
‘t’ for the if, ie, and while requests to decide whether GNU troff shall
behave like nroff or like troff.

[Request].troff
Make the ‘t’ built-in condition true (and the ‘n’ built-in condition false)
for if, ie, and while conditional requests. This is the default if GNU
troff (not groff) is started with the -R switch to avoid loading of the
startup files troffrc and troffrc-end. Without -R, GNU troff stays
in troff mode if the output device is not a terminal (e.g., ‘ps’).

51 A GNU nroff program is available for convenience; it calls GNU troff to perform the
formatting.
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[Request].nroff
Make the ‘n’ built-in condition true (and the ‘t’ built-in condition false)
for if, ie, and while conditional requests. This is the default if GNU
troff uses a terminal output device; the code for switching to nroff
mode is in the file tty.tmac, which is loaded by the startup file troffrc.

See Section 5.23 [Conditionals and Loops], page 160, for more details on
built-in conditions.

5.15 Line Layout
The following drawing shows the dimensions that gtroff uses for placing
a line of output onto the page. They are labeled with the request that
manipulates each dimension.

-->| in |<--
|<-----------ll------------>|

+----+----+----------------------+----+
| : : : |
+----+----+----------------------+----+

-->| po |<--
|<--------paper width---------------->|

These dimensions are:

po Page offset—this is the leftmost position of text on the final
output, defining the left margin.

in Indentation—this is the distance from the left margin where text
is printed.

ll Line length—this is the distance from the left margin to right
margin.

The right margin is not explicitly configured; the combination of page
offset and line length provides the information necessary to derive it.

A simple demonstration:

.ll 3i
This is text without indentation.
The line length has been set to 3\~inches.
.in +.5i
.ll -.5i
Now the left and right margins are both increased.
.in
.ll
Calling .in and .ll without parameters restores
the previous values.
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⇒ This is text without indenta-
⇒ tion. The line length has
⇒ been set to 3 inches.
⇒ Now the left and
⇒ right margins are
⇒ both increased.
⇒ Calling .in and .ll without
⇒ parameters restores the previ-
⇒ ous values.

[Request].po [offset]
[Request].po +offset
[Request].po -offset
[Register]\n[.o]

Set page offset to offset (or increment or decrement its current value by
offset). If invoked without an argument, the page offset is restored to
the value before the previous po request. This request does not cause
a break; the page offset in effect when an output line is broken prevails
(see Section 5.9 [Manipulating Filling and Adjustment], page 99). The
initial value is 1 i and the default scaling unit is ‘m’. On terminal devices,
the page offset is set to zero by a driver-specific macro file, tty.tmac.
The current page offset can be found in the read-only register ‘.o’. This
request is incorrectly documented in the AT&T troff manual as using a
default scaling unit of ‘v’.

.po 3i
\n[.o]

⇒ 720
.po -1i
\n[.o]

⇒ 480
.po
\n[.o]

⇒ 720

[Request].in [indent]
[Request].in +indent
[Request].in -indent
[Register]\n[.i]

Set indentation to indent (or increment or decrement the current value
by indent). This request causes a break. Initially, there is no indentation.

If in is called without an argument, the indentation is reset to the previous
value before the last call to in. The default scaling unit is ‘m’.

If a negative indentation value is specified (which is not allowed), gtroff
emits a warning in category ‘range’ and sets the indentation to zero.

The effect of in is delayed until a partially collected line (if it exists) is
output. A temporary indentation value is reset to zero also.



124 The GNU Troff Manual

The current indentation (as set by in) can be found in the read-only
register ‘.i’. The indentation is associated with the environment (see
Section 5.31 [Environments], page 203).

[Request].ti offset
[Request].ti +offset
[Request].ti -offset
[Register]\n[.in]

Temporarily indent the next output line by offset. If an increment or
decrement value is specified, adjust the temporary indentation relative to
the value set by the in request.

This request causes a break; its value is associated with the environment
(see Section 5.31 [Environments], page 203). The default scaling unit is
‘m’. A call of ti without an argument is ignored.

If the total indentation value is negative (which is not allowed), gtroff
emits a warning in category ‘range’ and sets the temporary indentation
to zero. ‘Total indentation’ is either offset if specified as an absolute
value, or the temporary plus normal indentation, if offset is given as a
relative value.

The effect of ti is delayed until a partially collected line (if it exists) is
output.

The read-only register .in is the indentation that applies to the current
output line.

The difference between .i and .in is that the latter takes into account
whether a partially collected line still uses the old indentation value or a
temporary indentation value is active.

[Request].ll [length]
[Request].ll +length
[Request].ll -length
[Register]\n[.l]
[Register]\n[.ll]

Set the line length to length (or increment or decrement the current value
by length). Initially, the line length is set to 6.5 i. The effect of ll is
delayed until a partially collected line (if it exists) is output. The default
scaling unit is ‘m’.

If ll is called without an argument, the line length is reset to the previous
value before the last call to ll. If a negative line length is specified (which
is not allowed), gtroff emits a warning in category ‘range’ and sets the
line length to zero. The line length is associated with the environment
(see Section 5.31 [Environments], page 203).

The current line length (as set by ll) can be found in the read-only
register ‘.l’. The read-only register .ll is the line length that applies to
the current output line.



Chapter 5: GNU troff Reference 125

Similar to .i and .in, the difference between .l and .ll is that the latter
takes into account whether a partially collected line still uses the old line
length value.

5.16 Line Continuation
When filling is enabled, input and output line breaks generally do not cor-
respond. The roff language therefore distinguishes input and output line
continuation.

[Escape sequence]\RET
\RET (a backslash immediately followed by a newline) suppresses the ef-
fects of that newline in the input. The next input line thus retains the
classification of its predecessor as a control or text line. \RET is useful for
managing line lengths in the input during document maintenance; you
can break an input line in the middle of a request invocation, macro call,
or escape sequence. Input line continuation is invisible to the formatter,
with two exceptions: the | operator recognizes the new input line (see
Section 5.4 [Numeric Expressions], page 77), and the input line counter
register .c is incremented.

.ll 50n

.de I

. ft I

. nop \\$*

. ft

..
Our film class watched
.I The Effect of Gamma Rays on Man-in-the-Moon
Marigolds. \" whoops, the input line wrapped
.br
.I My own opus begins on line \n[.c] \
and ends on line \n[.c].

⇒ Our film class watched The Effect of Gamma Rays on
⇒ Man-in-the-Moon Marigolds.
⇒ My own opus begins on line 11 and ends on line 12.

[Escape sequence]\c
[Register]\n[.int]

\c continues an output line. Nothing after it on the input line is format-
ted. In contrast to \RET, a line after \c remains a new input line, so a
control character is recognized at its beginning. The visual results depend
on whether filling is enabled; see Section 5.9 [Manipulating Filling and
Adjustment], page 99.

• If filling is enabled, a word interrupted with \c is continued with the
text on the next input text line, without an intervening space.
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This is a te\c
st.

⇒ This is a test.

• If filling is disabled, the next input text line after \c is handled as a
continuation of the same input text line.

.nf
This is a \c
test.

⇒ This is a test.

An intervening control line that causes a break overrides \c, flushing out
the pending output line in the usual way.

The .int register contains a positive value if the last output line was
continued with \c; this datum is associated with the environment (see
Section 5.31 [Environments], page 203).52

5.17 Page Layout
The formatter permits configuration of the page length and page number.

[Request].pl [length]
[Request].pl +length
[Request].pl -length
[Register]\n[.p]

Change (increase or decrease) the page length per the numeric expression
length. The default scaling unit is ‘v’. A negative length is valid, but
an uncommon application: it prevents page location traps from being
sprung,53 and each output line is placed on a new page. If length is
invalid, GNU troff emits a warning in category ‘number’. If length is
absent or invalid, ‘11i’ is assumed.

The read-only register ‘.p’ interpolates the current page length.

[Request].pn num
[Request].pn +num
[Request].pn -num
[Register]\n[.pn]

Change (increase or decrease) the page number of the next page per the
numeric expression num. If num is invalid, GNU troff emits a warning
in category ‘number’ and ignores the request. Without an argument, pn
is ignored.

The read-only register .pn interpolates num if set by pn on the current
page, or the current page number plus 1.

52 Historically, the \c escape sequence has proven challenging to characterize. Some
sources say it “connects the next input text” (to the input line on which it appears);
others describe it as “interrupting” text, on the grounds that a text line is interrupted
without breaking, perhaps to inject a request invocation or macro call.

53 See Section 5.28 [Traps], page 186.
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The formatter offers special support for typesetting headers and footers,
collectively termed titles. Titles have an independent line length, and their
placement on the page is not restricted.

[Request].tl 'left'center'right'
Format an output line as a title consisting of left, center, and right, each
aligned accordingly. The delimiter need not be a neutral apostrophe: tl
accepts the same delimiters as most escape sequences; see Section 5.6.5
[Delimiters], page 89. If not used as the delimiter, any page number
character character is replaced with the current page number; the default
is ‘%’; see the the pc request below. Without an argument, tl is ignored.
tl writes the title line immediately, ignoring any partially collected line.

It is not an error to omit delimiters after the first. For example,
‘.tl /Thesis’ is interpreted as ‘.tl /Thesis///’: it sets a title line com-
prising only the left-aligned word ‘Thesis’.

[Request].lt [length]
[Request].lt +length
[Request].lt -length
[Register]\n[.lt]

Change (increase or decrease) the line length used by titles per the nu-
meric expression length. The default scaling unit is ‘m’. If length is
negative, GNU emits a warning in category ‘range’ and treats length as
‘0’. If length is invalid, GNU troff emits a warning in category ‘number’
and ignores the request. The formatter’s default title length is ‘6.5i’.
With no argument, the title length is restored to the previous value. The
title length is is associated with the environment (see Section 5.31 [Envi-
ronments], page 203).

The read-only register ‘.lt’ interpolates the title line length.

[Request].pc [char]
Set the page number character to char. With no argument, the page
number character is disabled. pc does not affect the register %.

The following example exercises title features.

.lt 50n
This is my partially collected
.tl 'Isomers 2023'%'Dextrose Edition'
line.

⇒ Isomers 2023 1 Dextrose Edition
⇒ This is my partially collected line.

We most often see titles used in page header and footer traps. See Sec-
tion 5.28 [Traps], page 186.



128 The GNU Troff Manual

5.18 Page Control
Discretionary page breaks can prevent the unwanted separation of content.
A new page number takes effect during page ejection; see Section 5.28.1.2
[The Implicit Page Trap], page 190.

[Request].bp [page-number]
[Request].bp +page-number
[Request].bp -page-number
[Register]\n[%]

Break the page and change (increase or decrease) the next page number
per the numeric expression page-number. If page-number is invalid, GNU
troff emits a warning in category ‘number’ and ignores the argument.
This request causes a break. A page break advances the vertical drawing
position to the bottom of the page, springing traps. See Section 5.28.1.1
[Page Location Traps], page 186. bp has effect only if invoked within the
top-level diversion.54 This request is incorrectly documented in the AT&T
troff manual as having a default scaling unit of ‘v’.

The register % interpolates the current page number.

.de BP
' bp \" schedule page break once current line is output
..

[Request].ne [space]
Force a page break if insufficient vertical space is available (assert
“needed” space). ne tests the distance to the next page location trap;
see Section 5.28.1.1 [Page Location Traps], page 186, and breaks the page
if that amount is less than space. The default scaling unit is ‘v’. If space
is invalid, GNU troff emits a warning in category ‘number’ and ignores
the argument. If space is not specified, ‘1v’ is assumed.

We can require space for at least the first two output lines of a paragraph,
preventing its first line from being widowed at the page bottom.

.ne 2v
Considering how common illness is,
how tremendous the spiritual change that it brings,
how astonishing,
when the lights of health go down,
the undiscovered countries that are then disclosed,
what wastes and deserts of the soul a slight attack
of influenza brings to view,

This method is reliable only if no output line is pending when ne is
invoked. When macro packages are used, this is often not the case: their
paragraphing macros perform the break. You may need to experiment
with placing the ne after the paragraphing macro, or br and ne before it.

54 See Section 5.29 [Diversions], page 196.
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ne is also useful to force grouping of section headings with their sub-
sequent paragraphs, or tables with their captions and/or explanations.
Macro packages often use ne with diversions to implement keeps and
displays; see Section 5.29 [Diversions], page 196. They may also offer
parameters for widow and orphan management.

[Request].sv [space]
[Request].os

Require vertical space as ne does, but also save it for later output by
the os request. If space is available before the next page location trap,
it is output immediately. Both requests ignore a partially collected line,
taking effect at the next break. sv and os ignore no-space mode (recall
Section 5.11 [Manipulating Spacing], page 112). While the sv request
allows negative values for space, os ignores them. The default scaling
unit is ‘v’. If space is not specified, ‘1v’ is assumed.

[Register]\n[nl]
nl interpolates or sets the vertical drawing position. When the formatter
starts, the first page transition hasn’t happened yet, and nl is negative. If
a header trap has been planted on the page (typically at vertical position
0), you can assign a negative value to nl to spring it if that page has
already started (see Section 5.28.1.1 [Page Location Traps], page 186).

.de HD

. sp

. tl ''Goldbach Solution''

. sp

..

.
First page.
.bp
.wh 0 HD \" plant header trap at top of page
.nr nl (-1)
Second page.

⇒ First page.
⇒
⇒ (blank lines elided)
⇒
⇒ Goldbach Solution
⇒
⇒ (blank lines elided)
⇒
⇒ Second page.

Without resetting nl to a negative value, the trap just planted would be
active beginning with the next page, not the current one.

See Section 5.29 [Diversions], page 196, for a comparison of nl with the
.h and .d registers.
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5.19 Using Fonts
In digital typography, a font is a collection of characters in a specific typeface
that a device can render as glyphs at a desired size.55 A roff formatter can
change typefaces at any point in the text. The basic faces are a set of styles
combining upright and slanted shapes with normal and heavy stroke weights:
‘R’, ‘I’, ‘B’, and ‘BI’—these stand for roman, italic, bold, and bold-italic. For
linguistic text, GNU troff groups typefaces into families containing each
of these styles.56 A text font is thus often a family combined with a style,
but it need not be: consider the ps and pdf devices’ ZCMI (Zapf Chancery
Medium italic)—often, no other style of Zapf Chancery Medium is provided.
On typesetting devices, at least one special font is available, comprising
unstyled glyphs for mathematical operators and other purposes.

Like AT&T troff, GNU troff does not itself load or manipulate a digital
font file;57 instead it works with a font description file that characterizes it,
including its glyph repertoire and the metrics (dimensions) of each glyph.58

This information permits the formatter to accurately place glyphs with re-
spect to each other. Before using a font description, the formatter associates
it with a mounting position, a place in an ordered list of available typefaces.
So that a document need not be strongly coupled to a specific font family,
in GNU troff an output device can associate a style in the abstract sense
with a mounting position. Thus the default family can be combined with a
style dynamically, producing a resolved font name.

Fonts often have trademarked names, and even Free Software fonts can
require renaming upon modification. groff maintains a convention that a
device’s serif font family is given the name ‘T’ (“Times”), its sans-serif fam-
ily ‘H’ (“Helvetica”), and its monospaced family ‘C’ (“Courier”). Historical
inertia has driven groff’s font identifiers to short uppercase abbreviations
of font names, as with ‘TR’, ‘TI’, ‘TB’, ‘TBI’, and a special font ‘S’.

The default family used with abstract styles can be changed at any time;
initially, it is ‘T’. Typically, abstract styles are arranged in the first four
mounting positions in the order shown above. The default mounting posi-
tion, and therefore style, is always ‘1’ (‘R’). By issuing appropriate formatter
instructions, you can override these defaults before your document writes its
first glyph.

Terminal output devices cannot change font families and lack spe-
cial fonts. They support style changes by overstriking, or by altering
ISO 6429/ECMA-48 graphic renditions (character cell attributes).

55 Terminals and some output devices have fonts that render at only one or two sizes. As
examples of the latter, take the groff lj4 device’s Lineprinter, and lbp’s Courier and
Elite faces.

56 Font designers prepare families such that the styles share esthetic properties.
57 Historically, the fonts troffs dealt with were not Free Software or, as with the Graphic

Systems C/A/T, did not even exist in the digital domain.
58 See Section 6.2.2 [Font Description File Format], page 245.
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5.19.1 Selecting Fonts

We use font to refer to any of several means of identifying a font: by mounting
position (‘3’), by abstract style (‘B’), or by its identifier (‘TB’).

[Request].ft [font]
[Escape sequence]\ff
[Escape sequence]\f(fn
[Escape sequence]\f[font]

[Register]\n[.fn]
The ft request selects the typeface font. If the argument is absent or ‘P’,
it selects the previously chosen font. If font is a non-negative integer, it
is interpreted as mounting position; the font mounted there is selected. If
that position refers to an abstract style, it is combined with the default
family (see fam and \F below) to make a resolved font name. If the
mounting position is not a style and no font is mounted there, GNU
troff emits a warning in category ‘font’ and ignores the request.

If font matches a style name, it is combined with the current family to
make a resolved font name. Otherwise, font is assumed to already be a
resolved font name.

The resolved font name is subject to translation (see request ftr below).
Next, the (possibly translated) font name’s mounting position is looked
up; if not mounted, font is sought on the file system as a font description
file and, if located, automatically mounted at the next available position
(see register .fp below). If the font was mounted using an identifier
different from its font description file name (see request fp below), that
file name is then looked up. If a font description file for the resolved font
name is not found, GNU troff emits a warning in category ‘font’ and
ignores the request.

The \f escape sequence is similar, using one-character name (or mounting
position) f, two-character name fn, or a name font of arbitrary length.
‘\f[]’ selects the previous font. The syntax form ‘\fP’ is supported for
backward compatibility, and ‘\f[P]’ for consistency.

eggs, bacon,
.ft I
spam,
.ft
and sausage.
.br
eggs, bacon, \fIspam,\fP and sausage.

⇒ eggs, bacon, spam, and sausage
⇒ eggs, bacon, spam, and sausage

The current and previously selected fonts are properties of the environ-
ment (see Section 5.31 [Environments], page 203).

The read-only string-valued register .fn contains the resolved font name
of the selected font.
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\f doesn’t produce an input token in GNU troff; it thus can be used in
requests that expect a single-character argument. We can assign a font to
a margin character as follows (see Section 5.35 [Miscellaneous], page 212).

.mc \f[I]x\f[]

[Request].ftr f [g ]
Translate font f to font g. Whenever a font named f is referred to in a
\f escape sequence, in the F and S conditional operators, or in the ft,
ul, bd, cs, tkf, special, fspecial, fp, or sty requests, font g is used.
If g is missing or equal to f the translation is undone.

Font translations cannot be chained.

.ftr XXX TR

.ftr XXX YYY

.ft XXX
error warning: can't find font 'XXX'

[Request].fzoom f [zoom]
[Register]\n[.zoom]

Set magnification of font f to factor zoom, which must be a non-negative
integer multiple of 1/1000th. This request is useful to adjust the optical
size of a font in relation to the others. In the example below, font CR is
magnified by 10% (the zoom factor is thus 1.1).

.fam P

.fzoom CR 1100

.ps 12
Palatino and \f[CR]Courier\f[]

A missing or zero value of zoom is the same as a value of 1000, which
means no magnification. f must be a resolved font name, not an abstract
style.

The magnification of a font is completely transparent to GNU troff;
a change of the zoom factor doesn’t cause any effect except that the
dimensions of glyphs, (word) spaces, kerns, etc., of the affected font are
adjusted accordingly.

The zoom factor of the current font is available in the read-only register
‘.zoom’, in multiples of 1/1000th. It returns zero if there is no magnifi-
cation.

5.19.2 Font Families

To accommodate the wide variety of fonts available, GNU troff distin-
guishes font families and font styles. A resolved font name is the catenation
of a font family and a style. Selecting an abstract style causes GNU troff
to combine it with the default font family.

You can thus compose a document using abstract styles exclusively for its
body or running text, selecting a specific family only for titles or examples,
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for instance, and change the default family on the command line (recall
Section 2.1 [Groff Options], page 5).

Fonts for the devices ps, pdf, dvi, lj4, lbp, and the X11 devices support
this mechanism. By default, GNU troff uses the Times family with the four
styles ‘R’, ‘I’, ‘B’, and ‘BI’.

[Request].fam [family ]
[Register]\n[.fam]

[Escape sequence]\Ff
[Escape sequence]\F(fm
[Escape sequence]\F[family]

Set the default font family, used in combination with abstract styles to
construct a resolved font name, to family (one-character name f, two-
character name fm). If no argument is given, GNU troff selects the
previous font family; if there none, is it falls back to the device’s default59

or its own (‘T’).

The \F escape sequence works similarly. In disanalogy to \f, ‘\FP’ makes
‘P’ the default family. Use ‘\F[]’ to select the previous default family.
The default font family is available in the read-only string-valued register
.fam; it is associated with the environment (see Section 5.31 [Environ-
ments], page 203).

spam, \" startup defaults are T (Times) R (roman)
.fam H \" make Helvetica the default family
spam, \" family H + style R = HR
.ft B \" family H + style B = HB
spam,
.ft CR \" Courier roman (default family not changed)
spam,
.ft \" back to Helvetica bold
spam,
.fam T \" make Times the default family
spam, \" family T + style B = TB
.ft AR \" font AR (not a style)
baked beans,
.ft R \" family T + style R = TR
and spam.

\F doesn’t produce an input token in GNU troff. As a consequence, it
can be used in requests like mc (which expects a single character as an
argument) to change the font family on the fly.

.mc \F[P]x\F[]

59 See Section 6.2.1 [DESC File Format], page 242.
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[Request].sty n style
[Register]\n[.sty]

Associate an abstract style style with mounting position n, which must
be a non-negative integer. If the requests cs, bd, tkf, uf, or fspecial
are applied to an abstract style, they are instead applied to the member
of the current family corresponding to that style.

The default family can be set with the -f option (see Section 2.1 [Groff
Options], page 5). The styles command in the DESC file controls which
font positions (if any) are initially associated with abstract styles rather
than fonts.

Caution: The style argument is not validated. Errors may occur later,
when the formatter attempts to construct a resolved font name, or format
a character for output.

.nr BarPos \n[.fp]

.sty \n[.fp] Bar

.fam Foo

.ft \n[BarPos]

.tm .f=\n[.f]
A

error error: no font family named 'Foo' exists
error .f=41
error error: cannot format glyph: no current font

When an abstract style has been selected, the read-only string-valued
register ‘.sty’ interpolates its name; this datum is associated with the
environment (see Section 5.31 [Environments], page 203). Otherwise,
‘.sty’ interpolates nothing.

5.19.3 Font Positions

To support typeface indirection through abstract styles, and for compat-
ibility with AT&T troff, the formatter maintains a list of font positions
at which fonts required by a document are mounted. An output device’s
description file DESC typically configures a set of pre-mounted fonts; see Sec-
tion 6.2 [Device and Font Description Files], page 242. A font need not
be explicitly mounted before it is selected; GNU troff will search GROFF_
FONT_PATH for it by name and mount it at the first free mounting position
on demand.

[Request].fp pos id [font-description-file-name]
[Register]\n[.f]
[Register]\n[.fp]

Mount a font under the name id at mounting position pos, a non-negative
integer. When the formatter starts up, it reads the output device’s de-
scription to mount an initial set of faces, and selects font position 1.
Position 0 is unused by default. Unless the font-description-file-name ar-
gument is given, id should be the name of a font description file stored
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in a directory corresponding to the selected output device. GNU troff
does not traverse directories to locate the font description file.

The optional third argument enables font names to be aliased, which can
be necessary in compatibility mode since AT&T troff syntax affords no
means of identifying fonts with names longer than two characters, like
‘TBI’ or ‘ZCMI’, in a font selection escape sequence. See Section 5.38.2
[Compatibility Mode], page 223. You can also alias fonts on mounting for
convenience or abstraction. (See below regarding the .fp register.)

.fp \n[.fp] SC ZCMI
Send a \f(SChand-written\fP thank-you note.
.fp \n[.fp] Emph TI
.fp \n[.fp] Strong TB
Are \f[Emph]these names\f[] \f[Strong]comfortable\f[]?

‘DESC’, ‘P’, and non-negative integers are not usable as font identifiers.

The position of the currently selected font (or abstract style) is available
in the read-only register ‘.f’. It is associated with the environment (see
Section 5.31 [Environments], page 203).

You can copy the value of .f to another register to save it for later use.

.nr saved-font \n[.f]

. . . text involving many font changes . . .

.ft \n[saved-font]

The index of the next (non-zero) free font position is available in the read-
only register ‘.fp’. Fonts not listed in the DESC file are automatically
mounted at position ‘\n[.fp]’ when selected with the ft request or \f
escape sequence. When mounting a font at a position explicitly with the
fp request, this same practice should be followed, although GNU troff
does not enforce this strictly.

5.19.4 Using Symbols

A glyph is a graphical representation of a character. While a character is an
abstraction of semantic information, a glyph is something that can be seen
on screen or paper. A character has many possible representation forms (for
example, the character ‘A’ can be written in an upright or slanted typeface,
producing distinct glyphs). Sometimes, a sequence of characters map to a
single glyph: this is a ligature—the most common is ‘fi’.

Space characters never become glyphs in GNU troff. If not discarded
(as when trailing on text lines), they are represented by horizontal motions
in the output.

A symbol is simply a named glyph. Within gtroff, all glyph names of
a particular font are defined in its font file. If the user requests a glyph
not available in this font, gtroff looks up an ordered list of special fonts.
By default, the PostScript output device supports the two special fonts ‘SS’
(slanted symbols) and ‘S’ (symbols) (the former is looked up before the
latter). Other output devices use different names for special fonts. Fonts
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mounted with the fonts keyword in the DESC file are globally available. To
install additional special fonts locally (i.e., for a particular font), use the
fspecial request.

Here are the exact rules how gtroff searches a given symbol:

• If the symbol has been defined with the char request, use it. This hides
a symbol with the same name in the current font.

• Check the current font.

• If the symbol has been defined with the fchar request, use it.

• Check whether the current font has a font-specific list of special fonts;
test all fonts in the order of appearance in the last fspecial call if
appropriate.

• If the symbol has been defined with the fschar request for the current
font, use it.

• Check all fonts in the order of appearance in the last special call.

• If the symbol has been defined with the schar request, use it.

• As a last resort, consult all fonts loaded up to now for special fonts and
check them, starting with the lowest font number. This can sometimes
lead to surprising results since the fonts line in the DESC file often con-
tains empty positions, which are filled later on. For example, consider
the following:

fonts 3 0 0 FOO

This mounts font foo at font position 3. We assume that FOO is a special
font, containing glyph foo, and that no font has been loaded yet. The
line

.fspecial BAR BAZ

makes font BAZ special only if font BAR is active. We further assume
that BAZ is really a special font, i.e., the font description file contains
the special keyword, and that it also contains glyph foo with a special
shape fitting to font BAR. After executing fspecial, font BAR is loaded
at font position 1, and BAZ at position 2.

We now switch to a new font XXX, trying to access glyph foo that is
assumed to be missing. There are neither font-specific special fonts
for XXX nor any other fonts made special with the special request, so
gtroff starts the search for special fonts in the list of already mounted
fonts, with increasing font positions. Consequently, it finds BAZ before
FOO even for XXX, which is not the intended behaviour.

See Section 6.2 [Device and Font Description Files], page 242, and Sec-
tion 5.19.6 [Special Fonts], page 144, for more details.

The groff char(7) man page houses a complete list of predefined special
character names, but the availability of any as a glyph is device- and font-
dependent. For example, say

man -Tdvi groff_char > groff_char.dvi
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to obtain those available with the DVI device and default font configura-
tion.60 If you want to use an additional macro package to change the fonts
used, groff (or gtroff) must be run directly.

groff -Tdvi -mec -man groff_char.7 > groff_char.dvi

Special character names not listed in groff char(7) are derived algorith-
mically, using a simplified version of the Adobe Glyph List (AGL) algorithm,
which is described in https://github.com/adobe-type-tools/agl-aglfn.
The (frozen) set of names that can’t be derived algorithmically is called the
groff glyph list (GGL).

• A glyph for Unicode character U+XXXX [X [X ]], which is not a compos-
ite character is named uXXXX[X[X]]. X must be an uppercase hexadeci-
mal digit. Examples: u1234, u008E, u12DB8. The largest Unicode value
is 0x10FFFF. There must be at least four X digits; if necessary, add
leading zeroes (after the ‘u’). No zero padding is allowed for charac-
ter codes greater than 0xFFFF. Surrogates (i.e., Unicode values greater
than 0xFFFF represented with character codes from the surrogate area
U+D800-U+DFFF) are not allowed either.

• A glyph representing more than a single input character is named

‘u’ component1 ‘_’ component2 ‘_’ component3 . . .

Example: u0045_0302_0301.

For simplicity, all Unicode characters that are composites must be max-
imally decomposed to NFD;61 for example, u00CA_0301 is not a valid
glyph name since U+00CA (latin capital letter e with circum-
flex) can be further decomposed into U+0045 (latin capital letter
e) and U+0302 (combining circumflex accent). u0045_0302_0301
is thus the glyph name for U+1EBE, latin capital letter e with
circumflex and acute.

• groff maintains a table to decompose all algorithmically derived glyph
names that are composites itself. For example, u0100 (latin letter
a with macron) is automatically decomposed into u0041_0304. Ad-
ditionally, a glyph name of the GGL is preferred to an algorithmically
derived glyph name; groff also automatically does the mapping. Ex-
ample: The glyph u0045_0302 is mapped to ^E.

• glyph names of the GGL can’t be used in composite glyph names; for
example, ^E_u0301 is invalid.

[Escape sequence]\(nm
[Escape sequence]\[name]

60 Not all versions of the man program support the -T option; use the subsequent example
for an alternative.

61 This is “Normalization Form D” as documented in Unicode Standard Annex #15
(https://unicode.org/reports/tr15/).

https://github.com/adobe-type-tools/agl-aglfn
https://unicode.org/reports/tr15/
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[Escape sequence]\[base-glyph combining-component . . .]
Typeset a special character name (two-character name nm) or a compos-
ite glyph consisting of base-glyph overlaid with one or more combining-
components. For example, ‘\[A ho]’ is a capital letter “A” with a “hook
accent” (ogonek).

There is no special syntax for one-character names—the analogous form
‘\n’ would collide with other escape sequences. However, the four es-
cape sequences \', \-, \_, and \`, are translated on input to the special
character escape sequences \[aa], \[-], \[ul], and \[ga], respectively.

A special character name of length one is not the same thing as an ordi-
nary character: that is, the character a is not the same as \[a].

If name is undefined, a warning in category ‘char’ is produced and the
escape is ignored. See Section 5.37.1 [Warnings], page 221, for information
about the enablement and suppression of warnings.

GNU troff resolves \[. . .] with more than a single component as fol-
lows:

• Any component that is found in the GGL is converted to the uXXXX
form.

• Any component uXXXX that is found in the list of decomposable
glyphs is decomposed.

• The resulting elements are then concatenated with ‘_’ in between,
dropping the leading ‘u’ in all elements but the first.

No check for the existence of any component (similar to tr request) is
done.

Examples:

\[A ho] ‘A’ maps to u0041, ‘ho’ maps to u02DB, thus the final glyph
name would be u0041_02DB. This is not the expected re-
sult: the ogonek glyph ‘ho’ is a spacing ogonek, but for a
proper composite a non-spacing ogonek (U+0328) is neces-
sary. Looking into the file composite.tmac, one can find
‘.composite ho u0328’, which changes the mapping of ‘ho’
while a composite glyph name is constructed, causing the
final glyph name to be u0041_0328.

\[^E u0301]
\[^E aa]
\[E a^ aa]
\[E ^ '] ‘^E’ maps to u0045_0302, thus the final glyph name is

u0045_0302_0301 in all forms (assuming proper calls of the
composite request).

It is not possible to define glyphs with names like ‘A ho’ within a groff
font file. This is not really a limitation; instead, you have to define
u0041_0328.
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[Escape sequence]\C'xxx'
Typeset the glyph of the special character xxx. Normally, it is more
convenient to use \[xxx], but \C has some advantages: it is compatible
with AT&T device-independent troff (and therefore available in com-
patibility mode62) and can interpolate special characters with ‘]’ in their
names. The delimiter need not be a neutral apostrophe; see Section 5.6.5
[Delimiters], page 89.

[Request].composite id1 id2
Map special character name id1 to id2 if id1 is used in \[...] with more
than one component. See above for examples. This is a strict rewriting
of the special character name; no check is performed for the existence of a
glyph for either. A set of default mappings for many accents can be found
in the file composite.tmac, loaded by the default troffrc at startup.

[Escape sequence]\N'n'
Typeset the glyph with code n in the current font (n is not the input
character code). The number n can be any non-negative decimal integer.
Most devices only have glyphs with codes between 0 and 255; the Unicode
output device uses codes in the range 0–65535. If the current font does
not contain a glyph with that code, special fonts are not searched. The \N
escape sequence can be conveniently used in conjunction with the char
request:

.char \[phone] \f[ZD]\N'37'

The code of each glyph is given in the fourth column in the font descrip-
tion file after the charset command. It is possible to include unnamed
glyphs in the font description file by using a name of ‘---’; the \N escape
sequence is the only way to use these.

No kerning is applied to glyphs accessed with \N. The delimiter need not
be a neutral apostrophe; see Section 5.6.5 [Delimiters], page 89.

A few escape sequences are also special characters.

[Escape sequence]\'
An escaped neutral apostrophe is a synonym for \[aa] (acute accent).

[Escape sequence]\`
An escaped grave accent is a synonym for \[ga] (grave accent).

[Escape sequence]\-
An escaped hyphen-minus is a synonym for \[-] (minus sign).

[Escape sequence]\_
An escaped underscore (“low line”) is a synonym for \[ul] (underrule).
On typesetting devices, the underrule is font-invariant and drawn lower
than the underscore ‘_’.

62 See Section 5.38.2 [Compatibility Mode], page 223.
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[Request].cflags n c1 c2 . . .
Assign properties encoded by the number n to characters c1, c2, and so
on.

Input characters, including special characters introduced by an escape,
have certain properties associated with them.63 These properties can be
modified with this request. The first argument is the sum of the desired
flags and the remaining arguments are the characters to be assigned those
properties. Spaces between the cn arguments are optional. Any argument
cn can be a character class defined with the class request rather than an
individual character. See Section 5.19.5 [Character Classes], page 142.

The non-negative integer n is the sum of any of the following. Some
combinations are nonsensical, such as ‘33’ (1 + 32).

1 Recognize the character as ending a sentence if followed by
a newline or two spaces. Initially, characters ‘.?!’ have this
property.

2 Enable breaks before the character. A line is not broken at
a character with this property unless the characters on each
side both have non-zero hyphenation codes. This exception
can be overridden by adding 64. Initially, no characters have
this property.

4 Enable breaks after the character. A line is not broken at a
character with this property unless the characters on each
side both have non-zero hyphenation codes. This excep-
tion can be overridden by adding 64. Initially, characters
‘\-\[hy]\[em]’ have this property.

8 Mark the glyph associated with this character as overlap-
ping other instances of itself horizontally. Initially, characters
‘\[ul]\[rn]\[ru]\[radicalex]\[sqrtex]’ have this prop-
erty.

16 Mark the glyph associated with this character as overlap-
ping other instances of itself vertically. Initially, the character
‘\[br]’ has this property.

32 Mark the character as transparent for the purpose of
end-of-sentence recognition. In other words, an end-of-
sentence character followed by any number of characters
with this property is treated as the end of a sentence if
followed by a newline or two spaces. This is the same as
having a zero space factor in TEX. Initially, characters
‘"')]*\[dg]\[dd]\[rq]\[cq]’ have this property.

63 Output glyphs don’t—to GNU troff, a glyph is simply a box with an index into a
font, a given height above and depth below the baseline, and a width.
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64 Ignore hyphenation codes of the surrounding characters. Use
this in combination with values 2 and 4 (initially, no charac-
ters have this property).

For example, if you need an automatic break point after the
en-dash in numeric ranges like “3000–5000”, insert

.cflags 68 \[en]

into your document. However, this practice can lead to bad
layout if done thoughtlessly; in most situations, a better so-
lution instead of changing the cflags value is to insert \:
right after the hyphen at the places that really need a break
point.

The remaining values were implemented for East Asian language support;
those who use alphabetic scripts exclusively can disregard them.

128 Prohibit a line break before the character, but allow a line
break after the character. This works only in combination
with flags 256 and 512 and has no effect otherwise. Initially,
no characters have this property.

256 Prohibit a line break after the character, but allow a line
break before the character. This works only in combination
with flags 128 and 512 and has no effect otherwise. Initially,
no characters have this property.

512 Allow line break before or after the character. This works
only in combination with flags 128 and 256 and has no effect
otherwise. Initially, no characters have this property.

In contrast to values 2 and 4, the values 128, 256, and 512 work pairwise.
If, for example, the left character has value 512, and the right character
128, no break will be automatically inserted between them. If we use
value 6 instead for the left character, a break after the character can’t
be suppressed since the neighboring character on the right doesn’t get
examined.

[Request].char c [contents]
[Request].fchar c [contents]
[Request].fschar f c [contents]
[Request].schar c [contents]

Define a new character or glyph c to be contents, which can be empty.
More precisely, char defines a groff object (or redefines an existing one)
that is accessed with the name c on input, and produces contents on
output. Every time glyph c needs to be printed, contents is processed
in a temporary environment and the result is wrapped up into a single
object. Compatibility mode is turned off and the escape character is set
to \ while contents is processed. Any emboldening, constant spacing, or
track kerning is applied to this object rather than to individual glyphs in
contents.
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An object defined by these requests can be used just like a normal glyph
provided by the output device. In particular, other characters can be
translated to it with the tr or trin requests; it can be made the leader
character with the lc request; repeated patterns can be drawn with it
using the \l and \L escape sequences; and words containing c can be
hyphenated correctly if the hcode request is used to give the object a
hyphenation code.

There is a special anti-recursion feature: use of the object within its own
definition is handled like a normal character (not defined with char).

The tr and trin requests take precedence if char accesses the same
symbol.

.tr XY
X

⇒ Y
.char X Z
X

⇒ Y
.tr XX
X

⇒ Z

The fchar request defines a fallback glyph: gtroff only checks for glyphs
defined with fchar if it cannot find the glyph in the current font. gtroff
carries out this test before checking special fonts.

fschar defines a fallback glyph for font f : gtroff checks for glyphs
defined with fschar after the list of fonts declared as font-specific special
fonts with the fspecial request, but before the list of fonts declared as
global special fonts with the special request.

Finally, the schar request defines a global fallback glyph: gtroff checks
for glyphs defined with schar after the list of fonts declared as global
special fonts with the special request, but before the already mounted
special fonts.

See Section 5.19.5 [Character Classes], page 142.

[Request].rchar c . . .
[Request].rfschar f c . . .

Remove definition of each ordinary or special character c, undoing the
effect of a char, fchar, or schar request. Those supplied by font descrip-
tion files cannot be removed. Spaces and tabs may separate c arguments.

The request rfschar removes glyph definitions defined with fschar for
font f.

5.19.5 Character Classes

Classes are particularly useful for East Asian languages such as Chinese,
Japanese, and Korean, where the number of needed characters is much larger
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than in European languages, and where large sets of characters share the
same properties.

[Request].class name c1 c2 . . .
Define a character class (or simply “class”) name comprising the charac-
ters c1, c2, and so on.

A class thus defined can then be referred to in lieu of listing all the char-
acters within it. Currently, only the cflags request can handle references
to character classes.

In the request’s simplest form, each cn is a character (or special charac-
ter).

.class [quotes] ' \[aq] \[dq] \[oq] \[cq] \[lq] \[rq]

Since class and glyph names share the same name space, it is recom-
mended to start and end the class name with [ and ], respectively, to
avoid collisions with existing character names defined by GNU troff or
the user (with char and related requests). This practice applies the pres-
ence of ] in the class name to prevent the use of the special character
escape form \[. . .], thus you must use the \C escape to access a class
with such a name.

You can also use a character range notation consisting of a start char-
acter followed by ‘-’ and then an end character. Internally, GNU troff
converts these two symbol names to Unicode code points (according to
the groff glyph list [GGL]), which then give the start and end value of
the range. If that fails, the class definition is skipped.

Furthermore, classes can be nested.

.class [prepunct] , : ; > }

.class [prepunctx] \C'[prepunct]' \[u2013]-\[u2016]

The class ‘[prepunctx]’ thus contains the contents of the class
[prepunct] as defined above (the set ‘, : ; > }’), and characters in the
range between U+2013 and U+2016.

If you want to include ‘-’ in a class, it must be the first character value
in the argument list, otherwise it gets misinterpreted as part of the range
syntax.

It is not possible to use class names as end points of range definitions.

A typical use of the class request is to control line-breaking and hyphen-
ation rules as defined by the cflags request. For example, to inhibit line
breaks before the characters belonging to the prepunctx class defined in
the previous example, you can write the following.

.cflags 2 \C'[prepunctx]'

See the cflags request in Section 5.19.4 [Using Symbols], page 135, for
more details.



144 The GNU Troff Manual

5.19.6 Special Fonts

Special fonts are those that gtroff searches when it cannot find the re-
quested glyph in the current font. The Symbol font is usually a special
font.

gtroff provides the following two requests to add more special fonts. See
Section 5.19.4 [Using Symbols], page 135, for a detailed description of the
glyph searching mechanism in gtroff.

Usually, only non-TTY devices have special fonts.

[Request].special [s1 s2 . . . ]
[Request].fspecial f [s1 s2 . . . ]

Use the special request to define special fonts. Initially, this list is empty.

Use the fspecial request to designate special fonts only when font f is
active. Initially, this list is empty.

Previous calls to special or fspecial are overwritten; without argu-
ments, the particular list of special fonts is set to empty. Special fonts
are searched in the order they appear as arguments.

All fonts that appear in a call to special or fspecial are loaded.

See Section 5.19.4 [Using Symbols], page 135, for the exact search order
of glyphs.

5.19.7 Artificial Fonts

There are a number of requests and escape sequences for artificially creating
fonts. These are largely vestiges of the days when output devices did not have
a wide variety of fonts, and when nroff and troff were separate programs.
Most of them are no longer necessary in GNU troff. Nevertheless, they are
supported.

[Escape sequence]\H'height'
[Escape sequence]\H'+height'
[Escape sequence]\H'-height'

[Register]\n[.height]
Change (increment, decrement) the height of the current font, but not
the width. If height is zero, restore the original height. Default scaling
unit is ‘z’.

The read-only register .height contains the font height as set by \H.

Currently, only the -Tps and -Tpdf devices support this feature.

\H doesn’t produce an input token in GNU troff. As a consequence, it
can be used in requests like mc (which expects a single character as an
argument) to change the font on the fly:

.mc \H'+5z'x\H'0'

In compatibility mode, gtroff behaves differently: If an increment or
decrement is used, it is always taken relative to the current type size and
not relative to the previously selected font height. Thus,
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.cp 1
\H'+5'test \H'+5'test

prints the word ‘test’ twice with the same font height (five points larger
than the current font size).

[Escape sequence]\S'slant'
[Register]\n[.slant]

Slant the current font by slant degrees. Positive values slant to the right.
Only integer values are possible.

The read-only register .slant contains the font slant as set by \S.

Currently, only the -Tps and -Tpdf devices support this feature.

\S doesn’t produce an input token in GNU troff. As a consequence, it
can be used in requests like mc (which expects a single character as an
argument) to change the font on the fly:

.mc \S'20'x\S'0'

This escape is incorrectly documented in the AT&T troff manual; the
slant is always set to an absolute value.

[Request].ul [lines]
The ul request normally underlines subsequent lines if a TTY output
device is used. Otherwise, the lines are printed in italics (only the term
‘underlined’ is used in the following). The single argument is the quan-
tity of input lines to be underlined; with no argument, the next line is
underlined. If lines is zero or negative, stop the effects of ul (if it was
active). Requests and empty lines do not count for computing the num-
ber of underlined input lines, even if they produce some output like tl.
Lines inserted by macros (e.g., invoked by a trap) do count.

At the beginning of ul, the current font is stored and the underline font
is activated. Within the span of a ul request, it is possible to change
fonts, but after the last line affected by ul the saved font is restored.

This number of lines still to be underlined is associated with the envi-
ronment (see Section 5.31 [Environments], page 203). The underline font
can be changed with the uf request.

The ul request does not underline spaces.

[Request].cu [lines]
The cu request is similar to ul but underlines spaces as well (if a TTY
output device is used).

[Request].uf font
Set the underline font (globally) used by ul and cu. By default, this is
the font at position 2. font can be either a non-negative font position or
the name of a font.
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[Request].bd font [offset]
[Request].bd font1 font2 [offset]
[Register]\n[.b]

Embolden font by overstriking its glyphs offset by offset units minus one.

Two syntax forms are available.

• Imitate a bold font unconditionally. The first argument specifies the
font to embolden, and the second is the number of basic units, minus
one, by which the two glyphs are offset. If the second argument is
missing, emboldening is turned off.

font can be either a non-negative font position or the name of a font.

offset is available in the .b read-only register if a special font is active;
in the bd request, its default unit is ‘u’.

• Imitate a bold form conditionally. Embolden font1 by offset only if
font font2 is the current font. This request can be issued repeatedly
to set up different emboldening values for different current fonts. If
the second argument is missing, emboldening is turned off for this
particular current font.

This affects special fonts only (either set up with the special com-
mand in font files or with the fspecial request).

[Request].cs font [width [em-size]]
Switch to and from constant glyph space mode. If activated, the width of
every glyph is width/36 ems. The em size is given absolutely by em-size;
if this argument is missing, the em value is taken from the current font size
(as set with the ps request) when the font is effectively in use. Without
second and third argument, constant glyph space mode is deactivated.

Default scaling unit for em-size is ‘z’; width is an integer.

5.19.8 Ligatures and Kerning

Ligatures are groups of characters that are run together, i.e, producing a
single glyph. For example, the letters ‘f’ and ‘i’ can form a ligature ‘fi’ as in
the word ‘file’. This produces a cleaner look (albeit subtle) to the printed
output. Usually, ligatures are not available in fonts for TTY output devices.

Most PostScript fonts support the fi and fl ligatures. The C/A/T type-
setter that was the target of AT&T troff also supported ‘ff’, ‘ffi’, and ‘ffl’
ligatures. Advanced typesetters or ‘expert’ fonts may include ligatures for
‘ft’ and ‘ct’, although GNU troff does not support these (yet).

Only the current font is checked for ligatures and kerns; neither special
fonts nor special charcters defined with the char request (and its siblings)
are taken into account.

[Request].lg [flag ]
[Register]\n[.lg]

Switch the ligature mechanism on or off; if the parameter is non-zero or
missing, ligatures are enabled, otherwise disabled. Default is on. The
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current ligature mode can be found in the read-only register .lg (set to
1 or 2 if ligatures are enabled, 0 otherwise).

Setting the ligature mode to 2 enables the two-character ligatures (fi, fl,
and ff) and disables the three-character ligatures (ffi and ffl).

Pairwise kerning is another subtle typesetting mechanism that modifies
the distance between a glyph pair to improve readability. In most cases (but
not always) the distance is decreased. For example, compare the combination
of the letters ‘V’ and ‘A’. With kerning, ‘VA’ is printed. Without kerning
it appears as ‘VA’. Typewriter-like fonts and fonts for terminals where all
glyphs have the same width don’t use kerning.

[Request].kern [flag ]
[Register]\n[.kern]

Switch kerning on or off. If the parameter is non-zero or missing, enable
pairwise kerning, otherwise disable it. The read-only register .kern is set
to 1 if pairwise kerning is enabled, 0 otherwise.

If the font description file contains pairwise kerning information, glyphs
from that font are kerned. Kerning between two glyphs can be inhibited
by placing \& between them: ‘V\&A’.

See Section 6.2.2 [Font Description File Format], page 245.

Track kerning expands or reduces the space between glyphs. This can be
handy, for example, if you need to squeeze a long word onto a single line or
spread some text to fill a narrow column. It must be used with great care
since it is usually considered bad typography if the reader notices the effect.

[Request].tkf f s1 n1 s2 n2
Enable track kerning for font f. If the current font is f the width of
every glyph is increased by an amount between n1 and n2 (n1, n2 can be
negative); if the current type size is less than or equal to s1 the width is
increased by n1; if it is greater than or equal to s2 the width is increased
by n2; if the type size is greater than or equal to s1 and less than or equal
to s2 the increase in width is a linear function of the type size.

The default scaling unit is ‘z’ for s1 and s2, ‘p’ for n1 and n2.

The track kerning amount is added even to the rightmost glyph in a line;
for large values it is thus recommended to increase the line length by the
same amount to compensate.

5.19.9 Italic Corrections

When typesetting adjacent glyphs from typefaces of different slants, the
space between them may require adjustment.

[Escape sequence]\/
Apply an italic correction: modify the spacing of the preceding glyph so
that the distance between it and the following glyph is correct if the latter
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is of upright shape. For example, if an italic ‘f’ is followed immediately
by a roman right parenthesis, then in many fonts the top right portion of
the ‘f’ overlaps the top left of the right parenthesis, which is ugly. Use
this escape sequence whenever an oblique glyph is immediately followed
by an upright glyph without any intervening space.

[Escape sequence]\,
Apply a left italic correction: modify the spacing of the following glyph
so that the distance between it and the preceding glyph is correct if the
latter is of upright shape. For example, if a roman left parenthesis is
immediately followed by an italic ‘f’, then in many fonts the bottom left
portion of the ‘f’ overlaps the bottom of the left parenthesis, which is
ugly. Use this escape sequence whenever an upright glyph is followed
immediately by an oblique glyph without any intervening space.

5.19.10 Dummy Characters

As discussed in Section 5.1.7 [Requests and Macros], page 67, the first char-
acter on an input line is treated specially. Further, formatting a glyph
has many consequences on formatter state (see Section 5.31 [Environments],
page 203). Occasionally, we want to escape this context or embrace some of
those consequences without actually rendering a glyph to the output.

[Escape sequence]\&
Interpolate a dummy character, which is constitutive of output but in-
visible.64 Its presence alters the interpretation context of a subsequent
input character, and enjoys several applications.

• Prevent insertion of extra space after an end-of-sentence character.

Test.
Test.

⇒ Test. Test.
Test.\&
Test.

⇒ Test. Test.

• Prevent recognition of a control character.

.Test
error warning: macro 'Test' not defined

\&.Test
⇒ .Test

64 Opinions of this escape sequence’s name abound. “Zero-width space” is a popular
misnomer: roff formatters do not treat it like a space. Ossanna called it a “non-
printing, zero-width character”, but the character causes output even though it does
not “print”. If no output line is pending, the dummy character starts one. Contrast an
empty input document with one containing only \&. The former produces no output;
the latter, a blank page.
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• Prevent kerning between two glyphs.

VA
⇒ VA

V\&A
⇒ VA

• Translate a character to “nothing”.

.tr JIjiK\&k\&UVuv
Post universitum, alea jacta est, OK?

⇒ Post vniversitvm, alea iacta est, O?

The dummy character escape sequence sees use in macro definitions as a
means of ensuring that arguments are treated as text even if they begin
with spaces or control characters.

.de HD \" typeset a simple bold heading

. sp

. ft B
\&\\$1 \" exercise: remove the \&
. ft
. sp
..
.HD .\|.\|.\|surprised?

One way to think about the dummy character is to imagine placing the
symbol ‘&’ in the input at a certain location; if doing so has all the side
effects on formatting that you desire except for sticking an ugly ampersand
in the midst of your text, the dummy character is what you want in its place.

[Escape sequence]\)
Interpolate a transparent dummy character—one that is transparent to
end-of-sentence detection. It behaves as \&, except that \& is treated
as letters and numerals normally are after ‘.’, ‘?’ and ‘!’; \& cancels
end-of-sentence detection, and \) does not.

.de Suffix-&

. nop \&\\$1

..

.

.de Suffix-)

. nop \)\\$1

..

.
Here's a sentence.\c
.Suffix-& '
Another one.\c
.Suffix-) '
And a third.

⇒ Here's a sentence.' Another one.' And a third.
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5.20 Manipulating Type Size and Vertical Spacing
These concepts were introduced in Section 5.2 [Page Geometry], page 74.
The height of a font’s tallest glyph is one em, which is equal to the type size
in points.65 A vertical spacing of less than 120% of the type size can make
a document hard to read. Larger proportions can be useful to spread the
text for annotations or proofreader’s marks. By default, GNU troff uses
10 point type on 12 point spacing. Typographers call the difference between
type size and vertical spacing leading.66

5.20.1 Changing the Type Size

[Request].ps [size]
[Request].ps +size
[Request].ps -size

[Escape sequence]\ssize
[Register]\n[.s]

Use the ps request or the \s escape sequence to change (increase, de-
crease) the type size (in scaled points). Specify size as either an absolute
type size, or as a relative change from the current size. ps with no argu-
ment restores the previous size. The ps request’s default scaling unit is ‘z’.
The requested size is rounded to the nearest valid size (with ties rounding
down) within the limits supported by the device. If the requested size is
non-positive, it is treated as 1 u.

Type size alteration is incorrectly documented in the AT&T troff man-
ual, which claims “if [the requested size] is invalid, the next larger valid
size will result, with a maximum of 36”.67

The read-only string-valued register .s interpolates the type size in points
as a decimal fraction; it is associated with the environment (see Sec-
tion 5.31 [Environments], page 203). To obtain the type size in scaled
points, interpolate the .ps register instead (see Section 5.20.3 [Using
Fractional Type Sizes], page 152).

The \s escape sequence supports a variety of syntax forms.

\sn Set the type size to n points. n must be a single digit. If n is
0, restore the previous size.

\s+n
\s-n Increase or decrease the type size by n points. n must be

exactly one digit.

65 In text fonts, the tallest glyphs are typically parentheses. Unfortunately, in many cases
the actual dimensions of the glyphs in a font do not closely match its declared type
size! For example, in the standard PostScript font families, 10-point Times sets better
with 9-point Helvetica and 11-point Courier than if all three were used at 10 points.

66 Rhyme with “sledding”; mechanical typography used lead metal (Latin plumbum).
67 The claim appears to have been true of Ossanna troff for the C/A/T device;

Kernighan made device-independent troff more flexible.
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\s(nn Set the type size to nn points. nn must be exactly two digits.

\s+(nn
\s-(nn
\s(+nn
\s(-nn Alter the type size in points by the two-digit value nn.

See Section 5.20.3 [Using Fractional Type Sizes], page 152, for further syn-
tactical forms of the \s escape sequence that additionally accept decimal
fractions.

snap, snap,
.ps +2
grin, grin,
.ps +2
wink, wink, \s+2nudge, nudge,\s+8 say no more!
.ps 10

The \s escape sequence affects the environment immediately and doesn’t
produce an input token. Consequently, it can be used in requests like mc,
which expects a single character as an argument, to change the type size on
the fly.

.mc \s[20]x\s[0]

[Request].sizes s1 s2 . . . sn [0]
The DESC file specifies which type sizes are allowed by the output device;
see Section 6.2.1 [DESC File Format], page 242. Use the sizes request to
change this set of permissible sizes. Arguments are in scaled points; see
Section 5.20.3 [Using Fractional Type Sizes], page 152. Each can be a sin-
gle type size (such as ‘12000’), or a range of sizes (such as ‘4000-72000’).
You can optionally end the list with a ‘0’.

5.20.2 Changing the Vertical Spacing

[Request].vs [space]
[Request].vs +space
[Request].vs -space
[Register]\n[.v]

Set the vertical spacing to, or alter it by, space. The default scaling unit
is ‘p’. If vs is called without an argument, the vertical spacing is reset to
the previous value before the last call to vs. GNU troff emits a warning
in category ‘range’ if space is negative; the vertical spacing is then set
to the smallest possible positive value, the vertical motion quantum (as
found in the .V register).

‘.vs 0’ isn’t saved in a diversion since it doesn’t result in a vertical motion.
You must explicitly issue this request before interpolating the diversion.

The read-only register .v contains the vertical spacing; it is associated
with the environment (see Section 5.31 [Environments], page 203).
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When a break occurs, GNU troff performs the following procedure.

• Move the drawing position vertically by the extra pre-vertical line space,
the minimum of all negative \x escape sequence arguments in the pend-
ing output line.

• Move the drawing position vertically by the vertical line spacing.

• Write out the pending output line.

• Move the drawing position vertically by the extra post-vertical line
space, the maximum of all positive \x escape sequence arguments in
the line that has just been output.

• Move the drawing position vertically by the post-vertical line spacing
(see below).

Prefer vs or pvs over ls to produce double-spaced documents. vs and
pvs have finer granularity than ls; moreover, some preprocessors assume
single spacing. See Section 5.11 [Manipulating Spacing], page 112, regarding
the \x escape sequence and the ls request.

[Request].pvs [space]
[Request].pvs +space
[Request].pvs -space
[Register]\n[.pvs]

Set the post-vertical spacing to, or alter it by, space. The default scaling
unit is ‘p’. If pvs is called without an argument, the post-vertical spacing
is reset to the previous value before the last call to pvs. GNU troff
emits a warning in category ‘range’ if space is negative; the post-vertical
spacing is then set to zero.

The read-only register .pvs contains the post-vertical spacing; it is asso-
ciated with the environment (see Section 5.31 [Environments], page 203).

5.20.3 Using Fractional Type Sizes

AT&T troff interpreted all type size measurements in points. Combined
with integer arithmetic, this design choice made it impossible to support, for
instance, ten and a half-point type. In GNU troff, an output device can
select a scaling factor that subdivides a point into “scaled points”. A type
size expressed in scaled points can thus represent a non-integral type size.

A scaled point is equal to 1/sizescale points, where sizescale is specified
in the device description file DESC, and defaults to 1.68 Requests and escape
sequences in GNU troff interpret arguments that represent a type size
in scaled points, which the formatter multiplies by sizescale and converts
to an integer. Arguments treated in this way comprise those to the escape
sequences \H and \s, to the request ps, the third argument to the cs request,
and the second and fourth arguments to the tkf request. Scaled points may
be specified explicitly with the z scaling unit.

68 See Section 6.2 [Device and Font Description Files], page 242.
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For example, if sizescale is 1000, then a scaled point is one thousandth
of a point. The request ‘.ps 10.5’ is synonymous with ‘.ps 10.5z’ and sets
the type size to 10,500 scaled points, or 10.5 points. Consequently, in GNU
troff, the register .s can interpolate a non-integral type size.

[Register]\n[.ps]
This read-only register interpolates the type size in scaled points; it
is associated with the environment (see Section 5.31 [Environments],
page 203).

It makes no sense to use the ‘z’ scaling unit in a numeric expression
whose default scaling unit is neither ‘u’ nor ‘z’, so GNU troff disallows
this. Similarly, it is nonsensical to use a scaling unit other than ‘z’ or ‘u’ in
a numeric expression whose default scaling unit is ‘z’, and so GNU troff
disallows this as well.

Another GNU troff scaling unit, ‘s’, multiplies by the number of basic
units in a scaled point. Thus, ‘\n[.ps]s’ is equal to ‘1m’ by definition. Do
not confuse the ‘s’ and ‘z’ scaling units.

[Register]\n[.psr]
[Register]\n[.sr]

Output devices may be limited in the type sizes they can employ. The
.s and .ps registers represent the type size selected by the output driver
as it understands a device’s capability. The last requested type size is
interpolated in scaled points by the read-only register .psr and in points
as a decimal fraction by the read-only string-valued register .sr. Both
are associated with the environment (see Section 5.31 [Environments],
page 203).

For example, if a type size of 10.95 points is requested, and the nearest size
permitted by a sizes request (or by the sizes or sizescale directives
in the device’s DESC file) is 11 points, the output driver uses the latter
value.

The \s escape sequence offers the following syntax forms that work with
fractional type sizes and accept scaling units. You may of course give them
integral arguments. The delimited forms need not use the neutral apostro-
phe; see Section 5.6.5 [Delimiters], page 89.

\s[n]
\s'n' Set the type size to n scaled points; n is a numeric expression

with a default scaling unit of ‘z’.



154 The GNU Troff Manual

\s[+n]
\s[-n]
\s+[n]
\s-[n]
\s'+n'
\s'-n'
\s+'n'
\s-'n' Increase or decrease the type size by n scaled points; n is a

numeric expression (which may start with a minus sign) with a
default scaling unit of ‘z’.

5.21 Colors
GNU troff supports color output with a variety of color spaces and up
to 16 bits per channel. Some devices, particularly terminals, may be more
limited. When color support is enabled, two colors are current at any given
time: the stroke color, with which glyphs, rules (lines), and geometric objects
like circles and polygons are drawn, and the fill color, which can be used to
paint the interior of a closed geometric figure.

[Request].color [n]
[Register]\n[.color]

If n is missing or non-zero, enable the output of color-related device-
independent output commands (this is the default); otherwise, disable
them. This request sets a global flag; it does not produce an input token
(see Section 5.36 [Gtroff Internals], page 216).

The read-only register .color is 1 if colors are enabled, 0 otherwise.

Color can also be disabled with the -c command-line option.

[Request].defcolor ident scheme color-component . . .
Define a color named ident. scheme selects a color space and determines
the quantity of required color-components; it must be one of ‘rgb’ (three
components), ‘cmy’ (three), ‘cmyk’ (four), or ‘gray’ (one). ‘grey’ is ac-
cepted as a synonym of ‘gray’. The color components can be encoded as
a single hexadecimal value starting with ‘#’ or ‘##’. The former indicates
that each component is in the range 0–255 (0–FF), the latter the range
0–65,535 (0–FFFF).

.defcolor half gray #7f

.defcolor pink rgb #FFC0CB

.defcolor magenta rgb ##ffff0000ffff

Alternatively, each color component can be specified as a decimal fraction
in the range 0–1, interpreted using a default scaling unit of f, which
multiplies its value by 65,536 (but clamps it at 65,535).

.defcolor gray50 rgb 0.5 0.5 0.5

.defcolor darkgreen rgb 0.1f 0.5f 0.2f
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Each output device has a color named ‘default’, which cannot be rede-
fined. A device’s default stroke and fill colors are not necessarily the same.
For the dvi, html, pdf, ps, and xhtml output devices, GNU troff automat-
ically loads a macro file defining many color names at startup. By the same
mechanism, the devices supported by grotty recognize the eight standard
ISO 6429/EMCA-48 color names.69

[Request].gcolor [color]
[Escape sequence]\mc
[Escape sequence]\m(co
[Escape sequence]\m[color]

[Register]\n[.m]
Set the stroke color to color.

.gcolor red
The next words
.gcolor
\m[red]are in red\m[]
and these words are in the previous color.

The escape sequence \m[] restores the previous stroke color, as does a
gcolor request without an argument.

The name of the current stroke color is available in the read-only string-
valued register ‘.m’; it is associated with the environment (see Section 5.31
[Environments], page 203). It interpolates nothing when the stroke color
is the default.

\m doesn’t produce an input token in GNU troff (see Section 5.36 [Gtroff
Internals], page 216). It therefore can be used in requests like mc (which
expects a single character as an argument) to change the color on the fly:

.mc \m[red]x\m[]

[Request].fcolor [color]
[Escape sequence]\Mc
[Escape sequence]\M(co
[Escape sequence]\M[color]

[Register]\n[.M]
Set the fill color for objects drawn with \D'...' escape sequences. The
escape sequence \M[] restores the previous fill color, as does an fcolor
request without an argument.

The name of the current fill color is available in the read-only string-
valued register ‘.M’; it is associated with the environment (see Section 5.31
[Environments], page 203). It interpolates nothing when the fill color is
the default. \M doesn’t produce an input token in GNU troff.

Create an ellipse with a red interior as follows.

\M[red]\h'0.5i'\D'E 2i 1i'\M[]

69 also known vulgarly as “ANSI colors”
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5.22 Strings
GNU troff supports strings primarily for user convenience. Conventionally,
if one would define a macro only to interpolate a small amount of text,
without invoking requests or calling any other macros, one defines a string
instead. Only one string is predefined by the language.

[String]\*[.T]
Contains the name of the output device (for example, ‘utf8’ or ‘pdf’).

The ds request creates a string with a specified name and contents and the
\* escape sequence dereferences its name, interpolating its contents. If the
string named by the \* escape sequence does not exist, it is defined as empty,
nothing is interpolated, and a warning in category ‘mac’ is emitted. See
Section 5.37.1 [Warnings], page 221, for information about the enablement
and suppression of warnings.

[Request].ds name [contents]
[Request].ds1 name [contents]

[Escape sequence]\*n
[Escape sequence]\*(nm
[Escape sequence]\*[name [arg1 arg2 . . . ]]

Define a string called name with contents contents. If name already exists
as an alias, the target of the alias is redefined; see als and rm below. If
ds is called with only one argument, name is defined as an empty string.
Otherwise, GNU troff stores contents in copy mode.70

The \* escape sequence interpolates a previously defined string variable
name (one-character name n, two-character name nm). The bracketed
interpolation form accepts arguments that are handled as macro argu-
ments are; recall Section 5.6.3 [Calling Macros], page 86. In contrast to
macro calls, however, if a closing bracket ‘]’ occurs in a string argument,
that argument must be enclosed in double quotes. \* is interpreted even
in copy mode. When defining strings, argument interpolations must be
escaped if they are to reference parameters from the calling context; See
Section 5.24.1 [Parameters], page 170.

.ds cite (\\$1, \\$2)
Gray codes are explored in \*[cite Morgan 1998].

⇒ Gray codes are explored in (Morgan, 1998).

Caution: Unlike other requests, the second argument to the ds request
consumes the remainder of the input line, including trailing spaces. This
means that comments on a line with such a request can introduce un-
wanted space into a string when they are set off from the material they
annotate, as is conventional.

.ds H2O H\v'+.3m'\s'-2'2\v'-.3m'\s0O \" water

70 See Section 5.24.2 [Copy Mode], page 173.
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Instead, place the comment on another line or put the comment escape
sequence immediately adjacent to the last character of the string.

.ds H2O H\v'+.3m'\s'-2'2\v'-.3m'\s0O\" water

Ending string definitions (and appendments) with a comment, even an
empty one, prevents unwanted space from creeping into them during
source document maintenance.

.ds author Alice Pleasance Liddell\"

.ds empty \" might be appended to later with .as

An initial neutral double quote " in contents is stripped to allow embed-
ding of leading spaces. Any other " is interpreted literally, but it is wise
to use the special character escape sequence \[dq] instead if the string
might be interpolated as part of a macro argument; see Section 5.6.3
[Calling Macros], page 86.

.ds salutation " Yours in a white wine sauce,\"

.ds c-var-defn " char mydate[]=\[dq]2020-07-29\[dq];\"

Strings are not limited to a single input line of text. \RET works just as it
does elsewhere. The resulting string is stored without the newlines. Care
is therefore required when interpolating strings while filling is disabled.

.ds foo This string contains \
text on multiple lines \
of input.

It is not possible to embed a newline in a string that will be interpreted
as such when the string is interpolated. To achieve that effect, use \* to
interpolate a macro instead; see Section 5.30 [Punning Names], page 201.

Because strings are similar to macros, they too can be defined so as to
suppress AT&T troff compatibility mode when used; see Section 5.24
[Writing Macros], page 167, and Section 5.38.2 [Compatibility Mode],
page 223. The ds1 request defines a string such that compatibility mode
is off when the string is later interpolated. To be more precise, a com-
patibility save input token is inserted at the beginning of the string, and
a compatibility restore input token at the end.

.nr xxx 12345

.ds aa The value of xxx is \\n[xxx].

.ds1 bb The value of xxx is \\n[xxx].

.

.cp 1

.
\*(aa

error warning: register '[' not defined
⇒ The value of xxx is 0xxx].

\*(bb
⇒ The value of xxx is 12345.



158 The GNU Troff Manual

[Request].as name [contents]
[Request].as1 name [contents]

The as request is similar to ds but appends contents to the string stored
as name instead of redefining it. If name doesn’t exist yet, it is created.
If as is called with only one argument, no operation is performed (beyond
dereferencing the string).

.as salutation " with shallots, onions and garlic,\"

The as1 request is similar to as, but compatibility mode is switched off
when the appended portion of the string is later interpolated. To be more
precise, a compatibility save input token is inserted at the beginning of
the appended string, and a compatibility restore input token at the end.

Several requests exist to perform rudimentary string operations. Strings
can be queried (length) and modified (chop, substring, stringup,
stringdown), and their names can be manipulated through renaming,
removal, and aliasing (rn, rm, als).

[Request].length reg anything
Compute the number of characters of anything and store the count in the
register reg. If reg doesn’t exist, it is created. anything is read in copy
mode.

.ds xxx abcd\h'3i'efgh

.length yyy \*[xxx]
\n[yyy]

⇒ 14

[Request].chop object
Remove the last character from the macro, string, or diversion named
object. This is useful for removing the newline from the end of a diversion
that is to be interpolated as a string. This request can be used repeatedly
on the same object; see Section 5.36 [Gtroff Internals], page 216, for
details on nodes inserted additionally by GNU troff.

[Request].substring str start [end]
Replace the string named str with its substring bounded by the indices
start and end, inclusively. The first character in the string has index 0.
If end is omitted, it is implicitly set to the largest valid value (the string
length minus one). Negative indices count backward from the end of the
string: the last character has index −1, the character before the last has
index −2, and so on.

.ds xxx abcdefgh

.substring xxx 1 -4
\*[xxx]

⇒ bcde
.substring xxx 2
\*[xxx]

⇒ de
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[Request].stringdown str
[Request].stringup str

Alter the string named str by replacing each of its bytes with its lowercase
(stringdown) or uppercase (stringup) version (if one exists). Special
characters in the string will often transform in the expected way due to
the regular naming convention for accented characters. When they do
not, use substrings and/or catenation.

.ds resume R\['e]sum\['e]
\*[resume]
.stringdown resume
\*[resume]
.stringup resume
\*[resume]

⇒ Résumé résumé RÉSUMÉ

(In practice, we would end the ds request with a comment escape \"
to prevent space from creeping into the definition during source document
maintenance.)

[Request].rn old new
Rename the request, macro, diversion, or string old to new.

[Request].rm name
Remove the request, macro, diversion, or string name. GNU troff treats
subsequent invocations as if the name had never been defined.

[Request].als new old
Create an alias new for the existing request, string, macro, or diversion
object named old, causing the names to refer to the same stored object. If
old is undefined, a warning in category ‘mac’ is produced, and the request
is ignored. See Section 5.37.1 [Warnings], page 221, for information about
the enablement and suppression of warnings.

To understand how the als request works, consider two different storage
pools: one for objects (macros, strings, etc.), and another for names. As
soon as an object is defined, GNU troff adds it to the object pool, adds
its name to the name pool, and creates a link between them. When als
creates an alias, it adds a new name to the name pool that gets linked to
the same object as the old name.

Now consider this example.
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.de foo

..

.

.als bar foo

.

.de bar

. foo

..

.

.bar
error input stack limit exceeded (probable infinite
error loop)

In the above, bar remains an alias—another name for—the object re-
ferred to by foo, which the second de request replaces. Alternatively,
imagine that the de request dereferences its argument before replacing it.
Either way, the result of calling bar is a recursive loop that finally leads
to an error. See Section 5.24 [Writing Macros], page 167.

To remove an alias, call rm on its name. The object itself is not destroyed
until it has no more names.

When a request, macro, string, or diversion is aliased, redefinitions and
appendments “write through” alias names. To replace an alias with a
separately defined object, you must use the rm request on its name first.

5.23 Conditionals and Loops
groff has if and while control structures like other languages. However,
the syntax for grouping multiple input lines in the branches or bodies of
these structures is unusual.

5.23.1 Operators in Conditionals

In if, ie, and while requests, in addition to the numeric expressions de-
scribed in Section 5.4 [Numeric Expressions], page 77, several Boolean opera-
tors are available; the members of this expanded class are termed conditional
expressions.

c glyph True if glyph is available, where glyph is an ordinary character,
a special character ‘\(xx’ or ‘\[xxx]’, ‘\N'xxx'’, or has been
defined by any of the char, fchar, fschar, or schar requests.

d name True if a string, macro, diversion, or request called name exists.

e True if the current page is even-numbered.

F font True if font exists. font is handled as if it were opened with
the ft request (that is, font translation and styles are applied),
without actually mounting it.

m color True if color is defined.
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n True if the document is being processed in nroff mode. See
Section 5.14 [troff and nroff Modes], page 121.

o True if the current page is odd-numbered.

r register
True if register exists.

S style True if style is available for the current font family. Font trans-
lation is applied.

t True if the document is being processed in troff mode. See
Section 5.14 [troff and nroff Modes], page 121.

v Always false. This condition is recognized only for compatibility
with certain other troff implementations.71

If the first argument to an if, ie, or while request begins with a non-
alphanumeric character apart from ! (see below); it performs an output
comparison test.72

'xxx'yyy'
True if formatting the comparands xxx and yyy produces the
same output commands. The delimiter need not be a neutral
apostrophe: the output comparison operator accepts the same
delimiters as most escape sequences; see Section 5.6.5 [Delim-
iters], page 89. This output comparison operator formats xxx
and yyy in separate environments; after the comparison, the
resulting data are discarded.

.ie "|"\fR|\fP" true

.el false
⇒ true

The resulting glyph properties, including font family, style, size,
and slant, must match, but not necessarily the requests and/or
escape sequences used to obtain them. In the previous example,
‘|’ and ‘\fR|\fP’ result in ‘|’ glyphs in the same typefaces at
the same positions, so the comparands are equal. If ‘.ft I’ had
been added before the ‘.ie’, they would differ: the first ‘|’ would
produce an italic ‘|’, not a roman one. Motions must match in
orientation and magnitude to within the applicable horizontal
and vertical motion quanta of the device, after rounding. ‘.if
"\u\d"\v'0'"’ is false even though both comparands result in

71 This refers to vtroff, a translator that would convert the C/A/T output from early-
vintage AT&T troff to a form suitable for Versatec and Benson-Varian plotters.

72 Strictly, letters not otherwise recognized are treated as output comparison delimiters.
For portability, it is wise to avoid using letters not in the list above; for example,
Plan 9 troff uses ‘h’ to test a mode it calls htmlroff, and GNU troff may provide
additional operators in the future.
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zero net motion, because motions are not interpreted or opti-
mized but sent as-is to the output.73 On the other hand, ‘.if
"\d"\v'0.5m'"’ is true, because \d is defined as a downward
motion of one-half em.74

Surround the comparands with \? to avoid formatting them;
this causes them to be compared character by character, as with
string comparisons in other programming languages.

.ie "\?|\?"\?\fR|\fP\?" true

.el false
⇒ false

Since comparands protected with \? are read in copy mode (see
Section 5.24.2 [Copy Mode], page 173), they need not even be
valid groff syntax. The escape character is still lexically recog-
nized, however, and consumes the next character.

.ds a \[

.ds b \[

.if '\?\*a\?'\?\*b\?' a and b equivalent

.if '\?\\?'\?\\?' backslashes equivalent
⇒ a and b equivalent

The above operators can’t be combined with most others, but a leading
‘!’, not followed immediately by spaces or tabs, complements an expression.

.nr x 1

.ie !r x register x is not defined

.el register x is defined
⇒ register x is defined

Spaces and tabs are optional immediately after the ‘c’, ‘d’, ‘F’, ‘m’, ‘r’, and
‘S’ operators, but right after ‘!’, they end the predicate and the conditional
evaluates true.75

.nr x 1

.ie ! r x register x is not defined

.el register x is defined
⇒ r x register x is not defined

The unexpected ‘r x’ in the output is a clue that our conditional was not
interpreted as we planned, but matters may not always be so obvious.

73 Because formatting of the comparands takes place in a dummy environment, vertical
motions within them cannot spring traps.

74 All of this is to say that the lists of output nodes created by formatting xxx and yyy
must be identical. See Section 5.36 [Gtroff Internals], page 216.

75 This bizarre behavior maintains compatibility with AT&T troff.
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5.23.2 if-then

[Request].if cond-expr anything
Evaluate the conditional expression cond-expr, and if it evaluates true (or
to a positive value), interpret the remainder of the line anything as if it
were an input line. Recall from Section 5.6.2 [Invoking Requests], page 84,
that any quantity of spaces between arguments to requests serves only to
separate them; leading spaces in anything are thus not seen. anything
effectively cannot be omitted; if cond-expr is true and anything is empty,
the newline at the end of the control line is interpreted as a blank input
line (and therefore a blank text line).

super\c
tanker
.nr force-word-break 1
super\c
.if ((\n[force-word-break] = 1) & \n[.int])
tanker

⇒ supertanker super tanker

[Request].nop anything
Interpret anything as if it were an input line. This is similar to
‘.if 1’. nop is not really “no operation”; its argument is processed—
unconditionally. It can be used to cause text lines to share indentation
with surrounding control lines.

.als real-MAC MAC

.de wrapped-MAC

. tm MAC: called with arguments \\$@

. nop \\*[real-MAC]\\

..

.als MAC wrapped-MAC
\# Later...
.als MAC real-MAC

In the above, we’ve used aliasing, nop, and the interpolation of a macro
as a string to interpose a wrapper around the macro ‘MAC’ (perhaps to
debug it).

5.23.3 if-else

[Request].ie cond-expr anything
[Request].el anything

Use the ie and el requests to write an if-then-else. The first request is the
“if” part and the latter is the “else” part. Unusually among programming
languages, any number of non-conditional requests may be interposed
between the ie branch and the el branch.
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.nr a 0

.ie \na a is non-zero.

.nr a +1

.el a was not positive but is now \na.
⇒ a was not positive but is now 1.

Another way in which el is an ordinary request is that it does not lexi-
cally “bind” more tightly to its ie counterpart than it does to any other
request. This fact can surprise C programmers.

.nr a 1

.nr z 0

.ie \nz \

. ie \na a is true

. el a is false

.el z is false
error warning: unbalanced 'el' request
⇒ a is false

To conveniently nest conditionals, keep reading.

5.23.4 Conditional Blocks

It is frequently desirable for a control structure to govern more than one
request, macro call, text line, or a combination of the foregoing. The opening
and closing brace escape sequences \{ and \} define such groups. These
conditional blocks can furthermore be nested.

[Escape sequence]\{
[Escape sequence]\}

\{ begins a conditional block; it must appear (after optional spaces and
tabs) immediately subsequent to the conditional expression of an if, ie,
or while request,76 or as the argument to an el request.

\} ends a condition block and should appear on a line with other occur-
rences of itself as necessary to match \{ sequences. It can be preceded
by a control character, spaces, and tabs. Input after any quantity of \}
sequences on the same line is processed only if all of the preceding con-
ditions to which they correspond are true. Furthermore, a \} closing the
body of a while request must be the last such escape sequence on an
input line.

Brace escape sequences outside of control structures have no meaning and
produce no output.

Caution: Input lines using \{ often end with \RET, especially in macros
that consist primarily of control lines. Forgetting to use \RET on an input
line after \{ is a common source of error.

76 See Section 5.23.5 [while], page 166.
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We might write the following in a page header macro. If we delete \RET,
the header will carry an unwanted extra empty line (except on page 1).

.if (\\n[%] != 1) \{\

. ie ((\\n[%] % 2) = 0) .tl \\*[even-numbered-page-title]

. el .tl \\*[odd-numbered-page-title]

.\}

Let us take a closer look at how conditional blocks nest.

A
.if 0 \{ B
C
D
\}E
F

⇒ A F

N
.if 1 \{ O
. if 0 \{ P
Q
R\} S\} T
U

⇒ N O U

The above behavior may challenge the intuition; it was implemented to
retain compatibility with AT&T troff. For clarity, it is idiomatic to end
input lines with \{ (followed by \RET if appropriate), and to precede \} on
an input line with nothing more than a control character, spaces, tabs, and
other instances of itself.

We can use ie, el, and conditional blocks to simulate the multi-way
“switch” or “case” control structures of other languages. The following ex-
ample is adapted from the groff man package. Indentation is used to clarify
the logic.

.\" Simulate switch/case in roff.

. ie '\\$2'1' .ds title General Commands\"

.el \{.ie '\\$2'2' .ds title System Calls\"

.el \{.ie '\\$2'3' .ds title Library Functions\"

.el \{.ie '\\$2'4' .ds title Kernel Interfaces\"

.el \{.ie '\\$2'5' .ds title File Formats\"

.el \{.ie '\\$2'6' .ds title Games\"

.el \{.ie '\\$2'7' .ds title Miscellaneous Information\"

.el \{.ie '\\$2'8' .ds title System Management\"

.el \{.ie '\\$2'9' .ds title Kernel Development\"

.el .ds title \" empty

.\}\}\}\}\}\}\}\}
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5.23.5 while

groff provides a looping construct: the while request. Its syntax matches
the if request.

[Request].while cond-expr anything
Evaluate the conditional expression cond-expr, and repeatedly execute
anything unless and until cond-expr evaluates false. anything, which is
often a conditional block, is referred to as the while request’s body.

.nr a 0 1

.while (\na < 9) \{\
\n+a,
.\}
\n+a

⇒ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

GNU troff treats the body of a while request similarly to that of a
de request (albeit one not read in copy mode77), but stores it under an
internal name and deletes it when the loop finishes. The operation of a
macro containing a while request can slow significantly if the while body
is large. Each time the macro is executed, the while body is parsed and
stored again.

.de xxx

. nr num 10

. while (\\n[num] > 0) \{\

. \" many lines of code

. nr num -1

. \}

..

An often better solution—and one that is more portable, since AT&T
troff lacked the while request—is to instead write a recursive macro.
It will be parsed only once.78

.de yyy

. if (\\n[num] > 0) \{\

. \" many lines of code

. nr num -1

. yyy

. \}

..

.

.de xxx

. nr num 10

. yyy

..

77 See Section 5.24.2 [Copy Mode], page 173.
78 unless you redefine it
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To prevent infinite loops, the default number of available recursion levels
is 1,000 or somewhat less.79 You can disable this protective measure, or
raise the limit, by setting the slimit register. See Section 5.37 [Debug-
ging], page 218.

As noted above, if a while body begins with a conditional block, its
closing brace must end an input line.

.if 1 \{\

. nr a 0 1

. while (\n[a] < 10) \{\

. nop \n+[a]

.\}\}
error unbalanced brace escape sequences

[Request].break
Exit a while loop. Do not confuse this request with a typographical
break or the br request.

[Request].continue
Skip the remainder of a while loop’s body, immediately starting the next
iteration.

5.24 Writing Macros
A macro is a stored collection of text and control lines that can be interpo-
lated multiple times. Use macros to define common operations. Macros are
called in the same way that requests are invoked. While requests exist for
the purpose of creating macros, simply calling an undefined macro, or inter-
polating it as a string, will cause it to be defined as empty. See Section 5.5
[Identifiers], page 81.

[Request].de name [end]
Define a macro name, replacing the definition of any existing request,
macro, string, or diversion called name. If name already exists as an alias,
the target of the alias is redefined; recall Section 5.22 [Strings], page 156.
GNU troff enters copy mode,80 storing subsequent input lines as the
macro definition. If the optional second argument is not specified, the
definition ends with the control line ‘..’ (two dots). Alternatively, end
identifies a macro whose call syntax at the start of a control line ends
the definition of name; end is then called normally. A macro definition
must end in the same conditional block (if any) in which it began (see
Section 5.23.4 [Conditional Blocks], page 164). Spaces or tabs are per-
mitted after the control character in the line containing this ending token
(either ‘.’ or ‘end’), but a tab immediately after the token prevents its

79 “somewhat less” because things other than macro calls can be on the input stack
80 See Section 5.24.2 [Copy Mode], page 173.
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recognition as the end of a macro definition. The macro end can be called
with arguments.81

Here is a small example macro called ‘P’ that causes a break and inserts
some vertical space. It could be used to separate paragraphs.

.de P

. br

. sp .8v

..

We can define one macro within another. Attempting to nest ‘..’ näıvely
will end the outer definition because the inner definition isn’t interpreted
as such until the outer macro is later interpolated. We can use an end
macro instead. Each level of nesting should use a unique end macro.

An end macro need not be defined until it is called. This fact enables a
nested macro definition to begin inside one macro and end inside another.
Consider the following example.82

.de m1

. de m2 m3
you
..
.de m3
Hello,
Joe.
..
.de m4
do
..
.m1
know?
. m3
What
.m4
.m2

⇒ Hello, Joe. What do you know?

A nested macro definition can be terminated with ‘..’ and nested macros
can reuse end macros, but these control lines must be escaped multiple
times for each level of nesting. The necessity of this escaping and the
utility of nested macro definitions will become clearer when we employ
macro parameters and consider the behavior of copy mode in detail.

81 While it is possible to define and call a macro ‘.’, you can’t use it as an end macro:
during a macro definition, ‘..’ is never handled as calling ‘.’, even if ‘.de name .’
explicitly precedes it.

82 Its structure is adapted from, and isomorphic to, part of a solution by Tadziu Hoffman
to the problem of reflowing text multiple times to find an optimal configuration for it.
https://lists.gnu.org/archive/html/groff/2008-12/msg00006.html

https://lists.gnu.org/archive/html/groff/2008-12/msg00006.html
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de defines a macro that inherits the compatibility mode enablement sta-
tus of its context (see Section 5.38 [Implementation Differences], page 223).
Often it is desirable to make a macro that uses groff features callable from
contexts where compatibility mode is on; for instance, when writing exten-
sions to a historical macro package. To achieve this, compatibility mode
needs to be switched off while such a macro is interpreted—without disturb-
ing that state when it is finished.

[Request].de1 name [end]
The de1 request defines a macro to be interpreted with compatibility
mode disabled. When name is called, compatibility mode enablement
status is saved; it is restored when the call completes. Observe the ex-
tra backlash before the interpolation of register ‘xxx’; we’ll explore this
subject in Section 5.24.2 [Copy Mode], page 173.

.nr xxx 12345

.de aa
The value of xxx is \\n[xxx].
. br
..
.de1 bb
The value of xxx is \\n[xxx].
..
.cp 1
.aa

error warning: register '[' not defined
⇒ The value of xxx is 0xxx].

.bb
⇒ The value of xxx is 12345.

[Request].dei name [end]
[Request].dei1 name [end]

The dei request defines a macro with its name and end macro indirected
through strings. That is, it interpolates strings named name and end
before performing the definition.

The following examples are equivalent.

.ds xx aa

.ds yy bb

.dei xx yy

.de aa bb

The dei1 request bears the same relationship to dei as de1 does to de;
it temporarily turns compatibility mode off when name is called.

[Request].am name [end]
[Request].am1 name [end]
[Request].ami name [end]
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[Request].ami1 name [end]
am appends subsequent input lines to macro name, extending its defini-
tion, and otherwise working as de does.

To make the previously defined ‘P’ macro set indented instead of block
paragraphs, add the necessary code to the existing macro.

.am P

.ti +5n

..

The other requests are analogous to their ‘de’ counterparts. The am1 re-
quest turns off compatibility mode during interpretation of the append-
ment. The ami request appends indirectly, meaning that strings name
and end are interpolated with the resulting names used before append-
ing. The ami1 request is similar to ami, disabling compatibility mode
during interpretation of the appended lines.

Using trace.tmac, you can trace calls to de, de1, am, and am1. You can
also use the backtrace request at any point desired to troubleshoot tricky
spots (see Section 5.37 [Debugging], page 218).

See Section 5.22 [Strings], page 156, for the als, rm, and rn requests to
create an alias of, remove, and rename a macro, respectively.

Macro identifiers share their name space with requests, strings, and di-
versions; see Section 5.5 [Identifiers], page 81. The am, as, da, de, di, and ds
requests (together with their variants) create a new object only if the name
of the macro, diversion, or string is currently undefined or if it is defined as
a request; normally, they modify the value of an existing object. See [the
description of the als request], page 159, for pitfalls when redefining a macro
that is aliased.

[Request].return [anything ]
Exit a macro, immediately returning to the caller. If called with an ar-
gument anything, exit twice—the current macro and the macro one level
higher. This is used to define a wrapper macro for return in trace.tmac.

5.24.1 Parameters

Macro calls and string interpolations optionally accept a list of arguments;
recall Section 5.6.3 [Calling Macros], page 86. At the time such an interpo-
lation takes place, these parameters can be examined using a register and a
variety of escape sequences starting with ‘\$’. All such escape sequences are
interpreted even in copy mode, a fact we shall motivate and explain below
(see Section 5.24.2 [Copy Mode], page 173).

[Register]\n[.$]
The count of parameters available to a macro or string is kept in this
read-only register. The shift request can change its value.
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Any individual parameter can be accessed by its position in the list of
arguments to the macro call, numbered from left to right starting at 1, with
one of the following escape sequences.

[Escape sequence]\$n
[Escape sequence]\$(nn
[Escape sequence]\$[nnn]

Interpolate the nth, nnth, or nnnth parameter. The first form expects
only a single digit (1≤n≤9)), the second two digits (01≤nn≤99)), and the
third any positive integer nnn. Macros and strings accept an unlimited
number of parameters.

[Request].shift [n]
Shift the parameters n places (1 by default). This is a “left shift”: what
was parameter i becomes parameter i − n. The parameters formerly in
positions 1 to n are no longer available. Shifting by a non-positive amount
performs no operation. The register .$ is adjusted accordingly.

In practice, parameter interpolations are usually seen prefixed with an
extra escape character. This is because the \$ family of escape sequences is
interpreted even in copy mode.83

[Escape sequence]\$*
[Escape sequence]\$@
[Escape sequence]\$^

In some cases it is convenient to interpolate all of the parameters at once
(to pass them to a request, for instance). The \$* escape concatenates
the parameters, separating them with spaces. \$@ is similar, concatenat-
ing the parameters, surrounding each with double quotes and separating
them with spaces. If not in compatibility mode, the interpolation depth
of double quotes is preserved (see Section 5.6.3 [Calling Macros], page 86).
\$^ interpolates all parameters as if they were arguments to the ds re-
quest.

83 If they were not, parameter interpolations would be similar to command-line
parameters—fixed for the entire duration of a roff program’s run. The advantage
of interpolating \$ escape sequences even in copy mode is that they can interpolate
different contents from one call to the next, like function parameters in a procedural
language. The additional escape character is the price of this power.
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.de foo

. tm $1='\\$1'

. tm $2='\\$2'

. tm $*='\\$*'

. tm $@='\\$@'

. tm $^='\\$^'

..

.foo " This is a "test"
error $1=' This is a '
error $2='test"'
error $*=' This is a test"'
error $@='" This is a " "test""'
error $^='" This is a "test"'

\$* is useful when writing a macro that doesn’t need to distinguish its
arguments, or even to not interpret them; examples include macros that
produce diagnostic messages by wrapping the tm or ab requests. Use \$@
when writing a macro that may need to shift its parameters and/or wrap
a macro or request that finds the count significant. If in doubt, prefer
\$@ to \$*. An application of \$^ is seen in trace.tmac, which redefines
some requests and macros for debugging purposes.

[Escape sequence]\$0
Interpolate the name by which the macro being interpreted was called.
The als request can cause a macro to have more than one name. Applying
string interpolation to a macro does not change this name.
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.de foo

. tm \\$0

..

.als bar foo

.

.de aaa

. foo

..

.de bbb

. bar

..

.de ccc
\\*[foo]\\
..
.de ddd
\\*[bar]\\
..
.
.aaa

error foo
.bbb

error bar
.ccc

error ccc
.ddd

error ddd

5.24.2 Copy Mode

When GNU troff processes certain requests, most importantly those which
define or append to a macro or string, it does so in copy mode: it copies the
characters of the definition into a dedicated storage region, interpolating the
escape sequences \n, \g, \$, \*, \V, and \? normally; interpreting \RET im-
mediately; discarding comments \" and \#; interpolating the current leader,
escape, or tab character with \a, \e, and \t, respectively; and storing all
other escape sequences in an encoded form.

The complement of copy mode—a roff formatter’s behavior when not
defining or appending to a macro, string, or diversion—where all macros are
interpolated, requests invoked, and valid escape sequences processed imme-
diately upon recognition, can be termed interpretation mode.

[Escape sequence]\\
The escape character, \ by default, can escape itself. This enables you
to control whether a given \n, \g, \$, \*, \V, or \? escape sequence is
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interpreted at the time the macro containing it is defined, or later when
the macro is called.84

.nr x 20

.de y

.nr x 10
\&\nx
\&\\nx
..
.y

⇒ 20 10

You can think of \\ as a “delayed” backslash; it is the escape character
followed by a backslash from which the escape character has removed its
special meaning. Consequently, ‘\\’ is not an escape sequence in the usual
sense. In any escape sequence ‘\X’ that GNU troff does not recognize,
the escape character is ignored and X is output. An unrecognized escape
sequence causes a warning in category ‘escape’, with two exceptions—
‘\\’ is the first.

[Escape sequence]\.
\. escapes the control character. It is similar to \\ in that it isn’t a
true escape sequence. It is used to permit nested macro definitions to
end without a named macro call to conclude them. Without a syntax for
escaping the control character, this would not be possible.

.de m1
foo
.
. de m2
bar
\\..
.
..
.m1
.m2

⇒ foo bar

The first backslash is consumed while the macro is read, and the second
is interpreted when macro m1 is called.

roff documents should not use the \\ or \. character sequences outside
of copy mode; they serve only to obfuscate the input. Use \e to represent
the escape character, \[rs] to obtain a backslash glyph, and \& before ‘.’
and ‘'’ where GNU troff expects them as control characters if you mean
to use them literally (recall Section 5.1.7 [Requests and Macros], page 67).

Macro definitions can be nested to arbitrary depth. The mechanics of
parsing the escape character have significant consequences for this practice.

84 Compare this to the \def and \edef commands in TEX.
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.de M1
\\$1
. de M2
\\\\$1
. de M3
\\\\\\\\$1
\\\\..
. M3 hand.
\\..
. M2 of
..
This understeer is getting
.M1 out

⇒ This understeer is getting out of hand.

Each escape character is interpreted twice—once in copy mode, when the
macro is defined, and once in interpretation mode, when the macro is called.
As seen above, this fact leads to exponential growth in the quantity of escape
characters required to delay interpolation of \n, \g, \$, \*, \V, and \? at
each nesting level, which can be daunting. GNU troff offers a solution.

[Escape sequence]\E
\E represents an escape character that is not interpreted in copy mode.
You can use it to ease the writing of nested macro definitions.

.de M1

. nop \E$1

. de M2

. nop \E$1

. de M3

. nop \E$1
\\\\..
. M3 better.
\\..
. M2 bit
..
This vehicle handles
.M1 a

⇒ This vehicle handles a bit better.

Observe that because \. is not a true escape sequence, we can’t use \E to
keep ‘..’ from ending a macro definition prematurely. If the multiplicity
of backslashes complicates maintenance, use end macros.

\E is also convenient to define strings containing escape sequences that
need to work when used in copy mode (for example, as macro arguments),
or which will be interpolated at varying macro nesting depths. We might
define strings to begin and end superscripting as follows.85

85 These are lightly adapted from the groff implementation of the ms macros.
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.ds { \v'-.9m\s'\En[.s]*7u/10u'+.7m'

.ds } \v'-.7m\s0+.9m'

When the ec request is used to redefine the escape character, \E also
makes it easier to distinguish the semantics of an escape character from
the other meaning(s) its character might have. Consider the use of an
unusual escape character, ‘-’.

.nr a 1

.ec -

.de xx
--na
..
.xx

⇒ -na

This result may surprise you; some people expect ‘1’ to be output since
register ‘a’ has clearly been defined with that value. What has happened?
The robotic replacement of ‘\’ with ‘-’ has led us astray. You might
recognize the sequence ‘--’ more readily with the default escape character
as ‘\-’, the special character escape sequence for the minus sign glyph.

.nr a 1

.ec -

.de xx
-Ena
..
.xx

⇒ 1

5.25 Page Motions
See Section 5.11 [Manipulating Spacing], page 112, for a discussion of the
most commonly used request for vertical motion, sp, which spaces downward
by one vee.

[Request].mk [reg ]
[Request].rt [dist]

You can mark a location on a page for subsequent return. mk takes an
argument, a register name in which to store the current page location.
If given no argument, it stores the location in an internal register. This
location can be used later by the rt or the sp requests (or the \v escape).

The rt request returns upward to the location marked with the last mk
request. If used with an argument, it returns to a vertical position dist
from the top of the page (no previous call to mk is necessary in this case).
The default scaling unit is ‘v’.

If a page break occurs between a mk request and its matching rt request,
the rt request is silently ignored.

A simple implementation of a macro to set text in two columns follows.
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.nr column-length 1.5i

.nr column-gap 4m

.nr bottom-margin 1m

.

.de 2c

. br

. mk

. ll \\n[column-length]u

. wh -\\n[bottom-margin]u 2c-trap

. nr right-side 0

..

.

.de 2c-trap

. ie \\n[right-side] \{\

. nr right-side 0

. po -(\\n[column-length]u + \\n[column-gap]u)

. \" remove trap

. wh -\\n[bottom-margin]u

. \}

. el \{\

. \" switch to right side

. nr right-side 1

. po +(\\n[column-length]u + \\n[column-gap]u)

. rt

. \}

..

Now let us apply our two-column macro.

.pl 1.5i

.ll 4i
This is a small test that shows how the
rt request works in combination with mk.

.2c
Starting here, text is typeset in two columns.
Note that this implementation isn't robust
and thus not suited for a real two-column
macro.

⇒ This is a small test that shows how the
⇒ rt request works in combination with mk.
⇒
⇒ Starting here, isn't robust
⇒ text is typeset and thus not
⇒ in two columns. suited for a
⇒ Note that this real two-column
⇒ implementation macro.
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Several escape sequences enable fine control of movement about the page.

[Escape sequence]\v'expr'
Vertically move the drawing position. expr indicates the magnitude of
motion: positive is downward and and negative upward. The default
scaling unit is ‘v’. The motion is relative to the current drawing position
unless expr begins with the boundary-relative motion operator ‘|’. See
Section 5.4 [Numeric Expressions], page 77.

Text processing continues at the new drawing position; usually, vertical
motions should be in balanced pairs to avoid a confusing page layout.

\v will not spring a vertical position trap. This can be useful; for example,
consider a page bottom trap macro that prints a marker in the margin to
indicate continuation of a footnote. See Section 5.28 [Traps], page 186.

A few escape sequences that produce vertical motion are unusual. They
are thought to originate early in AT&T nroff history to achieve super-
and subscripting by half-line motions on line printers and teletypewriters
before the phototypesetter made more precise positioning available. They
are reckoned in ems—not vees—to maintain continuity with their original
purpose of moving relative to the size of the type rather than the distance
between text baselines (vees).86

[Escape sequence]\r
[Escape sequence]\u
[Escape sequence]\d

Move upward 1m, upward .5m, and downward .5m, respectively.

Let us see these escape sequences in use.

Obtain 100 cm\u3\d of \ka\d\092\h'|\nau'\r233\dU.

In the foregoing we have paired \u and \d to typeset a superscript, and
later a full em negative (“reverse”) motion to place a superscript above a
subscript. A numeral-width horizontal motion escape sequence aligns the
proton and nucleon numbers, while \k marks a horizontal position to which
\h returns so that we could stack them. (We shall discuss these horizontal
motion escape sequences presently.) In serious applications, we often want
to alter the type size of the -scripts and to fine-tune the vertical motions, as
the groff ms package does with its super- and subscripting string definitions.

[Escape sequence]\h'expr'
Horizontally move the drawing position. expr indicates the magnitude
of motion: positive is rightward and negative leftward. The default scal-
ing unit is ‘m’. The motion is relative to the current drawing position
unless expr begins with the boundary-relative motion operator ‘|’. See
Section 5.4 [Numeric Expressions], page 77.

86 At the grops defaults of 10-point type on 12-point vertical spacing, the difference
between half a vee and half an em can be subtle: large spacings like ‘.vs .5i’ make it
obvious.
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The following string definition sets the TEX logo.87

.ds TeX T\h'-.1667m'\v'.224m'E\v'-.224m'\h'-.125m'X\"

There are a number of special-case escape sequences for horizontal mo-
tion.

[Escape sequence]\SP
Move right one word space. (The input is a backslash followed by a space.)
This escape sequence can be thought of as a non-adjustable, unbreakable
space. Usually you want \~ instead; see Section 5.9 [Manipulating Filling
and Adjustment], page 99.

[Escape sequence]\|
Move one-sixth em to the right on typesetting output devices. If a glyph
named ‘\|’ is defined in the current font, its width is used instead, even
on terminal output devices.

[Escape sequence]\^
Move one-twelfth em to the right on typesetting output devices. If a
glyph named ‘\^’ is defined in the current font, its width is used instead,
even on terminal output devices.

[Escape sequence]\0
Move right by the width of a numeral in the current font.

Horizontal motions are not discarded at the end of an output line as word
spaces are. See Section 5.1.4 [Breaking], page 66.

[Escape sequence]\w'anything'
[Register]\n[st]
[Register]\n[sb]
[Register]\n[rst]
[Register]\n[rsb]
[Register]\n[ct]
[Register]\n[ssc]
[Register]\n[skw]

Interpolate the width of anything in basic units. This escape sequence
allows several properties of formatted output to be measured without
writing it out.

The length of the string 'abc' is \w'abc'u.
⇒ The length of the string 'abc' is 72u.

anything is processed in a dummy environment: this means that font and
type size changes, for example, may occur within it without affecting
subsequent output.

87 See Section 5.22 [Strings], page 156, for an explanation of the trailing ‘\"’.
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After each use, \w sets several registers.

st
sb The maximum vertical displacements of the text baseline

above and below, respectively. The sign convention is oppo-
site that of relative vertical motions; that is, depth below the
(original) baseline is negative. These registers are incorrectly
documented in the AT&T troff manual as “the highest and
lowest extent of [the argument to \w] relative to the baseline”.

rst
rsb Like st and sb, but taking account of the heights and depths

of glyphs. In other words, these registers store the high-
est and lowest vertical positions attained by anything, doing
what AT&T troff documented st and sb as doing.

ct Characterizes the geometry of glyphs occurring in anything.

0 only short glyphs, no descenders or tall glyphs

1 at least one descender

2 at least one tall glyph

3 at least one each of a descender and a tall glyph

ssc The amount of horizontal space (possibly negative) that
should be added to the last glyph before a subscript.

skw How far to right of the center of the last glyph in the \w
argument, the center of an accent from a roman font should
be placed over that glyph.

[Escape sequence]\kp
[Escape sequence]\k(ps
[Escape sequence]\k[position]

Store the current horizontal position in the input line in a register with
the name position (one-character name p, two-character name ps). Use
this, for example, to return to the beginning of a string for highlighting
or other decoration.

[Register]\n[hp]
The current horizontal position at the input line.

[Register]\n[.k]
A read-only register containing the current horizontal output position
(relative to the current indentation).

[Escape sequence]\o'abc. . .'
Overstrike the glyphs of characters a, b, c, . . . ; the glyphs are centered,
written, and the drawing position advanced by the widest of the glyphs.
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[Escape sequence]\zc
Format the character c with zero width; that is, without advancing the
drawing position. Use \z to overstrike glyphs aligned to their left edges,
in contrast to \o’s centering.

[Escape sequence]\Z'anything'
Save the drawing position, format anything, then restore it. Tabs and
leaders in the argument are ignored with an error diagnostic.

We might implement a strike-through macro thus.

.de ST

.nr width \w'\\$1'
\Z@\v'-.25m'\l'\\n[width]u'@\\$1
..
.
This is
.ST "a test"
an actual emergency!

5.26 Drawing Geometric Objects
A few of the formatter’s escape sequences draw lines and other geometric
objects. Combined with each other and with page motion commands (see
Section 5.25 [Page Motions], page 176), a wide variety of figures is possible.
For complex drawings, these operations can be cumbersome; the preproces-
sors gpic or ggrn are typically used instead.

The \l and \L escape sequences draw horizontal and vertical sequences
of glyphs, respectively. Even the simplest of output devices supports them.

[Escape sequence]\l'l'
[Escape sequence]\l'lc'

Draw a horizontal line of length l from the drawing position. Rightward
motion is positive. Afterward, the drawing position is at the right end of
the line. The default scaling unit is ‘m’.

The optional second parameter c is a character with which to draw the
line. The default is the baseline rule special character, \[ru].

If c is a valid scaling unit, put \& after l to disambiguate the input.

.de textbox
\[br]\\$*\[br]\l'|0\[rn]'\l'|0\[ul]'
..

The foregoing outputs a box rule (a vertical line), the text argument(s),
and another box rule. We employ the boundary-relative motion operator
‘|’. Finally, the line-drawing escape sequences draw a radical extender (a
form of overline) and an underline from the drawing position to the po-
sition coresponding to beginning of the input line. The drawing position
returns to just after the right-hand box rule because the lengths of the
drawn lines are negative, as noted above.
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[Escape sequence]\L'l'
[Escape sequence]\L'lc'

Draw a vertical line of length l from the drawing position. Downward
motion is positive. The default scaling unit is ‘v’. The default character
is the box rule, \[br]. As with vertical motion escape sequences, text
processing continues where the line ends. \L is otherwise similar to \l.

$ nroff <<EOF
This is a \L'3v'test.
EOF

⇒ This is a
⇒ |
⇒ |
⇒ |test.

When writing text, the drawing position is at the text baseline; recall
Section 5.2 [Page Geometry], page 74.

The \D escape sequence provides drawing commands that direct the out-
put device to render geometrical objects rather than glyphs. Specific devices
may support only a subset, or may feature additional ones; consult the man
page for the output driver in use. Terminal devices in particular implement
almost none. See Section 6.1.2.3 [Graphics Commands], page 234.

Rendering starts at the drawing position; when finished, the drawing
position is left at the rightmost point of the object, even for closed figures,
except where noted. GNU troff draws stroked (outlined) objects with the
stroke color, and shades filled ones with the fill color. See Section 5.21
[Colors], page 154. Coordinates h and v are horizontal and vertical motions
relative to the drawing position or previous point in the command. The
default scaling unit for horizontal measurements (and diameters of circles)
is ‘m’; for vertical ones, ‘v’.

Circles, ellipses, and polygons can be drawn filled or stroked. These are
independent properties; if you want a filled, stroked figure, you must draw
the same figure twice using each drawing command. A filled figure is always
smaller than an outlined one because the former is drawn only within its
defined area, whereas strokes have a line thickness (set with ‘\D't'’).

\h'1i'\v'1i'\
\# increase line thickness
\Z'\D't 5p''\
\# draw stroked (unfilled) polygon
\Z'\D'p 3 3 -6 0''\
\# draw filled (solid) polygon
\Z'\D'P 3 3 -6 0''

[Escape sequence]\D'command argument . . .'
Drawing command escape sequence parameters begin with an ordinary
character, command, selecting the type of object to be drawn, followed
by arguments whose meaning is determined by command.
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\D'~ h1 v1 ... hn vn'
Draw a B-spline to each point in sequence, leaving the draw-
ing position at (hn, vn).

\D'a hc vc h v'
Draw a circular arc centered at (hc, vc) counterclockwise from
the drawing position to a point (h, v) relative to the center.88

\D'c d' Draw a circle of diameter d with its leftmost point at the
drawing position.

\D'C d' As ‘\D'C . . .'’, but the circle is filled.

\D'e h v' Draw an ellipse of width h and height v with its leftmost
point at the drawing position.

\D'E x y' As ‘\D'e . . .'’, but the ellipse is filled.

\D'l dx dy'
Draw line from the drawing position to (h, v).

The following is a macro for drawing a box around a text
argument; for simplicity, the box margin is a fixed at 0.2m.

.de TEXTBOX

. nr @wd \w'\\$1'
\h'.2m'\
\h'-.2m'\v'(.2m - \\n[rsb]u)'\
\D'l 0 -(\\n[rst]u - \\n[rsb]u + .4m)'\
\D'l (\\n[@wd]u + .4m) 0'\
\D'l 0 (\\n[rst]u - \\n[rsb]u + .4m)'\
\D'l -(\\n[@wd]u + .4m) 0'\
\h'.2m'\v'-(.2m - \\n[rsb]u)'\
\\$1\
\h'.2m'
..

The argument is measured with the \w escape sequence. Its
width is stored in register @wd. \w also sets the registers rst
and rsb; these contain its maximum vertical extents of the
argument. Then, four lines are drawn to form a box, offset
by the box margin.

\D'p h1 v1 ... hn vn'
Draw polygon with vertices at drawing position and each
point in sequence. GNU troff closes the polygon by draw-
ing a line from (hn, vn) back to the initial drawing position.
Afterward, the drawing position is left at (hn, vn).

\D'P dx1 dy1 dx2 dy2 ...'
As ‘\D'P . . .'’, but the polygon is filled.

88 (hc, vc) is adjusted to the point nearest the perpendicular bisector of the arc’s chord.
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The following macro is like the ‘\D'l'’ example, but shades
the box. We draw the box before writing the text because
colors in GNU troff have no transparency; in othe opposite
order, the filled polygon would occlude the text.

.de TEXTBOX

. nr @wd \w'\\$1'
\h'.2m'\
\h'-.2m'\v'(.2m - \\n[rsb]u)'\
\M[lightcyan]\
\D'P 0 -(\\n[rst]u - \\n[rsb]u + .4m) \

(\\n[@wd]u + .4m) 0 \
0 (\\n[rst]u - \\n[rsb]u + .4m) \
-(\\n[@wd]u + .4m) 0'\

\h'.2m'\v'-(.2m - \\n[rsb]u)'\
\M[]\
\\$1\
\h'.2m'
..

\D't n' Set the stroke thickness of geometric objects to n basic units.
A zero n selects the minimal supported thickness. A negative
n selects a thickness proportional to the type size; this is the
default.

In a hazy penumbra between text rendering and drawing commands we
locate the bracket-building escape sequence, \b. It can assemble apparently
large glyphs by vertically stacking ordinary ones.

[Escape sequence]\b'contents'
Pile and center a sequence of glyphs vertically on the output line. Piling
stacks glyphs corresponding to each character in contents, read from left
to right, and placed from top to bottom. GNU troff separates the
glyphs vertically by 1m, and the pile itself is centered 0.5m above the
text baseline. The horizontal drawing position is then advanced by the
width of the widest glyph in the pile.

This rather inflexible positioning algorithm doesn’t work with the dvi
output device since its bracket pieces vary in height. Instead, use the
geqn preprocessor.

Section 5.11 [Manipulating Spacing], page 112, describes how to adjust
the vertical spacing of the output line with the \x escape sequence.

The application of \b that lends its name is construction of brackets,
braces, and parentheses when typesetting mathematics. We might con-
struct a large opening (left) brace as follows.

\b'\[lt]\[bv]\[lk]\[bv]\[lb]'

See groff char(7) for a list of special character identifiers.
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5.27 Deferring Output
A few roff language elements are generally not used in simple documents,
but arise as page layouts become more sophisticated and demanding. En-
vironments collect formatting parameters like line length and typeface. A
diversion stores formatted output for later use. A trap is a condition on the
input or output, tested automatically by the formatter, that is associated
with a macro, causing it to be called when that condition is fulfilled.

Footnote support often exercises all three of the foregoing features. A
simple implementation might work as follows. A pair of macros is defined:
one starts a footnote and the other ends it. The author calls the first macro
where a footnote marker is desired. The macro establishes a diversion so
that the footnote text is collected at the place in the body text where its
corresponding marker appears. An environment is created for the footnote
so that it is set at a smaller typeface. The footnote text is formatted in the
diversion using that environment, but it does not yet appear in the output.
The document author calls the footnote end macro, which returns to the
previous environment and ends the diversion. Later, after much more body
text in the document, a trap, set a small distance above the page bottom,
is sprung. The macro called by the trap draws a line across the page and
emits the stored diversion. Thus, the footnote is rendered.

Diversions and traps make the text formatting process non-linear. Let
us imagine a set of text lines or paragraphs labelled ‘A’, ‘B’, and so on. If
we set up a trap that produces text ‘T’ (as a page footer, say), and we also
use a diversion to store the formatted text ‘D’, then a document with input
text in the order ‘A B C D E F’ might render as ‘A B C E T F’. The diversion
‘D’ will never be output if we do not call for it.

Environments of themselves are not a source of non-linearity in document
formatting: environment switches have immediate effect. One could always
write a macro to change as many formatting parameters as desired with a
single convenient call. But because diversions can be nested and macros
called by traps that are sprung by other trap-called macros, they may be
called upon in varying contexts. For example, consider a page header that
is always to be set in Helvetica. A document that uses Times for most of
its body text, but Courier for displayed code examples, poses a challenge
if a page break occurs in the middle of a code display; if the header trap
assumes that the “previous font” is always Times, the rest of the example will
be formatted in the wrong typeface. One could carefully save all formatting
parameters upon entering the trap and restore them upon leaving it, but this
is verbose, error-prone, and not future-proof as the groff language develops.
Environments save us considerable effort.
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5.28 Traps
Traps are locations in the output or conditions on the input that, when
reached or fulfilled, call a specified macro. These traps can occur at a given
location on the page, at a given location in the current diversion (together,
these are known as vertical position traps), at a blank line, at a line with
leading space characters, after a quantity of input lines, or at the end of
input. Macros called by traps are passed no arguments. Setting a trap is
also called planting one. It is said that a trap is sprung if its condition is
fulfilled.

5.28.1 Vertical Position Traps

A vertical position trap calls a macro when the formatter’s vertical drawing
position reaches or passes, in the downward direction, a certain location
on the output page or in a diversion. Its applications include setting page
headers and footers, body text in multiple columns, and footnotes.

[Request].vpt [flag ]
[Register]\n[.vpt]

Enable vertical position traps if flag is non-zero or absent; disable them
otherwise. Vertical position traps are those set by the wh request or by dt
within a diversion. The parameter that controls whether vertical position
traps are enabled is global. Initially, vertical position traps are enabled.
The current value is stored in the .vpt read-only register.

A page can’t be ejected if vpt is set to zero; see Section 5.28.1.2 [The
Implicit Page Trap], page 190.

5.28.1.1 Page Location Traps

A page location trap is a vertical position trap that applies to the page; that
is, to undiverted output. Many can be present; manage them with the wh
and ch requests.

[Request].wh dist [name]
Plant macro name as page location trap at dist. The default scaling unit
is ‘v’. Non-negative values for dist set the trap relative to the top of the
page; negative values set the trap relative to the bottom of the page. It is
not possible to plant a trap less than one basic unit from the page bottom:
a dist of -0 is interpreted as 0, the top of the page.89 An existing visible
trap (see below) at dist is removed; this is wh’s sole function if name is
missing.

A trap is sprung only if it is visible, meaning that its location is reachable
on the page90 and it is not hidden by another trap at the same location
already planted there.

89 See Section 5.28.1.2 [The Implicit Page Trap], page 190.
90 A trap planted at ‘20i’ or ‘-30i’ will not be sprung on a page of length ‘11i’.
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A macro package might set headers and footers as follows; this example
configures vertical margins of one inch to the body text, and one half-inch
to the titles. Observe the use of the no-break control character with sp
request to position our text baselines, and the page number character ‘%’
used with the tl request.

.\" hdfo.roff

.de hd \" page header
' sp .5i
' tl '\\*(Ti''\\*(Da' \" title and date strings
' sp .5i
..
.de fo \" page footer
' sp .5i
. tl ''%''
. bp
..
.wh 0 hd \" trap at top of the page
.wh -1i fo \" trap 1 inch from bottom

To use these traps, copy the above (or load it from a file with the so or
mso requests), then set up the strings it uses.

.so hdfo.roff

.ds Ti Final Report\"

.ds Da 21 May 2023\"

.ti
On 5 August of last year,
this committee tasked me with the investigation of the
CFIT (controlled flight into terrain) incident of
.\" ...and so on...

A trap above the top or at or below the bottom of the page can be
made visible by either moving it into the page area or increasing the page
length so that the trap is on the page. Negative trap values always use
the current page length; they are not converted to an absolute vertical
position. We can use the ptr request to dump our page location traps to
the standard error stream (see Section 5.37 [Debugging], page 218). Their
positions are reported in basic units; an nroff device example follows.

.pl 5i

.wh -1i xx

.ptr
error xx -240

.pl 100i

.ptr
error xx -240

It is possible to have more than one trap at the same location (although
only one at a time can be visible); to achieve this, the traps must be
defined at different locations, then moved to the same place with the ch
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request. In the following example, the many empty lines caused by the
bp request are not shown in the output.

.de a

. nop a

..

.de b

. nop b

..

.de c

. nop c

..

.

.wh 1i a

.wh 2i b

.wh 3i c

.bp
⇒ a b c

.ch b 1i

.ch c 1i

.bp
⇒ a

.ch a 0.5i

.bp
⇒ a b

[Register]\n[.t]
The read-only register .t holds the distance to the next vertical position
trap. If there are no traps between the current position and the bottom of
the page, it contains the distance to the page bottom. Within a diversion,
in the absence of a diversion trap, this distance is the largest representable
integer in basic units—effectively infinite.

[Request].ch name [dist]
Change the location of a trap by moving macro name to new location
dist, or by unplanting it altogether if dist is absent. The default scaling
unit is ‘v’. Parameters to ch are specified in the opposite order from
wh. If name is the earliest planted macro of multiple traps at the same
location, (re)moving it from that location exposes the macro next least
recently planted at the same place.91

Changing a trap’s location is useful for building up footnotes in a diversion
to allow more space at the bottom of the page for them.

91 It may help to think of each trap location as maintaining a queue; wh operates on the
head of the queue, and ch operates on its tail. Only the trap at the head of the queue
is visible.
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The same macro can be installed simultaneously at multiple locations;
however, only the earliest-planted instance—that has not yet been deleted
with wh—will be moved by ch. The following example (using an nroff de-
vice) illustrates this behavior. Blank lines have been elided from the output.

.de T
Trap sprung at \\n(nlu.
.br
..
.wh 1i T
.wh 2i T
foo
.sp 11i
.bp
.ch T 4i
bar
.sp 11i
.bp
.ch T 5i
baz
.sp 11i
.bp
.wh 5i
.ch T 6i
qux
.sp 11i

⇒ foo
⇒ Trap sprung at 240u.
⇒ Trap sprung at 480u.
⇒ bar
⇒ Trap sprung at 480u.
⇒ Trap sprung at 960u.
⇒ baz
⇒ Trap sprung at 480u.
⇒ Trap sprung at 1200u.
⇒ qux
⇒ Trap sprung at 1440u.

[Register]\n[.ne]
The read-only register .ne contains the amount of space that was needed
in the last ne request that caused a trap to be sprung; it is useful in
conjunction with the .trunc register. See Section 5.18 [Page Control],
page 128. Since the .ne register is set only by traps, it doesn’t make
sense to interpolate it outside of macros called by traps.
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[Register]\n[.trunc]
A read-only register containing the amount of vertical space truncated
from an sp request by the most recently sprung vertical position trap,
or, if the trap was sprung by an ne request, minus the amount of vertical
motion produced by the ne request. In other words, at the point a trap
is sprung, it represents the difference of what the vertical position would
have been but for the trap, and what the vertical position actually is.
Since the .trunc register is set only by traps, it doesn’t make sense to
interpolate it outside of macros called by traps.

[Register]\n[.pe]
This Boolean-valued, read-only register interpolates 1 while a page is
being ejected, and 0 otherwise.

In the following example, we plant the same trap at the top and the
bottom of the page. We also make the trap report its name and the
vertical drawing position.

.de T

.tm \\$0: page \\n%, nl=\\n[nl] .pe=\\n[.pe]

..

.ll 46n

.wh 0 T

.wh -1v T
Those who can make you believe absurdities can make you
commit atrocities. \[em] Voltaire

error T: page 1, nl=0 .pe=0
error T: page 1, nl=2600 .pe=1
⇒ Those who can make you believe absurdities can
⇒ make you commit atrocities. -- Voltaire

When designing macros, keep in mind that diversions and traps do nor-
mally interact. For example, if a trap calls a header macro (while outputting
a diversion) that tries to change the font on the current page, the effect is
not visible before the diversion has completely been printed (except for input
protected with \! or \?) since the data in the diversion is already formatted.
In most cases, this is not the expected behaviour.

5.28.1.2 The Implicit Page Trap

If, after starting GNU troff without loading a macro package, you use the
ptr request to dump a list of the active traps to the standard error stream,92

nothing is reported. Yet the .t register will report a steadily decreasing value
with every output line your document produces, and once the value of .t
gets to within .V of zero, you will notice that something trap-like happens—
the page is ejected, a new one begins, and the value of .t becomes large
once more.

92 See Section 5.37 [Debugging], page 218.
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This implicit page trap always exists in the top-level diversion;93 it works
like a trap in some ways but not others. Its purpose is to eject the current
page and start the next one. It has no name, so it cannot be moved or
deleted with wh or ch requests. You cannot hide it by placing another trap
at its location, and can move it only by redefining the page length with pl.
Its operation is suppressed when vertical page traps are disabled with GNU
troff’s vpt request.

5.28.1.3 Diversion Traps

A diversion is not formatted in the context of a page, so it lacks page location
traps; instead it can have a diversion trap. There can exist at most one such
vertical position trap per diversion.

[Request].dt [dist name]
Set a trap within a diversion at location dist, which is interpreted relative
to diversion rather than page boundaries. If invoked with fewer than two
arguments, any diversion trap in the current diversion is removed. The
register .t works within diversions. It is an error to invoke dt in the
top-level diversion. See Section 5.29 [Diversions], page 196.

5.28.2 Input Line Traps

[Request].it [n name]
[Request].itc [n name]

Set an input line trap, calling macro name after processing the next
n productive input lines (recall Section 5.9 [Manipulating Filling and
Adjustment], page 99). Any existing input line trap in the environment
is replaced. Without arguments, it and itc clear any input line trap
that has not yet sprung.

Consider a macro ‘.ST s n’ which sets the next n input lines in the font
style s.

.de ST \" Use style $1 for next $2 text lines.

. it \\$2 ES

. ft \\$1

..

.de ES \" end ST

. ft R

..

.ST I 1
oblique
face
.ST I 1
oblique\c
face

⇒ oblique face obliqueface (second ‘‘face” upright)

93 See Section 5.29 [Diversions], page 196.
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Unlike the ce and rj requests, it counts lines interrupted with the \c es-
cape sequence separately (see Section 5.16 [Line Continuation], page 125);
itc does not. To see the difference, let’s change the previous example to
use itc instead.

. . .

. itc \\$2 ES

. . .
⇒ oblique face obliqueface (second ‘‘face” oblique)

You can think of the ce and rj requests as implicitly creating an input
line trap with itc that schedules a break when the trap is sprung.

.de BR

. br

. internal: disable centering-without-filling

..

.

.de ce

. if \\n[.br] .br

. itc \\$1 BR

. internal: enable centering-without-filling

..

Let us consider in more detail the sorts of input lines that are or are not
“productive”.

.de Trap
TRAP SPRUNG
..
.de Mac
.if r a \l'5n'
..
.it 2 Trap
.
foo
.Mac
bar
baz
.it 1 Trap
.sp \" moves, but does not write or draw
qux
.itc 1 Trap
\h'5n'\c \" moves, but does not write or draw
jat

When ‘Trap’ gets called depends on whether the ‘a’ register is defined;
the control line with the if request may or may not produce written out-
put. We also see that the spacing request sp, while certainly affecting
the output, does not spring the input line trap. Similarly, the horizontal
motion escape sequence \h also affected the output, but was not “writ-
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ten”. Observe that we had to follow it with \c and use itc to prevent
the newline at the end of the text line from causing a word break, which,
like an ordinary space character, counts as written output.

$ groff -Tascii input-trap-example.groff
⇒ foo bar TRAP SPRUNG baz
⇒
⇒ qux TRAP SPRUNG jat TRAP SPRUNG

$ groff -Tascii -ra1 input-trap-example.groff
⇒ foo _____ TRAP SPRUNG bar baz
⇒
⇒ qux TRAP SPRUNG jat TRAP SPRUNG

Input line traps are associated with the environment (see Section 5.31
[Environments], page 203); switching to another environment suspends the
current input line trap, and going back resumes it, restoring the count of
qualifying lines enumerated in that environment.

5.28.3 Blank Line Traps

[Request].blm [name]
Set a blank line trap, calling the macro name when GNU troff en-
counters a blank line in an input file, instead of the usual behavior (see
Section 5.1.4 [Breaking], page 66). A line consisting only of spaces is also
treated as blank and subject to this trap. If no argument is supplied, the
default blank line behavior is (re-)established.

5.28.4 Leading Space Traps

[Request].lsm [name]
[Register]\n[lsn]
[Register]\n[lss]

Set a leading space trap, calling the macro name when GNU troff en-
counters leading spaces in an input line; the implicit line break that nor-
mally happens in this case is suppressed. If no argument is supplied,
the default leading space behavior is (re-)established (see Section 5.1.4
[Breaking], page 66).

The count of leading spaces on an input line is stored in register lsn, and
the amount of corresponding horizontal motion in register lss, irrespec-
tive of whether a leading space trap is set. When it is, the leading spaces
are removed from the input line, and no motion is produced before calling
name.
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5.28.5 End-of-input Traps

[Request].em [name]
Set a trap at the end of input, calling macro name after the last line of the
last input file has been processed. If no argument is given, any existing
end-of-input trap is removed.

For example, if the document had to have a section at the bottom of the
last page for someone to approve it, the em request could be used.

.de approval
\c
. ne 3v
. sp (\\n[.t]u - 3v)
. in +4i
. lc _
. br
Approved:\t\a
. sp
Date:\t\t\a
..
.
.em approval

The \c in the above example needs explanation. For historical reasons
(compatibility with AT&T troff), the end-of-input macro exits as soon
as it causes a page break if no partially collected line remains.94

Let us assume that there is no \c in the above approval macro, that the
page is full, and last output line has been broken with, say, a br request.
Because there is no more room, a ne request at this point causes a page
ejection, which in turn makes troff exit immediately as just described.
In most situations, this is not desired; people generally want to format
the input after ne.

To force processing of the whole end-of-input macro independently of
this behavior, it is thus advisable to (invisibly) ensure the existence of a
partially collected line (\c) whenever there is a chance that a page break
can happen. In the above example, invoking the ne request ensures that
there is room for the subsequent formatted output on the same page, so
we need insert \c only once.

The next example shows how to append three lines, then start a new
page unconditionally. Since ‘.ne 1’ doesn’t give the desired effect—there
is always one line available or we are already at the beginning of the next
page—we temporarily increase the page length by one line so that we can
use ‘.ne 2’.

94 While processing an end-of-input macro, the formatter assumes that the next page
break must be the last; it goes into “sudden death overtime”.
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.de EM

.pl +1v
\c
.ne 2
line one
.br
\c
.ne 2
line two
.br
\c
.ne 2
line three
.br
.pl -1v
\c
'bp
..
.em EM

This specific feature affects only the first potential page break caused by
the end-of-input macro; further page breaks emitted by the macro are
handled normally.

Another possible use of the em request is to make GNU troff emit a
single large page instead of multiple pages. For example, one may want
to produce a long plain text file for reading in a terminal or emulator
without page footers and headers interrupting the body of the document.
One approach is to set the page length at the beginning of the document
to a very large value to hold all the text,95 and automatically adjust it to
the exact height of the document after the text has been output.

.de adjust-page-length

. br

. pl \\n[nl]u \" \n[nl]: current vertical position

..

.

.de single-page-mode

. pl 99999

. em adjust-page-length

..

.

.\" Activate the above code if configured.

.if \n[do-continuous-rendering] \

. single-page-mode

95 Another, taken by the groff man macros, is to intercept ne requests and wrap bp ones.
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Since only one end-of-input trap exists and another macro package may
already use it, care must be taken not to break the mechanism. A simple
solution would be to append the above macro to the macro package’s
end-of-input macro using the am request.

5.29 Diversions
In roff systems it is possible to format text as if for output, but instead
of writing it immediately, one can divert the formatted text into a named
storage area. It is retrieved later by specifying its name after a control char-
acter. The same name space is used for such diversions as for strings and
macros; see Section 5.5 [Identifiers], page 81. Such text is sometimes said to
be “stored in a macro”, but this coinage obscures the important distinction
between macros and strings on one hand and diversions on the other; the
former store unformatted input text, and the latter capture formatted out-
put. Diversions also do not interpret arguments. Applications of diversions
include “keeps” (preventing a page break from occurring at an inconvenient
place by forcing a set of output lines to be set as a group), footnotes, tables
of contents, and indices. For orthogonality it is said that GNU troff is in
the top-level diversion if no diversion is active (that is, formatted output is
being “diverted” immediately to the output device).

Dereferencing an undefined diversion will create an empty one of that
name and cause a warning in category ‘mac’ to be emitted. See Section 5.37.1
[Warnings], page 221, for information about the enablement and suppression
of warnings. A diversion does not exist for the purpose of testing with the
d conditional operator until its initial definition ends (see Section 5.23.1
[Operators in Conditionals], page 160). The following requests are used to
create and alter diversions.

[Request].di [name]
[Request].da [name]

Start collecting formatted output in a diversion called name. The da
request appends to a diversion called name, creating it if necessary. If
name already exists as an alias, the target of the alias is replaced or
appended to; recall Section 5.22 [Strings], page 156. The pending output
line is diverted as well. Switching to another environment (with the ev
request) before invoking di or da avoids including any pending output
line in the diversion; see Section 5.31 [Environments], page 203.

Invoking di or da without an argument stops diverting output to the
diversion named by the most recent corresponding request. If di or da is
called without an argument when there is no current diversion, a warning
in category ‘di’ is produced. See Section 5.37.1 [Warnings], page 221, for
information about the enablement and suppression of warnings.
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Before the diversion.
.di yyy
In the diversion.
.br
.di
After the diversion.
.br

⇒ After the diversion.
.yyy

⇒ Before the diversion. In the diversion.

GNU troff supports box requests to exclude a partially collected line
from a diversion, as this is often desirable.

[Request].box [name]
[Request].boxa [name]

Divert (or append) output to name, similarly to the di and da requests,
respectively. Any pending output line is not included in the diversion.
Without an argument, stop diverting output; any pending output line
inside the diversion is discarded.

Before the box.
.box xxx
In the box.
.br
Hidden treasure.
.box
After the box.
.br

⇒ Before the box. After the box.
.xxx

⇒ In the box.

Apart from pending output line inclusion and the request names that
populate them, boxes are handled exactly as diversions are. All of the fol-
lowing groff language elements can be used with them interchangeably.

[Register]\n[.z]
[Register]\n[.d]

Diversions may be nested. The read-only string-valued register .z con-
tains the name of the current diversion. The read-only register .d contains
the current vertical place in the diversion. If the input text is not being
diverted, .d reports the same location as the register nl.
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[Register]\n[.h]
The read-only register .h stores the high-water mark on the current page
or in the current diversion. It corresponds to the text baseline of the
lowest line on the page.96

.tm .h==\n[.h], nl==\n[nl]
⇒ .h==0, nl==-1

This is a test.
.br
.sp 2
.tm .h==\n[.h], nl==\n[nl]

⇒ .h==40, nl==120

As implied by the example, vertical motion does not produce text base-
lines and thus does not increase the value interpolated by ‘\n[.h]’.

[Register]\n[dn]
[Register]\n[dl]

After completing a diversion, the writable registers dn and dl contain its
vertical and horizontal sizes. Only the lines just processed are counted:
for the computation of dn and dl, the requests da and boxa are handled
as if di and box had been used, respectively—lines that have been already
stored in the diversion (box) are not taken into account.

.\" Center text both horizontally and vertically.

.\" Macro .(c starts centering mode; .)c terminates it.

.

.\" Disable the escape character with .eo so that we

.\" don't have to double backslashes on the "\n"s.

.eo

.de (c

. br

. ev (c

. evc 0

. in 0

. nf

. di @c

..

96 Thus, the “water” gets “higher” proceeding down the page.
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.de )c

. br

. ev

. di

. nr @s (((\n[.t]u - \n[dn]u) / 2u) - 1v)

. sp \n[@s]u

. ce 1000

. @c

. ce 0

. sp \n[@s]u

. br

. fi

. rr @s

. rm @c

..

.ec

[Escape sequence]\!anything
[Escape sequence]\?anything\?

Transparently embed anything into the current diversion, preventing re-
quests, macro calls, and escape sequences from being interpreted when
read into a diversion. This is useful for preventing them from taking ef-
fect until the diverted text is actually output. The \! escape sequence
transparently embeds input up to and including the end of the line. The
\? escape sequence transparently embeds input until its own next occur-
rence.

anything may not contain newlines; use \! by itself to embed newlines in
a diversion. The escape sequence \? is also recognized in copy mode and
turned into a single internal code; it is this code that terminates anything.
Thus the following example prints 4.

.nr x 1

.nf

.di d
\?\\?\\\\?\\\\\\\\nx\\\\?\\?\?
.di
.nr x 2
.di e
.d
.di
.nr x 3
.di f
.e
.di
.nr x 4
.f

Both escape sequences read the data in copy mode.
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If \! is used in the top-level diversion, its argument is directly embedded
into GNU troff’s intermediate output. This can be used, for example,
to control a postprocessor that processes the data before it is sent to an
output driver.

The \? escape used in the top-level diversion produces no output at all;
its argument is simply ignored.

[Request].output contents
Emit contents directly to GNU troff’s intermediate output (subject to
copy mode interpretation); this is similar to \! used at the top level. An
initial neutral double quote in contents is stripped to allow embedding of
leading spaces.

This request can’t be used before the first page has started—if you get
an error, simply insert .br before the output request.

Use with caution! It is normally only needed for mark-up used by a
postprocessor that does something with the output before sending it to
the output device, filtering out contents again.

[Request].asciify div
Unformat the diversion div in a way such that Unicode basic Latin
(ASCII) characters, characters translated with the trin request, space
characters, and some escape sequences, that were formatted and diverted
into div are treated like ordinary input characters when div is reread.
Doing so can be useful in conjunction with the writem request. asciify
can be also used for gross hacks; for example, the following sets register n
to 1.

.tr @.

.di x
@nr n 1
.br
.di
.tr @@
.asciify x
.x

asciify cannot return all items in a diversion to their source equiva-
lent: nodes such as those produced by the \N escape sequence will remain
nodes, so the result cannot be guaranteed to be a pure string. See Sec-
tion 5.24.2 [Copy Mode], page 173. Glyph parameters such as the type
face and size are not preserved; use unformat to achieve that.

[Request].unformat div
Like asciify, unformat the diversion div. However, unformat handles
only tabs and spaces between words, the latter usually arising from spaces
or newlines in the input. Tabs are treated as input tokens, and spaces
become adjustable again. The vertical sizes of lines are not preserved, but
glyph information (font, type size, space width, and so on) is retained.
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5.30 Punning Names
Macros, strings, and diversions share a name space; recall Section 5.5 [Iden-
tifiers], page 81. Internally, the same mechanism is used to store them. You
can thus call a macro with string interpolation syntax and vice versa.

.de subject
Typesetting
..
.de predicate
rewards attention to detail
..
\*[subject] \*[predicate].
Truly.

⇒ Typesetting
⇒ rewards attention to detail Truly.

What went wrong? Strings don’t contain newlines, but macros do. String
interpolation placed a newline at the end of ‘\*[subject]’, and the next
thing on the input was a space. Then when ‘\*[predicate]’ was interpo-
lated, it was followed by the empty request ‘.’ on a line by itself. If we want
to use macros as strings, we must take interpolation behavior into account.

.de subject
Typesetting\\
..
.de predicate
rewards attention to detail\\
..
\*[subject] \*[predicate].
Truly.

⇒ Typesetting rewards attention to detail. Truly.

By ending each text line of the macros with an escaped \RET, we get the
desired effect (see Section 5.16 [Line Continuation], page 125).97 What would
have happened if we had used only one backslash at a time instead?

Interpolating a string does not hide existing macro arguments. We can
also place the escaped newline outside the string interpolation instead of
within the string definition. Thus, in a macro, a more efficient way of doing

.xx \\$@

is

\\*[xx]\\

The latter calling syntax doesn’t change the value of \$0, which is then
inherited from the calling macro (see Section 5.24.1 [Parameters], page 170).

Diversions can be also called with string syntax. It is sometimes conve-
nient to copy one-line diversions to a string.

97 The backslash is doubled. See Section 5.24.2 [Copy Mode], page 173.
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.di xx
the
.ft I
interpolation system
.ft
.br
.di
.ds yy This is a test of \*(xx\c
\*(yy.

⇒ This is a test of the interpolation system.

As the previous example shows, it is possible to store formatted output
in strings. The \c escape sequence prevents the subsequent newline from
being interpreted as a break (again, see Section 5.16 [Line Continuation],
page 125).

Copying multi-output line diversions produces unexpected results.

.di xxx
a funny
.br
test
.br
.di
.ds yyy This is \*[xxx]\c
\*[yyy].

⇒ test This is a funny.

Usually, it is not predictable whether a diversion contains one or more
output lines, so this mechanism should be avoided. With AT&T troff, this
was the only solution to strip off a final newline from a diversion. Another
disadvantage is that the spaces in the copied string are already formatted,
preventing their adjustment. This can cause ugly results.

A clean solution to this problem is available in GNU troff, using the
requests chop to remove the final newline of a diversion, and unformat to
make the horizontal spaces adjustable again.

.box xxx
a funny
.br
test
.br
.box
.chop xxx
.unformat xxx
This is \*[xxx].

⇒ This is a funny test.

See Section 5.36 [Gtroff Internals], page 216.



Chapter 5: GNU troff Reference 203

5.31 Environments
As discussed in Section 5.27 [Deferring Output], page 185, environments
store most of the parameters that determine the appearance of text. A de-
fault environment named ‘0’ exists when GNU troff starts up; it is modified
by formatting-related requests and escape sequences.

You can create new environments and switch among them. Only one is
current at any given time. Active environments are managed using a stack,
a data structure supporting “push” and “pop” operations. The current
environment is at the top of the stack. The same environment name can
be pushed onto the stack multiple times, possibly interleaved with others.
Popping the environment stack does not destroy the current environment;
it remains accessible by name and can be made current again by pushing
it at any time. Environments cannot be renamed or deleted, and can only
be modified when current. To inspect the environment stack, use the pev
request; see Section 5.37 [Debugging], page 218.

Environments store the following information.

• a partially collected line, if any

• data about the most recently output glyph and line (registers .cdp,
.cht, .csk, .n, .w)

• typeface parameters (size, family, style, height and slant, inter-word and
inter-sentence space sizes)

• page parameters (line length, title length, vertical spacing, line spac-
ing, indentation, line numbering, centering, right-alignment, underlin-
ing, hyphenation parameters)

• filling enablement; adjustment enablement and mode

• tab stops; tab, leader, escape, control, no-break control, hyphenation,
and margin characters

• input line traps

• stroke and fill colors

[Request].ev [ident]
[Register]\n[.ev]

Enter the environment ident, which is created if it does not already exist,
using the same parameters as for the default environment used at startup.
With no argument, GNU troff switches to the previous environment.

Invoking ev with an argument puts environment ident onto the top of the
environment stack. (If it isn’t already present in the stack, this is a proper
push.) Without an argument, ev pops the environment stack, making the
previous environment current. It is an error to pop the environment stack
with no previous environment available. The read-only string-valued reg-
ister .ev contains the name of the current environment—the one at the
top of the stack.



204 The GNU Troff Manual

.ev footnote-env

.fam N

.ps 6

.vs 8

.ll -.5i

.ev

. . .

.ev footnote-env
\[dg] Observe the smaller text and vertical spacing.
.ev

We can familiarize ourselves with stack behavior by wrapping the ev
request with a macro that reports the contents of the .ev register to the
standard error stream.

.de EV

. ev \\$1

. tm environment is now \\n[.ev]

..

.

.EV foo

.EV bar

.EV

.EV baz

.EV

.EV

.EV

error environment is now foo
error environment is now bar
error environment is now foo
error environment is now baz
error environment is now foo
error environment is now 0
error error: environment stack underflow
error environment is now 0

[Request].evc environment
Copy the contents of environment to the current environment.

The following environment data are not copied.

• a partially collected line, if present;

• the interruption status of the previous input line (due to use of the
\c escape sequence);

• the count of remaining lines to center, to right-justify, or to underline
(with or without underlined spaces)—these are set to zero;

• the activation status of temporary indentation;



Chapter 5: GNU troff Reference 205

• input line traps and their associated data;

• the activation status of line numbering (which can be reactivated
with ‘.nm +0’); and

• the count of consecutive hyphenated lines (set to zero).

[Register]\n[.w]
[Register]\n[.cht]
[Register]\n[.cdp]
[Register]\n[.csk]

The \n[.w] register contains the width of the last glyph formatted in the
environment.

The \n[.cht] register contains the height of the last glyph formatted in
the environment.

The \n[.cdp] register contains the depth of the last glyph formatted in
the environment. It is positive for glyphs extending below the baseline.

The \n[.csk] register contains the skew (how far to the right of the
glyph’s center that GNU troff should place an accent) of the last glyph
formatted in the environment.

[Register]\n[.n]
The \n[.n] register contains the length of the previous output line emit-
ted in the environment.

5.32 Suppressing Output

[Escape sequence]\O[num]
Suppress GNU troff output of glyphs and geometric objects. The se-
quences \O2, \O3, \O4, and \O5 are intended for internal use by grohtml.

‘\O0’ Disable the emission of glyphs and geometric objects to the
output driver, provided that this sequence occurs at the out-
ermost suppression level (see \O3 and \04 below). Horizontal
motions corresponding to non-overstruck glyph widths still
occur.

‘\O1’ Enable the emission of glyphs and geometric objects to the
output driver, provided that this sequence occurs at the out-
ermost suppression level.

\O0 and \O1 also reset the four registers opminx, opminy, opmaxx, and
opmaxy to −1. These four registers mark the top left and bottom right
hand corners of a box encompassing all written or drawn output.

‘\O2’ At the outermost suppression level, enable emission of glyphs
and geometric objects, and write to the standard error stream
the page number and values of the four aforementioned regis-
ters encompassing glyphs written since the last interpolation
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of a \O sequence, as well as the page offset, line length, im-
age file name (if any), horizontal and vertical device motion
quanta, and input file name. Numeric values are in basic
units.

‘\O3’ Begin a nested suppression level. grohtml uses this mech-
anism to create images of output preprocessed with gpic,
geqn, and gtbl. At startup, GNU troff is at the outermost
suppression level. pre-grohtml generates these sequences
when processing the document, using GNU troff with the
ps output device, Ghostscript, and the PNM tools to produce
images in PNG format. They start a new page if the device is
not html or xhtml, to reduce the number of images crossing
a page boundary.

‘\O4’ End a nested suppression level.

‘\O[5Pfile]’
At the outermost suppression level, write the name file to
the standard error stream at position P, which must be one
of l, r, c, or i, corresponding to left, right, centered, and
inline alignments within the document, respectively. file is a
name associated with the production of the next image.

[Register]\n[.O]
Output suppression nesting level applied by \O3 and \O4 escape se-
quences.

5.33 I/O
gtroff has several requests for including files:

[Request].so file
[Request].soquiet file

Replace the so request’s control line with the contents of the file named
by the argument, “sourcing” it. file is sought in the directories specified
by -I command-line option. If file does not exist, a warning in category
‘file’ is produced and the request has no further effect. See Section 5.37.1
[Warnings], page 221, for information about the enablement and suppres-
sion of warnings.

so can be useful for large documents; e.g., allowing each chapter of a book
to be kept in a separate file. However, files interpolated with so are not
preprocessed; to overcome this limitation, see the gsoelim(1) man page.

Since GNU troff replaces the entire control line with the contents of a
file, it matters whether file is terminated with a newline or not. Assume
that file xxx contains only the word ‘foo’ without a trailing newline.
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$ printf 'foo' > xxx

The situation is
.so xxx
bar.

⇒ The situation is foobar.

soquiet works the same way, except that no warning diagnostic is issued
if file does not exist.

[Request].pso command
Read the standard output from the specified command and include it in
place of the pso request.

It is an error to use this request in safer mode, which is the default. Invoke
GNU troff or a front end with the -U option to enable unsafe mode.

The comment regarding a final newline for the so request is valid for pso
also.

[Request].mso file
[Request].msoquiet file

Identical to the so and soquiet requests, respectively, except that gtroff
searches for the specified file in the same directories as macro files for the
-m command-line option. If the file name to be included has the form
name.tmac and it isn’t found, these requests try to include tmac.name
and vice versa.

[Request].trf file
[Request].cf file

Transparently output the contents of file. Each line is output as if it
were preceded by \!; however, the lines are not subject to copy mode
interpretation. If the file does not end with a newline, trf adds one.
Both requests cause a break.

When used in a diversion, these requests embed a node (see Section 5.36
[Gtroff Internals], page 216) in it that, when reread, causes the contents
of file to be transparently copied to the output. In AT&T troff, the
contents of file are immediately copied to the output regardless of whether
there is a current diversion; this behaviour is so anomalous that it must
be considered a bug.

While cf copies the contents of file completely unprocessed, trf disallows
characters such as NUL that are not valid gtroff input characters (see
Section 5.5 [Identifiers], page 81).

For cf, within a diversion, “completely unprocessed” means that each
line of a file to be inserted is handled as if it were preceded by \!\\!.

To define a macro x containing the contents of file f, use
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.ev 1

.di x

.trf f

.di

.ev

The calls to ev prevent the partially collected output line from becoming
part of the diversion (see Section 5.29 [Diversions], page 196).

[Request].nx [file]
Force gtroff to continue processing of the file specified as an argument.
If no argument is given, immediately jump to the end of file.

[Request].rd [prompt [arg1 arg2 . . . ]]
Read from standard input, and include what is read as though it were
part of the input file. Text is read until a blank line is encountered.

If standard input is a TTY input device (keyboard), write prompt to
standard error, followed by a colon (or send BEL for a beep if no argument
is given).

Arguments after prompt are available for the input. For example, the
line

.rd data foo bar

with the input ‘This is \$2.’ prints

This is bar.

Using the nx and rd requests, it is easy to set up form letters. The form
letter template is constructed like this, putting the following lines into a file
called repeat.let:

.ce
\*(td
.sp 2
.nf
.rd
.sp
.rd
.fi
Body of letter.
.bp
.nx repeat.let

When this is run, a file containing the following lines should be redirected
in. Requests included in this file are executed as though they were part of
the form letter. The last block of input is the ex request, which tells GNU
troff to stop processing. If this were not there, troff would not know
when to stop.
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Trent A. Fisher
708 NW 19th Av., #202
Portland, OR 97209

Dear Trent,

Len Adollar
4315 Sierra Vista
San Diego, CA 92103

Dear Mr. Adollar,

.ex

[Request].pi pipe
Pipe the output of gtroff to the shell command(s) specified by pipe.
This request must occur before gtroff has a chance to print anything.

It is an error to use this request in safer mode, which is the default. Invoke
GNU troff or a front end with the -U option to enable unsafe mode.

Multiple calls to pi are allowed, acting as a chain. For example,

.pi foo

.pi bar

...

is the same as ‘.pi foo | bar’.

The intermediate output format of GNU troff is piped to the specified
commands. Consequently, calling groff without the -Z option normally
causes a fatal error.

[Request].sy cmds
[Register]\n[systat]

Execute the shell command(s) specified by cmds. The output is not saved
anywhere, so it is up to the user to do so.

It is an error to use this request in safer mode; this is the default. Give
GNU troff or a front end program the -U option to enable unsafe mode.

The following code fragment introduces the current time into a document.

.sy perl -e 'printf ".nr H %d\\n.nr M %d\\n.nr S %d\\n",\
(localtime(time))[2,1,0]' > /tmp/x\n[$$]

.so /tmp/x\n[$$]

.sy rm /tmp/x\n[$$]
\nH:\nM:\nS

This works by having the Perl script (run by sy) write nr requests that
set the registers H, M, and S to a temporary file. The roff document then
reads the temporary file using the so request.
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The registers seconds, minutes, and hours, initialized at startup of GNU
troff, should satisfy most requirements. Use the af request to format
their values for output.

.af hours 00

.af minutes 00

.af seconds 00
\n[hours]:\n[minutes]:\n[seconds]

⇒ 02:17:54

The writable register systat contains the return value of the system()
function executed by the last sy request.

[Request].open stream file
[Request].opena stream file

Open the specified file for writing and associates the specified stream with
it.

The opena request is like open, but if the file exists, append to it instead
of truncating it.

It is an error to use these requests in safer mode; this is the default. Give
GNU troff or a front end program the -U option to enable unsafe mode.

[Request].write stream data
[Request].writec stream data

Write to the file associated with the specified stream. The stream must
previously have been the subject of an open request. The remainder of
the line is interpreted as the ds request reads its second argument: an
initial neutral double quote in contents is stripped to allow embedding of
leading spaces, and it is read in copy mode.

The writec request is like write, but only write appends a newline to
the data.

[Request].writem stream xx
Write the contents of the macro or string xx to the file associated with
the specified stream.

xx is read in copy mode, i.e., already formatted elements are ignored.
Consequently, diversions must be unformatted with the asciify request
before calling writem. Usually, this means a loss of information.

[Request].close stream
Close the specified stream; the stream is no longer an acceptable argument
to the write request.

Here a simple macro to write an index entry.



Chapter 5: GNU troff Reference 211

.open idx test.idx

.

.de IX

. write idx \\n[%] \\$*

..

.

.IX test entry

.

.close idx

[Escape sequence]\Ve
[Escape sequence]\V(ev
[Escape sequence]\V[env]

Interpolate the contents of the specified environment variable env (one-
character name e, two-character name ev) as returned by the function
getenv(3). \V is interpreted even in copy mode (see Section 5.24.2 [Copy
Mode], page 173).

5.34 Postprocessor Access
Two escape sequences and two requests enable documents to pass infor-
mation directly to a postprocessor. These are useful for exercising device-
specific capabilities that the groff language does not abstract or general-
ize; examples include the embedding of hyperlinks and image files. Device-
specific functions are documented in each output driver’s man page, such as
gropdf(1), grops(1), or grotty(1).

[Request].device xxx . . .
[Escape sequence]\X'xxx . . .'

Embed all xxx arguments into GNU troff output as parameters to a
device control command ‘x X’. The meaning and interpretation of such
parameters is determined by the output driver or other postprocessor.

The device request processes its arguments in copy mode (see Sec-
tion 5.24.2 [Copy Mode], page 173). An initial neutral double quote
in contents is stripped to allow embedding of leading spaces. By con-
trast, within \X arguments, the escape sequences \&, \), \%, and \: are
ignored; \SP and \~ are converted to single space characters; and \\ has
its escape character stripped. So that the basic Latin subset of the Uni-
code character set98 can be reliably encoded in device control commands,
seven special character escape sequences (‘\-’, ‘\[aq]’, ‘\[dq]’, ‘\[ga]’,
‘\[ha]’, ‘\[rs]’, and ‘\[ti]’,) are mapped to basic Latin characters; see
the groff char(7) man page. For this transformation, character transla-

98 that is, ISO 646:1991-IRV or, popularly, “US-ASCII”
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tions and special character definitions are ignored.99 The use of any other
escape sequence in \X parameters is normally an error.

If the use_charnames_in_special directive appears in the output de-
vice’s DESC file, the use of special character escape sequences is not
an error; they are simply output verbatim (with the exception of the
seven mapped to Unicode basic Latin characters, discussed above). use_
charnames_in_special is currently employed only by grohtml.

[Request].devicem name
[Escape sequence]\Yn
[Escape sequence]\Y(nm
[Escape sequence]\Y[name]

This is approximately equivalent to ‘\X'\*[name]'’ (one-character
name n, two-character name nm). However, the contents of the string or
macro name are not interpreted; also it is permitted for name to have
been defined as a macro and thus contain newlines (it is not permitted
for the argument to \X to contain newlines). The inclusion of newlines
requires an extension to the AT&T troff output format, and confuses
drivers that do not know about this extension (see Section 6.1.2.4
[Device Control Commands], page 237).

[Request].tag name
[Request].taga name

Reserved for internal use.

5.35 Miscellaneous
We document here GNU troff features that fit poorly elsewhere.

[Request].nm [start [increment [space [indentation]]]]
[Register]\n[ln]
[Register]\n[.nm]

Begin (or, with no arguments, cease) numbering output lines. start as-
signs the number of the next output line. Only line numbers divisible by
increment are marked (default: ‘1’). space configures the horizontal spac-
ing between the number and the text (default: ‘1’). Any given indentation
is applied to the numbers (default: ‘0’). The third and fourth arguments
are reckoned in numeral widths (\0). start must be non-negative and
increment positive.

The formatter aligns the number to the right in a width of three numeral
spaces plus indentation, then catenates space and the output line. The
line length is not reduced. Depending on the value of the page offset,100

99 They are bypassed because these parameters are not rendered as glyphs in the output;
instead, they remain abstract characters—in a PDF bookmark or a URL, for example.

100 Recall Section 5.15 [Line Layout], page 122.
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numbers wider than the allocated space protrude into the left margin, or
shift the output line to the right.

Line numbering parameters corresponding to missing arguments are not
altered. After numbering is disabled, ‘.nm +0’ resumes it using the pre-
viously active parameters.

The parameters of nm are associated with the environment (see Sec-
tion 5.31 [Environments], page 203).

While numbering is enabled, the output line number register ln is up-
dated as each line is output, even if no line number is formatted with it
because it is being skipped (it is not a multiple of increment) or because
numbering is suppressed (see the nn request below).

The .nm register tracks the enablement status of numbering. Temporary
suspension of numbering with the nn request does not alter its value.

.po 5n

.ll 44n
Programming,
when stripped of all its circumstantial irrelevancies,
.nm 999 1 1 -4
boils down to no more and no less than
.nm +0 3
very effective thinking so as to avoid unmastered
.nn 2
complexity,
to very vigorous separation of your many
different concerns.
.br
\(em Edsger Dijkstra
.sp
.nm 1 1 1
This guy's arrogance takes your breath away.
.br
\(em John Backus

⇒ Programming, when stripped of all its cir-
⇒ 999 cumstantial irrelevancies, boils down to no
⇒ more and no less than very effective think-
⇒ ing so as to avoid unmastered complexity, to
⇒ very vigorous separation of your many dif-
⇒ ferent concerns.
⇒ 1002 -- Edsger Dijkstra
⇒
⇒ 1 This guy’s arrogance takes your breath away.
⇒ 2 -- John Backus
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[Request].nn [skip]
[Register]\n[.nn]

Suppress numbering of the next skip output lines that would otherwise
be numbered. The default is 1. nn can be invoked when line numbering
is not active; suppression of numbering will take effect for skip lines once
nm enables it.

The .nn register stores the count of output lines still to have their num-
bering suppressed.

This count is associated with the environment (see Section 5.31 [Environ-
ments], page 203).

To test whether the current output line will be numbered, you must check
both the .nm and .nn registers.

.de is-numbered

. nop This line

. ie (\\n[.nm] & (1-\\n[.nn])) IS

. el ISN'T

. nop numbered.

. br

..
Test line numbering.
.is-numbered
.nm 1
.nn 1
.is-numbered
.is-numbered
.nm
.is-numbered
⇒ Test line numbering. This line ISN’T numbered.
⇒ This line ISN’T numbered.
⇒ 1 This line IS numbered.
⇒ This line ISN’T numbered.

[Request].mc [margin-character [distance]
Begin (or, with no arguments, cease) writing a margin-character to the
right of each output line. The distance argument separates margin-
character from the right margin. If absent, the most recent value is
used; the default is 10 points. If an output line exceeds the line length,
the margin character is appended to it. No margin character is written
on lines produced by the tl request.

The margin character is a property of the output line; the margin char-
acter last configured when the line is output controls. If the margin
character is disabled before an output line breaks, none is output (but
see below).

The margin character is associated with the environment (see Section 5.31
[Environments], page 203).
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.ll 5i

.nf

.mc \[br]
This paragraph is marked with a margin character.
.sp
As seen above, vertical space isn't thus marked.
\&
An output line that is present, but empty, is.

⇒ This paragraph is marked with a margin character. |
⇒
⇒ As seen above, vertical space isn’t thus marked. |
⇒ |
⇒ An output line that is present, but empty, is. |

For compatibility with AT&T troff, a call to mc to set the margin char-
acter can’t be undone immediately; at least one line gets a margin character.

.ll 10n

.nf

.mc |

.mc *

.mc
foo
bar

⇒ foo *
⇒ bar

The margin character mechanism is commonly used to annotate changes
in documents. The groff distribution ships a program, gdiffmk, to assist
with this task.101

[Request].psbb file
[Register]\n[llx]
[Register]\n[lly]
[Register]\n[urx]
[Register]\n[ury]

Retrieve the bounding box of the PostScript image found in file, which
must conform to Adobe’s Document Structuring Conventions (DSC),
locate a %%BoundingBox comment, and store the (upper-, lower-, -left,
-right) values into the registers llx, lly, urx, and ury. If an error occurs
(for example, if no %%BoundingBox comment is present), the formatter
sets these registers to 0.

The search path for file can be controlled with the -I command-line
option.

101 Historically, tools named nrchbar and changebar were developed for marking changes
with margin characters and could be found in archives of the comp.sources.unix

USENET group. Some proprietary Unices also offer(ed) a diffmk program.
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5.36 gtroff Internals
gtroff processes input in three steps. One or more input characters are
converted to an input token.102 Then, one or more input tokens are converted
to an output node. Finally, output nodes are converted to the intermediate
output language understood by all output devices.

Actually, before step one happens, gtroff converts certain escape se-
quences into reserved input characters (not accessible by the user); such
reserved characters are used for other internal processing also – this is the
very reason why not all characters are valid input. See Section 5.5 [Identi-
fiers], page 81, for more on this topic.

For example, the input string ‘fi\[:u]’ is converted into a character
token ‘f’, a character token ‘i’, and a special token ‘:u’ (representing u um-
laut). Later on, the character tokens ‘f’ and ‘i’ are merged to a single output
node representing the ligature glyph ‘fi’ (provided the current font has a
glyph for this ligature); the same happens with ‘:u’. All output glyph nodes
are ‘processed’, which means that they are invariably associated with a given
font, font size, advance width, etc. During the formatting process, gtroff
itself adds various nodes to control the data flow.

Macros, diversions, and strings collect elements in two chained lists: a
list of input tokens that have been passed unprocessed, and a list of output
nodes. Consider the following diversion.

.di xxx
a
\!b
c
.br
.di

It contains these elements.

node list token list element number

line start node — 1
glyph node a — 2
word space node — 3
— b 4
— \n 5
glyph node c — 6
vertical size node — 7
vertical size node — 8
— \n 9

Elements 1, 7, and 8 are inserted by gtroff; the latter two (which are
always present) specify the vertical extent of the last line, possibly modified

102 Except the escape sequences \f, \F, \H, \m, \M, \R, \s, and \S, which are processed
immediately if not in copy mode.
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by \x. The br request finishes the pending output line, inserting a newline
input token, which is subsequently converted to a space when the diversion is
reread. Note that the word space node has a fixed width that isn’t adjustable
anymore. To convert horizontal space nodes back to input tokens, use the
unformat request.

Macros only contain elements in the token list (and the node list is
empty); diversions and strings can contain elements in both lists.

The chop request simply reduces the number of elements in a macro,
string, or diversion by one. Exceptions are compatibility save and compat-
ibility ignore input tokens, which are ignored. The substring request also
ignores those input tokens.

Some requests like tr or cflags work on glyph identifiers only; this
means that the associated glyph can be changed without destroying this
association. This can be very helpful for substituting glyphs. In the following
example, we assume that glyph ‘foo’ isn’t available by default, so we provide
a substitution using the fchar request and map it to input character ‘x’.

.fchar \[foo] foo

.tr x \[foo]

Now let us assume that we install an additional special font ‘bar’ that has
glyph ‘foo’.

.special bar

.rchar \[foo]

Since glyphs defined with fchar are searched before glyphs in special fonts,
we must call rchar to remove the definition of the fallback glyph. Anyway,
the translation is still active; ‘x’ now maps to the real glyph ‘foo’.

Macro and request arguments preserve compatibility mode enablement.

.cp 1 \" switch to compatibility mode

.de xx
\\$1
..
.cp 0 \" switch compatibility mode off
.xx caf\[’e]

⇒ café

Since compatibility mode is enabled while de is invoked, the macro xx enables
compatibility mode when it is called. Argument $1 can still be handled
properly because it inherits the compatibility mode enablement status that
was active at the point where xx was called.

After interpolation of the parameters, the compatibility save and restore
tokens are removed.
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5.37 Debugging
Standard troff voodoo, just put a power of two backslashes in

front of it until it works and if you still have problems add a \c.
— Ron Natalie

GNU troff is not the easiest language to debug, in part thanks to its
design features of recursive interpolation and the use of multi-stage pipeline
processing in the surrounding system. Nevertheless there exist several fea-
tures useful for troubleshooting.

Preprocessors use the lf request to preserve the identity of the line num-
bers and names of input files. GNU troff emits a variety of error diagnostics
and supports several categories of warning; the output of these can be se-
lectively suppressed. A trace of the formatter’s input processing stack can
be emitted when errors or warnings occur by means of GNU troff’s -b
option, or produced on demand with the backtrace request. The tm and
related requests can be used to emit customized diagnostic messages or for
instrumentation while troubleshooting. The ex and ab requests cause early
termination with successful and error exit codes respectively, to halt further
processing when continuing would be fruitless. Examine the state of the for-
matter with requests that write lists of defined names (macros, strings, and
diversions), environments, registers, and page location traps to the standard
error stream.

[Request].lf line [file]
Set the input line number (and, optionally, the file name) GNU troff
shall use for error and warning messages. line is the input line number of
the next line. Without an argument, the request is ignored.

lf’s primary purpose is to aid the debugging of documents that undergo
preprocessing. Programs like tbl that transform input in their own lan-
guages into roff requests use it so that any diagnostic messages emitted
by troff correspond to the source document.

[Request].tm message
[Request].tm1 message
[Request].tmc message

Sendmessage, which consumes the remainder of the input line and cannot
contain special characters, to the standard error stream, followed by a
newline. Leading spaces in message are ignored.

tm1 is similar, but recognizes and strips a leading neutral double quote
from message to allow the embedding of leading spaces.

tmc works as tm1, but does not append a newline.

[Request].ab [message]
Write any message to the standard error stream (like tm) and then abort
GNU troff; that is, stop processing and terminate with a failure status.
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[Request].ex
Exit GNU troff; that is, stop processing and terminate with a successful
status. To stop processing only the current file, use the nx request; see
Section 5.33 [I/O], page 206.

When doing something involved, it is useful to leave the debugging state-
ments in the code and have them turned on by a command-line flag.

.if \n[DB] .tm debugging output

To activate such statements, use the -r option to set the register.

groff -rDB=1 file

If it is known in advance that there are many errors and no useful output,
GNU troff can be forced to suppress formatted output with the -z option.

[Request].pev
Report the state of the current environment followed by that of all other
environments to the standard error stream.

[Request].pm
Report, to the standard error stream, the names of all defined macros,
strings, and diversions with their sizes in bytes.

[Request].pnr
Report the names and contents of all currently defined registers to the
standard error stream.

[Request].ptr
Report the names and positions of all page location traps to the standard
error stream. Empty slots in the list, where a trap has been planted but
subsequently (re)moved, are printed as well.

[Request].fl
Instruct gtroff to flush its output immediately. The intent is for inter-
active use, but this behaviour is currently not implemented in gtroff.
Contrary to Unix troff, TTY output is sent to a device driver also
(grotty), making it non-trivial to communicate interactively.

This request causes a line break.

[Request].backtrace
Write the state of the input stack to the standard error stream.

Consider the following in a file test.
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.de xxx

. backtrace

..

.de yyy

. xxx

..

.

.yyy
error troff: backtrace: 'test':2: macro 'xxx'
error troff: backtrace: 'test':5: macro 'yyy'
error troff: backtrace: file 'test':8

The -b option of GNU troff causes a backtrace to be generated on each
error or warning. Some warnings have to be enabled; See Section 5.37.1
[Warnings], page 221.

[Register]\n[slimit]
If greater than 0, sets the maximum quantity of objects on GNU troff’s
internal input stack. If less than or equal to 0, there is no limit: recursion
can continue until program memory is exhausted. The default is 1,000.

[Request].warnscale su
Set the scaling unit used in certain warnings to su, which can take the
values ‘u’, ‘i’, ‘c’, ‘p’, and ‘P’. The default is ‘i’.

[Request].spreadwarn [limit]
Emit a break warning if the additional space inserted for each space
between words in an output line adjusted to both margins with ‘.ad b’
is larger than or equal to limit. A negative value is treated as zero; an
absent argument toggles the warning on and off without changing limit.
The default scaling unit is ‘m’. At startup, spreadwarn is inactive and
limit is 3m.

For example,

.spreadwarn 0.2m

causes a warning if break warnings are not suppressed and gtroff must
add 0.2m or more for each inter-word space in a line. See Section 5.37.1
[Warnings], page 221.

GNU troff has command-line options for reporting warnings (-w) and
backtraces (-b) when a warning or an error occurs.

[Request].warn [n]
[Register]\n[.warn]

Select the categories, or “types”, of reported warnings. n is the sum of
the numeric codes associated with each warning category that is to be
enabled; all other categories are disabled. The categories and their asso-
ciated codes are listed in Section 5.37.1 [Warnings], page 221. For exam-
ple, ‘.warn 0’ disables all warnings, and ‘.warn 1’ disables all warnings
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except those about missing glyphs. If no argument is given, all warning
categories are enabled.

The read-only register .warn contains the sum of the numeric codes of
enabled warning categories.

5.37.1 Warnings

Warning diagnostics emitted by GNU troff are divided into named, num-
bered categories. The name associated with each warning category is used
by the -w and -W options. Each category is also assigned a power of two; the
sum of enabled category values is used by the warn request and the .warn
register.

Warnings of each category are produced under the following circum-
stances.

‘char’
‘1’ No mounted font defines a glyph for the requested character.

This category is enabled by default.

‘number’
‘2’ An invalid numeric expression was encountered. This category

is enabled by default. See Section 5.4 [Numeric Expressions],
page 77.

‘break’
‘4’ A filled output line could not be broken such that its length

was less than the output line length ‘\n[.l]’. This category is
enabled by default.

‘delim’
‘8’ The closing delimiter in an escape sequence was missing or mis-

matched.

‘el’
‘16’ The el request was encountered with no prior corresponding ie

request. See Section 5.23.3 [if-else], page 163.

‘scale’
‘32’ A scaling unit inappropriate to its context was used in a numeric

expression.

‘range’
‘64’ A numeric expression was out of range for its context.

‘syntax’
‘128’ A self-contradictory hyphenation mode was requested; an empty

or incomplete numeric expression was encountered; an operand
to a numeric operator was missing; an attempt was made to
define a recursive, empty, or nonsensical character class; or a
groff extension conditional expression operator was used while
in compatibility mode.
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‘di’
‘256’ A di, da, box, or boxa request was invoked without an argument

when there was no current diversion.

‘mac’
‘512’ An undefined string, macro, or diversion was used. When such

an object is dereferenced, an empty one of that name is auto-
matically created. So, unless it is later deleted, at most one
warning is given for each.

This warning is also emitted upon an attempt to move an un-
planted trap macro (see Section 5.28.1.1 [Page Location Traps],
page 186). In such cases, the unplanted macro is not derefer-
enced, so it is not created if it does not exist.

‘reg’
‘1024’ An undefined register was used. When an undefined register is

dereferenced, it is automatically defined with a value of 0. So,
unless it is later deleted, at most one warning is given for each.

‘tab’
‘2048’ A tab character was encountered where a number was expected,

or appeared in an unquoted macro argument.

‘right-brace’
‘4096’ A right brace escape sequence \} was encountered where a num-

ber was expected.

‘missing’
‘8192’ A request was invoked with a mandatory argument absent.

‘input’
‘16384’ An invalid character occurred on the input stream.

‘escape’
‘32768’ An unsupported escape sequence was encountered.

‘space’
‘65536’ A space was missing between a request or macro and its argu-

ment. This warning is produced when an undefined name longer
than two characters is encountered and the first two characters
of the name constitute a defined name. No request is invoked, no
macro called, and an empty macro is not defined. This category
is enabled by default. It never occurs in compatibility mode.

‘font’
‘131072’ A non-existent font was selected, or the selection was ignored

because a font selection escape sequence was used after the out-
put line continuation escape sequence on an input line. This
category is enabled by default.
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‘ig’
‘262144’ An invalid escape sequence occurred in input ignored using the

ig request. This warning category diagnoses a condition that is
an error when it occurs in non-ignored input.

‘color’
‘524288’ An undefined color was selected, an attempt was made to define

a color using an unrecognized color space, an invalid component
in a color definition was encountered, or an attempt was made
to redefine a default color.

‘file’
‘1048576’ An attempt was made to load a file that does not exist. This

category is enabled by default.

Two warning names group other warning categories for convenience.

‘all’ All warning categories except ‘di’, ‘mac’ and ‘reg’. This short-
hand is intended to produce all warnings that are useful with
macro packages written for AT&T troff and its descendants,
which have less fastidious diagnostics than GNU troff.

‘w’ All warning categories. Authors of documents and macro pack-
ages targeting groff are encouraged to use this setting.

5.38 Implementation Differences
GNU troff has a number of features that cause incompatibilities with doc-
uments written for other versions of troff. Some GNU extensions to troff
have become supported by other implementations.

5.38.1 Safer Mode

The formatter operates in “safer” mode by default; to mitigate risks from un-
trusted input documents, the pi and sy requests are disabled. GNU troff’s
-U option enables “unsafe mode”, restoring their function and enabling ad-
ditional groff extension requests, open, opena, and pso. See Section 5.33
[I/O], page 206.

5.38.2 Compatibility Mode

Long identifier names may be GNU troff’s most obvious innovation. AT&T
troff interprets ‘.dsabcd’ as defining a string ‘ab’ with contents ‘cd’. Nor-
mally, GNU troff interprets this as a call of a macro named dsabcd. AT&T
troff also interprets ‘\*[’ and ‘\n[’ as an interpolation of a string or reg-
ister, respectively, named ‘[’. In GNU troff, however, the ‘[’ is normally
interpreted as delimiting a long name. In compatibility mode, GNU troff
interprets names in the traditional way; they thus can be two characters long
at most.
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[Request].cp [n]
[Register]\n[.C]

If n is missing or non-zero, turn on compatibility mode; otherwise, turn
it off.

The read-only register .C is 1 if compatibility mode is on, 0 otherwise.

Compatibility mode can be also turned on with the -C command-line
option.

[Request].do name
[Register]\n[.cp]

The do request interprets the string, request, diversion, or macro name
(along with any further arguments) with compatibility mode disabled.
Compatibility mode is restored (only if it was active) when the expansion
of name is interpreted; that is, the restored compatibility state applies to
the contents of the macro, string, or diversion name as well as data read
from files or pipes if name is any of the so, soquiet, mso, msoquiet, or
pso requests.

The following example illustrates several aspects of do behavior.

.de mac1
FOO
..
.de1 mac2
groff
.mac1
..
.de mac3
compatibility
.mac1
..
.de ma
\\$1
..
.cp 1
.do mac1
.do mac2 \" mac2, defined with .de1, calls "mac1"
.do mac3 \" mac3 calls "ma" with argument "c1"
.do mac3 \[ti] \" groff syntax accepted in .do arguments

⇒ FOO groff FOO compatibility c1 ~

The read-only register .cp, meaningful only when dereferenced from a
do request, is 1 if compatibility mode was on when the do request was
encountered, and 0 if it was not. This register is specialized and may
require a statement of rationale.

When writing macro packages or documents that use GNU troff fea-
tures and which may be mixed with other packages or documents that
do not—common scenarios include serial processing of man pages or use
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of the so or mso requests—you may desire correct operation regardless of
compatibility mode enablement in the surrounding context. It may occur
to you to save the existing value of ‘\n(.C’ into a register, say, ‘_C’, at
the beginning of your file, turn compatibility mode off with ‘.cp 0’, then
restore it from that register at the end with ‘.cp \n(_C’. At the same
time, a modular design of a document or macro package may lead you to
multiple layers of inclusion. You cannot use the same register name every-
where lest you “clobber” the value from a preceding or enclosing context.
The two-character register name space of AT&T troff is confining and
mnemonically challenging; you may wish to use the more capacious name
space of GNU troff. However, attempting ‘.nr _my_saved_C \n(.C’
will not work in compatibility mode; the register name is too long. “This
is exactly what do is for,” you think, ‘.do nr _my_saved_C \n(.C’. The
foregoing will always save zero to your register, because do turns compat-
ibility mode off while it interprets its argument list.

To robustly save compatibility mode before switching it off, use

.do nr _my_saved_C \n[.cp]

.cp 0

at the beginning of your file, followed by

.cp \n[_my_saved_C]

.do rr _my_saved_C

at the end. As in the C language, we all have to share one big name space,
so choose a register name that is unlikely to collide with other uses.

Normally, GNU troff preserves the interpolation depth in delimited ar-
guments, but not in compatibility mode.

.ds xx '
\w'abc\*(xxdef'

⇒ 168 (normal mode on a terminal device)
⇒ 72def' (compatibility mode on a terminal device)

Furthermore, the escape sequences \f, \H, \m, \M, \R, \s, and \S are
transparent for the purpose of recognizing a control character at the begin-
ning of a line only in compatibility mode. For example, this code produces
bold output in both cases, but the text differs.

.de xx
Hello!
..
\fB.xx\fP

⇒ .xx (normal mode)
⇒ Hello! (compatibility mode)

Normally, the syntax form \sn accepts only a single character (a digit)
for n, consistently with other forms that originated in AT&T troff, like \*,
\$, \f, \g, \k, \n, and \z. In compatibility mode only, a non-zero n must be
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in the range 4–39. Legacy documents relying upon this quirk of parsing103

should be migrated to another \s form.

5.38.3 Other Differences

groff request names unrecognized by other troff implementations will
likely be ignored by them; escape sequences that are groff extensions are
liable to be interpreted as if the escape character were not present. For ex-
ample, the adjustable, non-breaking escape sequence \~ is also supported by
Heirloom Doctools troff 050915 (September 2005), mandoc 1.9.5 (2009-09-
21), neatroff (commit 1c6ab0f6e, 2016-09-13), and Plan 9 from User Space
troff (commit 93f8143600, 2022-08-12), but not by Solaris or Documenter’s
Workbench troffs. See Section 5.9 [Manipulating Filling and Adjustment],
page 99.

GNU troff does not allow the use of the escape sequences \|, \^, \&, \{,
\}, \SP, \', \`, \-, \_, \!, \%, and \c in identifiers; AT&T troff does. The
\A escape sequence (see Section 5.5 [Identifiers], page 81) may be helpful in
avoiding use of these escape sequences in names.

When adjusting to both margins, AT&T troff at first adjusts spaces
starting from the right; GNU troff begins from the left. Both implemen-
tations adjust spaces from opposite ends on alternating output lines in this
adjustment mode to prevent “rivers” in the text.

GNU troff does not always hyphenate words as AT&T troff does. The
AT&T implementation uses a set of hard-coded rules specific to English,
while GNU troff uses language-specific hyphenation pattern files derived
from TEX. Furthermore, in old versions of troff there was a limited amount
of space to store hyphenation exceptions (arguments to the hw request); GNU
troff has no such restriction.

GNU troff predefines a string .T containing the argument given to the
-T command-line option, namely the current output device (for example,
‘pdf’ or ‘utf8’). The existence of this string is a common feature of post-
CSTR #54 troffs104 but valid values are specific to each implementation.

AT&T troff ignored attempts to remove read-only registers; GNU troff
honors such requests. See Section 5.8.5 [Built-in Registers], page 98.

The (read-only) register .T interpolates 1 if GNU troff is called with
the -T command-line option, and 0 otherwise. This behavior differs from
AT&T troff, which interpolated 1 only if nroff was the formatter and was
called with -T.

103 The Graphic Systems C/A/T phototypesetter (the original device target for AT&T

troff) supported only a few discrete type sizes in the range 6–36 points, so Ossanna
contrived a special case in the parser to do what the user must have meant. Kernighan
warned of this in the 1992 revision of CSTR #54 (§2.3), and more recently, McIlroy
referred to it as a “living fossil”.

104 DWB 3.3, Solaris, Heirloom Doctools, and Plan 9 troff all support it.
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AT&T troff and other implementations handle the lf request differently.
For them, its line argument changes the line number of the current line.

AT&T troff had only environments named ‘0’, ‘1’, and ‘2’. In GNU
troff, any number of environments may exist, using any valid identifiers for
their names (see Section 5.5 [Identifiers], page 81.)

Fractional type sizes cause one noteworthy incompatibility. In AT&T
troff the ps request ignores scaling units and thus ‘.ps 10u’ sets the type
size to 10 points, whereas in GNU troff it sets the type size to 10 scaled
points. See Section 5.20.3 [Using Fractional Type Sizes], page 152.

The ab request differs from AT&T troff: GNU troff writes no message
to the standard error stream if no arguments are given, and it exits with a
failure status instead of a successful one.

The bp request differs from AT&T troff: GNU troff does not accept
a scaling unit on the argument, a page number; the former (somewhat use-
lessly) does.

The pm request differs from AT&T troff: GNU troff reports the sizes of
macros, strings, and diversions in bytes and ignores an argument to report
only the sum of the sizes.

Unlike AT&T troff, GNU troff does not ignore the ss request if the
output is a terminal device; instead, the values of minimal inter-word and ad-
ditional inter-sentence space are each rounded down to the nearest multiple
of 12.

In GNU troff there is a fundamental difference between (unformatted)
characters and (formatted) glyphs. Everything that affects how a glyph
is output is stored with the glyph node; once a glyph node has been con-
structed, it is unaffected by any subsequent requests that are executed, in-
cluding bd, cs, tkf, tr, or fp requests. Normally, glyphs are constructed
from characters immediately before the glyph is added to an output line.
Macros, diversions, and strings are all, in fact, the same type of object; they
contain a sequence of intermixed character and glyph nodes. Special char-
acters transform from one to the other: before being added to the output,
they behave as characters; afterward, they are glyphs. A glyph node does
not behave like a character node when it is processed by a macro: it does
not inherit any of the special properties that the character from which it was
constructed might have had. For example, the input

.di x
\\\\
.br
.di
.x

produces ‘\\’ in GNU troff. Each pair of backslashes becomes one back-
slash glyph; the resulting backslashes are thus not interpreted as escape
characters when they are reread as the diversion is output. AT&T troff
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would interpret them as escape characters when rereading them and end up
printing one ‘\’.

One correct way to obtain a printable backslash in most documents is to
use the \e escape sequence; this always prints a single instance of the current
escape character,105 regardless of whether or not it is used in a diversion; it
also works in both GNU troff and AT&T troff.

The other correct way, appropriate in contexts independent of the back-
slash’s common use as a troff escape character—perhaps in discussion of
character sets or other programming languages—is the character escape \(rs
or \[rs], for “reverse solidus”, from its name in the ECMA-6 (ISO/IEC 646)
standard.106

To store an escape sequence in a diversion that is interpreted when the
diversion is reread, either use the traditional \! transparent output facil-
ity, or, if this is unsuitable, the new \? escape sequence. See Section 5.29
[Diversions], page 196, and Section 5.36 [Gtroff Internals], page 216.

In the somewhat pathological case where a diversion exists containing a
partially collected line and a partially collected line at the top-level diversion
has never existed, AT&T troff will output the partially collected line at the
end of input; GNU troff will not.

105 Naturally, if you’ve changed the escape character, you need to prefix the e with what-
ever it is—and you’ll likely get something other than a backslash in the output.

106 The rs special character identifier was not defined in AT&T troff’s font description
files, but is in those of its lineal descendant, Heirloom Doctools troff, as of the latter’s
060716 release (July 2006).
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6 File Formats

All files read and written by gtroff are text files. The following two sections
describe their format.

6.1 gtroff Output
This section describes the groff intermediate output format produced by
GNU troff.

As groff is a wrapper program around GNU troff and automatically
calls an output driver (or “postprocessor”), this output does not show up
normally. This is why it is called intermediate. groff provides the option
-Z to inhibit postprocessing such that the produced intermediate output is
sent to standard output just as it is when calling GNU troff directly.

Here, the term troff output describes what is output by GNU troff,
while intermediate output refers to the language that is accepted by the
parser that prepares this output for the output drivers. This parser han-
dles whitespace more flexibly than AT&T’s implementation and implements
obsolete elements for compatibility; otherwise, both formats are the same.1

The main purpose of the intermediate output concept is to facilitate
the development of postprocessors by providing a common programming
interface for all devices. It has a language of its own that is completely
different from the gtroff language. While the gtroff language is a high-
level programming language for text processing, the intermediate output
language is a kind of low-level assembler language by specifying all positions
on the page for writing and drawing.

The intermediate output produced by gtroff is fairly readable, while
output from AT&T troff is rather hard to understand because of strange
habits that are still supported, but not used any longer by gtroff.

6.1.1 Language Concepts

The fundamental operation of the GNU troff formatter is the translation
of the groff input language into a device-independent form primarily con-
cerned with what has to be written or drawn at specific positions on the
output device. This language is simple and imperative. In the following
discussion, the term command always refers to this intermediate output lan-
guage, and never to the groff language intended for direct use by document
authors. Intermediate output commands comprise several categories: glyph
output; font, color, and text size selection; motion of the printing position;
page advancement; drawing of geometric objects; and device control com-
mands, a catch-all for operations not easily classified as any of the foregoing,
such as directives to start and stop output, identify the intended output
device, or place URL hyperlinks in supported output formats.

1 The parser and postprocessor for intermediate output can be found in the file
groff-source-dir/src/libs/libdriver/input.cpp.
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6.1.1.1 Separation

AT&T troff output has strange requirements regarding whitespace. The
gtroff output parser, however, is more tolerant, making whitespace max-
imally optional. Such characters, i.e., the tab, space, and newline, always
have a syntactical meaning. They are never printable because spacing within
the output is always done by positioning commands.

Any sequence of space or tab characters is treated as a single syntactical
space. It separates commands and arguments, but is only required when
there would occur a clashing between the command code and the arguments
without the space. Most often, this happens when variable-length command
names, arguments, argument lists, or command clusters meet. Commands
and arguments with a known, fixed length need not be separated by syntac-
tical space.

A line break is a syntactical element, too. Every command argument
can be followed by whitespace, a comment, or a newline character. Thus a
syntactical line break is defined to consist of optional syntactical space that
is optionally followed by a comment, and a newline character.

The normal commands, those for positioning and text, consist of a sin-
gle letter taking a fixed number of arguments. For historical reasons, the
parser allows stacking of such commands on the same line, but fortunately,
in gtroff’s intermediate output, every command with at least one argument
is followed by a line break, thus providing excellent readability.

The other commands—those for drawing and device controlling—have
a more complicated structure; some recognize long command names, and
some take a variable number of arguments. So all ‘D’ and ‘x’ commands
were designed to request a syntactical line break after their last argument.
Only one command, ‘x X’, has an argument that can span several input lines;
all other commands must have all of their arguments on the same line as the
command, i.e., the arguments may not be split by a line break.

Empty lines (these are lines containing only space and/or a comment),
can occur everywhere. They are just ignored.

6.1.1.2 Argument Units

Some commands take integer arguments that are assumed to represent values
in a measurement unit, but the letter for the corresponding scaling unit is
not written with the output command arguments. Most commands assume
the scaling unit ‘u’, the basic unit of the device, some use ‘z’, the scaled
point unit of the device, while others, such as the color commands, expect
plain integers.

Single characters can have the eighth bit set, as can the names of fonts
and special characters. The names of characters and fonts can be of arbitrary
length. A character that is to be printed is always in the current font.

A string argument is always terminated by the next whitespace character
(space, tab, or newline); an embedded ‘#’ character is regarded as part of



Chapter 6: File Formats 231

the argument, not as the beginning of a comment command. An integer
argument is already terminated by the next non-digit character, which then
is regarded as the first character of the next argument or command.

6.1.1.3 Document Parts

A correct intermediate output document consists of two parts, the prologue
and the body.

The task of the prologue is to set the general device parameters using
three exactly specified commands. gtroff’s prologue is guaranteed to consist
of the following three lines (in that order):

x T device
x res n h v
x init

with the arguments set as outlined in Section 6.1.2.4 [Device Control Com-
mands], page 237. The parser for the intermediate output format is able to
interpret additional whitespace and comments as well even in the prologue.

The body is the main section for processing the document data. Syntac-
tically, it is a sequence of any commands different from the ones used in the
prologue. Processing is terminated as soon as the first ‘x stop’ command is
encountered; the last line of any gtroff intermediate output always contains
such a command.

Semantically, the body is page oriented. A new page is started by a ‘p’
command. Positioning, writing, and drawing commands are always done
within the current page, so they cannot occur before the first ‘p’ command.
Absolute positioning (by the ‘H’ and ‘V’ commands) is done relative to the
current page; all other positioning is done relative to the current location
within this page.

6.1.2 Command Reference

This section describes all intermediate output commands, both from AT&T
troff as well as the gtroff extensions.

6.1.2.1 Comment Command

#anything�end of line�
A comment. Ignore any characters from the ‘#’ character up to
the next newline character.

This command is the only possibility for commenting in the in-
termediate output. Each comment can be preceded by arbitrary
syntactical space; every command can be terminated by a com-
ment.

6.1.2.2 Simple Commands

The commands in this subsection have a command code consisting of a
single character, taking a fixed number of arguments. Most of them are
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commands for positioning and text writing. These commands are tolerant
of whitespace. Optionally, syntactical space can be inserted before, after, and
between the command letter and its arguments. All of these commands are
stackable; i.e., they can be preceded by other simple commands or followed
by arbitrary other commands on the same line. A separating syntactical
space is necessary only when two integer arguments would clash or if the
preceding argument ends with a string argument.

C id�whitespace�
Typeset the glyph of the special character id. Trailing syntacti-
cal space is necessary to allow special character names of arbi-
trary length. The drawing position is not advanced.

c g Typeset the glyph of the ordinary character c. The drawing
position is not advanced.

f n Select the font mounted at position n. n cannot be negative.

H n Horizontally move the drawing position to n basic units from
the left edge of the page. n cannot be negative.

h n Move the drawing position right n basic units. AT&T troff
allowed negative n; GNU troff does not produce such values,
but groff’s output driver library handles them.

m color-scheme [component ...]
Select the stroke color using the components in the color space
scheme. Each component is an integer between 0 and 65535.
The quantity of components and their meanings vary with each
scheme. This command is a groff extension.

mc cyan magenta yellow
Use the CMY color scheme with components cyan,
magenta, and yellow.

md Use the default color (no components; black in most
cases).

mg gray Use a grayscale color scheme with a component
ranging between 0 (black) and 65535 (white).

mk cyan magenta yellow black
Use the CMYK color scheme with components cyan,
magenta, yellow, and black.

mr red green blue
Use the RGB color scheme with components red,
green, and blue.

N n Typeset the glyph with index n in the current font. n is normally
a non-negative integer. The drawing position is not advanced.
The html and xhtml devices use this command with negative n
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to produce unbreakable space; the absolute value of n is taken
and interpreted in basic units.

n b a Indicate a break. No action is performed; the command is
present to make the output more easily parsed. The integers
b and a describe the vertical space amounts before and after
the break, respectively. GNU troff issues this command but
groff’s output driver library ignores it. See v and V below.

p n Begin a new page, setting its number to n. Each page is inde-
pendent, even from those using the same number. The vertical
drawing position is set to 0. All positioning, writing, and draw-
ing commands are interpreted in the context of a page, so a
p command must precede them.

s n Set type size to n scaled points (unit z in GNU troff. AT&T
troff used unscaled points p instead; see Section 6.1.4 [Output
Language Compatibility], page 241.

t xyz�whitespace�
t xyz dummy-arg�whitespace�

Typeset a word xyz; that is, set a sequence of ordinary glyphs
named x, y, z, . . . , terminated by a space character or a line
break; an optional second integer argument is ignored (this al-
lows the formatter to generate an even number of arguments).
Each glyph is set at the current drawing position, and the po-
sition is then advanced horizontally by the glyph’s width. A
glyph’s width is read from its metrics in the font description
file, scaled to the current type size, and rounded to a multiple
of the horizontal motion quantum. Use the C command to em-
place glyphs of special characters. The t command is a groff
extension and is output only for devices whose DESC file contains
the tcommand directive; see Section 6.2.1 [DESC File Format],
page 242.

u n xyz�whitespace�
Typeset word xyz with track kerning. As t, but after placing
each glyph, the drawing position is further advanced horizontally
by n basic units (u). The u command is a groff extension and
is output only for devices whose DESC file contains the tcommand
directive; see Section 6.2.1 [DESC File Format], page 242.

V n Vertically move the drawing position to n basic units from the
top edge of the page. n cannot be negative.

v n Move the drawing position down n basic units. AT&T troff
allowed negative n; GNU troff does not produce such values,
but groff’s output driver library handles them.

w Indicate an inter-word space. No action is performed; the com-
mand is present to make the output more easily parsed. Only
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adjustable, breakable inter-word spaces are thus described; those
resulting from \~ or horizontal motion escape sequences are not.
GNU troff issues this command but groff’s output driver li-
brary ignores it. See h and H above.

6.1.2.3 Graphics Commands

Each graphics or drawing command in the intermediate output starts with
the letter ‘D’, followed by one or two characters that specify a subcommand;
this is followed by a fixed or variable number of integer arguments that are
separated by a single space character. A ‘D’ command may not be followed
by another command on the same line (apart from a comment), so each ‘D’
command is terminated by a syntactical line break.

gtroff output follows the classical spacing rules (no space between com-
mand and subcommand, all arguments are preceded by a single space char-
acter), but the parser allows optional space between the command letters
and makes the space before the first argument optional. As usual, each space
can be any sequence of tab and space characters.

Some graphics commands can take a variable number of arguments. In
this case, they are integers representing a size measured in basic units ‘u’.
The arguments called h1, h2, . . . , hn stand for horizontal distances where
positive means right, negative left. The arguments called v1, v2, . . . , vn
stand for vertical distances where positive means down, negative up. All
these distances are offsets relative to the current location.

Each graphics command directly corresponds to a similar gtroff \D es-
cape sequence. See Section 5.26 [Drawing Geometric Objects], page 181.

Unknown ‘D’ commands are assumed to be device-specific. Its arguments
are parsed as strings; the whole information is then sent to the postprocessor.

In the following command reference, the syntax element �line break�
means a syntactical line break as defined above.

D~ h1 v1 h2 v2 ... hn vn�line break�
Draw B-spline from current position to offset (h1,v1), then to
offset (h2,v2), if given, etc., up to (hn,vn). This command takes
a variable number of argument pairs; the current position is
moved to the terminal point of the drawn curve.

Da h1 v1 h2 v2�line break�
Draw arc from current position to (h1,v1)+(h2,v2) with center
at (h1,v1); then move the current position to the final point of
the arc.

DC d�line break�
DC d dummy-arg�line break�

Draw a solid circle using the current fill color with diameter d
(integer in basic units ‘u’) with leftmost point at the current po-
sition; then move the current position to the rightmost point of
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the circle. An optional second integer argument is ignored (this
allows the formatter to generate an even number of arguments).
This command is a gtroff extension.

Dc d�line break�
Draw circle line with diameter d (integer in basic units ‘u’) with
leftmost point at the current position; then move the current
position to the rightmost point of the circle.

DE h v�line break�
Draw a solid ellipse in the current fill color with a horizontal
diameter of h and a vertical diameter of v (both integers in
basic units ‘u’) with the leftmost point at the current position;
then move to the rightmost point of the ellipse. This command
is a gtroff extension.

De h v�line break�
Draw an outlined ellipse with a horizontal diameter of h and a
vertical diameter of v (both integers in basic units ‘u’) with the
leftmost point at current position; then move to the rightmost
point of the ellipse.

DF color-scheme [component ...]�line break�
Set fill color for solid drawing objects using different color
schemes; the analogous command for setting the color of text,
line graphics, and the outline of graphic objects is ‘m’. The color
components are specified as integer arguments between 0 and
65535. The number of color components and their meaning vary
for the different color schemes. These commands are generated
by gtroff’s escape sequences ‘\D'F ...'’ and \M (with no other
corresponding graphics commands). No position changing. This
command is a gtroff extension.

DFc cyan magenta yellow�line break�
Set fill color for solid drawing objects using the
CMY color scheme, having the 3 color components
cyan, magenta, and yellow.

DFd�line break�
Set fill color for solid drawing objects to the default
fill color value (black in most cases). No component
arguments.

DFg gray�line break�
Set fill color for solid drawing objects to the shade
of gray given by the argument, an integer between
0 (black) and 65535 (white).
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DFk cyan magenta yellow black�line break�
Set fill color for solid drawing objects using the
CMYK color scheme, having the 4 color components
cyan, magenta, yellow, and black.

DFr red green blue�line break�
Set fill color for solid drawing objects using the RGB
color scheme, having the 3 color components red,
green, and blue.

Df n�line break�
The argument n must be an integer in the range −32767 to
32767.

0 ≤ n ≤ 1000
Set the color for filling solid drawing objects to a
shade of gray, where 0 corresponds to solid white,
1000 (the default) to solid black, and values in be-
tween to intermediate shades of gray; this is obso-
leted by command ‘DFg’.

n < 0 or n > 1000
Set the filling color to the color that is currently be-
ing used for the text and the outline, see command
‘m’. For example, the command sequence

mg 0 0 65535
Df -1

sets all colors to blue.

No position changing. This command is a gtroff extension.

Dl h v�line break�
Draw line from current position to offset (h,v) (integers in basic
units ‘u’); then set current position to the end of the drawn line.

Dp h1 v1 h2 v2 ... hn vn�line break�
Draw a polygon line from current position to offset (h1,v1), from
there to offset (h2,v2), etc., up to offset (hn,vn), and from there
back to the starting position. For historical reasons, the posi-
tion is changed by adding the sum of all arguments with odd
index to the actual horizontal position and the even ones to the
vertical position. Although this doesn’t make sense it is kept for
compatibility. This command is a gtroff extension.

DP h1 v1 h2 v2 ... hn vn�line break�
Draw a solid polygon in the current fill color rather than an
outlined polygon, using the same arguments and positioning as
the corresponding ‘Dp’ command. This command is a gtroff
extension.
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Dt n�line break�
Set the current line thickness to n (an integer in basic units ‘u’)
if n > 0; if n = 0 select the smallest available line thickness; if
n < 0 set the line thickness proportional to the type size (this
is the default before the first ‘Dt’ command was specified). For
historical reasons, the horizontal position is changed by adding
the argument to the actual horizontal position, while the vertical
position is not changed. Although this doesn’t make sense it is
kept for compatibility. This command is a gtroff extension.

6.1.2.4 Device Control Commands

Each device control command starts with the letter ‘x’, followed by a space
character (optional or arbitrary space or tab in gtroff) and a subcommand
letter or word; each argument (if any) must be preceded by a syntactical
space. All ‘x’ commands are terminated by a syntactical line break; no
device control command can be followed by another command on the same
line (except a comment).

The subcommand is basically a single letter, but to increase readability, it
can be written as a word, i.e., an arbitrary sequence of characters terminated
by the next tab, space, or newline character. All characters of the subcom-
mand word but the first are simply ignored. For example, gtroff outputs
the initialization command ‘x i’ as ‘x init’ and the resolution command
‘x r’ as ‘x res’.

In the following, the syntax element �line break� means a syntactical line
break (see Section 6.1.1.1 [Separation], page 230).

xF name�line break�
The ‘F’ stands for Filename.

Use name as the intended name for the current file in error
reports. This is useful for remembering the original file name
when gtroff uses an internal piping mechanism. The input file
is not changed by this command. This command is a gtroff
extension.

xf n s�line break�
The ‘f’ stands for font.

Mount font position n (a non-negative integer) with font named s
(a text word). See Section 5.19.3 [Font Positions], page 134.

xH n�line break�
The ‘H’ stands for Height.

Set glyph height to n (a positive integer in scaled points ‘z’).
AT&T troff uses the unit points (‘p’) instead. See Section 6.1.4
[Output Language Compatibility], page 241.

xi�line break�
The ‘i’ stands for init.
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Initialize device. This is the third command of the prologue.

xp�line break�
The ‘p’ stands for pause.

Parsed but ignored. The AT&T troff manual documents this
command as

pause device, can be restarted

but GNU troff output drivers do nothing with this command.

xr n h v�line break�
The ‘r’ stands for resolution.

Resolution is n, while h is the minimal horizontal motion, and
v the minimal vertical motion possible with this device; all ar-
guments are positive integers in basic units ‘u’ per inch. This is
the second command of the prologue.

xS n�line break�
The ‘S’ stands for Slant.

Set slant to n (an integer in basic units ‘u’).

xs�line break�
The ‘s’ stands for stop.

Terminates the processing of the current file; issued as the last
command of any intermediate troff output.

xt�line break�
The ‘t’ stands for trailer.

Generate trailer information, if any. In GNU troff, this is
ignored.

xT xxx�line break�
The ‘T’ stands for Typesetter.

Set the name of the output driver to xxx, a sequence of non-
whitespace characters terminated by whitespace. The possible
names correspond to those of groff’s -T option. This is the first
command of the prologue.

xu n�line break�
The ‘u’ stands for underline.

Configure underlining of spaces. If n is 1, start underlining of
spaces; if n is 0, stop underlining of spaces. This is needed for
the cu request in nroff mode and is ignored otherwise. This
command is a gtroff extension.

xX anything�line break�
The ‘x’ stands for X-escape.

Send string anything uninterpreted to the device. If the line
following this command starts with a ‘+’ character this line is



Chapter 6: File Formats 239

interpreted as a continuation line in the following sense. The ‘+’
is ignored, but a newline character is sent instead to the device,
the rest of the line is sent uninterpreted. The same applies to
all following lines until the first character of a line is not a ‘+’
character. This command is generated by the gtroff escape
sequence \X. The line-continuing feature is a gtroff extension.

6.1.2.5 Obsolete Command

In AT&T troff output, the writing of a single glyph is mostly done by a very
strange command that combines a horizontal move and a single character
giving the glyph name. It doesn’t have a command code, but is represented
by a 3-character argument consisting of exactly 2 digits and a character.

ddg Move right dd (exactly two decimal digits) basic units ‘u’, then
print glyph g (represented as a single character).

In GNU troff, arbitrary syntactical space around and within
this command is allowed. Only when a preceding command on
the same line ends with an argument of variable length is a
separating space obligatory. In AT&T troff, large clusters of
these and other commands are used, mostly without spaces; this
made such output almost unreadable.

For modern high-resolution devices, this command does not make sense
because the width of the glyphs can become much larger than two decimal
digits. In gtroff, this is only used for the devices X75, X75-12, X100, and
X100-12. For other devices, the commands ‘t’ and ‘u’ provide a better
functionality.

6.1.3 Intermediate Output Examples

This section presents the intermediate output generated from the same input
for three different devices. The input is the sentence ‘hell world’ fed into
gtroff on the command line.

High-resolution device ps
This is the standard output of gtroff if no -T option is given.

shell> echo "hell world" | groff -Z -T ps

x T ps
x res 72000 1 1
x init
p1
x font 5 TR
f5
s10000
V12000
H72000
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thell
wh2500
tw
H96620
torld
n12000 0
x trailer
V792000
x stop

This output can be fed into grops to get its representation as a
PostScript file.

Low-resolution device latin1
This is similar to the high-resolution device except that the posi-
tioning is done at a minor scale. Some comments (lines starting
with ‘#’) were added for clarification; they were not generated
by the formatter.

shell> echo "hell world" | groff -Z -T latin1

# prologue
x T latin1
x res 240 24 40
x init
# begin a new page
p1
# font setup
x font 1 R
f1
s10
# initial positioning on the page
V40
H0
# write text 'hell'
thell
# inform about space, and issue a horizontal jump
wh24
# write text 'world'
tworld
# announce line break, but do nothing because...
n40 0
# ...the end of the document has been reached
x trailer
V2640
x stop

This output can be fed into grotty to get a formatted text
document.
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AT&T troff output
Since a computer monitor has a much lower resolution than mod-
ern printers, the intermediate output for X11 devices can use the
jump-and-write command with its 2-digit displacements.

shell> echo "hell world" | groff -Z -T X100

x T X100
x res 100 1 1
x init
p1
x font 5 TR
f5
s10
V16
H100
# write text with jump-and-write commands
ch07e07l03lw06w11o07r05l03dh7
n16 0
x trailer
V1100
x stop

This output can be fed into xditview or gxditview for display-
ing in X.

Due to the obsolete jump-and-write command, the text clusters
in the AT&T troff output are almost unreadable.

6.1.4 Output Language Compatibility

The intermediate output language of AT&T troff was first documented in
A Typesetter-independent TROFF, by Brian Kernighan, and by 1992 the
AT&T troff manual was updated to incorprate a description of it.

The GNU troff intermediate output format is compatible with this spec-
ification except for the following features.

• The classical quasi-device independence is not yet implemented.

• The old hardware was very different from what we use today. So the
groff devices are also fundamentally different from the ones in AT&T
troff. For example, the AT&T PostScript device is called post and
has a resolution of only 720 units per inch, suitable for printers 20
years ago, while groff’s ps device has a resolution of 72000 units per
inch. Maybe, by implementing some rescaling mechanism similar to the
classical quasi-device independence, groff could emulate AT&T’s post
device.

• The B-spline command ‘D~’ is correctly handled by the intermediate
output parser, but the drawing routines aren’t implemented in some of
the postprocessor programs.
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• The argument of the commands ‘s’ and ‘x H’ has the implicit unit scaled
point ‘z’ in gtroff, while AT&T troff has point (‘p’). This isn’t an
incompatibility but a compatible extension, for both units coincide for
all devices without a sizescale parameter in the DESC file, including
all postprocessors from AT&T and groff’s text devices. The few groff
devices with a sizescale parameter either do not exist for AT&T troff,
have a different name, or seem to have a different resolution. So conflicts
are very unlikely.

• The position changing after the commands ‘Dp’, ‘DP’, and ‘Dt’ is illogical,
but as old versions of gtroff used this feature it is kept for compatibility
reasons.

6.2 Device and Font Description Files
The groff font and output device description formats are slight extensions of
those used by AT&T device-independent troff. In distinction to the AT&T
implementation, groff lacks a binary format; all files are text files.2 The
device and font description files for a device name are stored in a devname
directory. The device description file is called DESC, and, for each font sup-
ported by the device, a font description file is called f, where f is usually
an abbreviation of a font’s name and/or style. For example, the ps (Post-
Script) device has groff font description files for Times roman (TR) and
Zapf Chancery Medium italic (ZCMI), among many others, while the utf8
device (for terminal emulators) has only font descriptions for the roman,
italic, bold, and bold-italic styles (R, I, B, and BI, respectively).

Device and font description files are read both by the formatter, GNU
troff, and by output drivers. The programs delegate these files’ processing
to an internal library, libgroff, ensuring their consistent interpretation.

6.2.1 DESC File Format

The DESC file contains a series of directives; each begins a line. Their order
is not important, with two exceptions: (1) the res directive must precede
any papersize directive; and (2) the charset directive must come last (if
at all). If a directive name is repeated, later entries in the file override
previous ones (except that the paper dimensions are computed based on the
res directive last seen when papersize is encountered). Spaces and/or tabs
separate words and are ignored at line boundaries. Comments start with the
‘#’ character and extend to the end of a line. Empty lines are ignored.

family fam
The default font family is fam.

fonts n F1 . . . Fn
Fonts F1, . . . , Fn are mounted at font positions m+1, . . . , m+n
where m is the number of styles (see below). This directive

2 Plan 9 troff has also abandoned the binary format.
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may extend over more than one line. A font name of 0 causes
no font to be mounted at the corresponding position.

hor n The horizontal motion quantum is n basic units. All horizontal
quantities are rounded to multiples of n.

image_generator program
Use program to generate PNG images from PostScript input.
Under GNU/Linux, this is usually gs, but under other systems
(notably Cygwin) it might be set to another name. The grohtml
driver uses this directive.

paperlength n
The vertical dimension of the output medium is n basic units
(deprecated: use papersize instead).

papersize format-or-dimension-pair-or-file-name . . .
The dimensions of the output medium are as according to the
argument, which is either a standard paper format, a pair of
dimensions, or the name of a plain text file containing either of
the foregoing.

Recognized paper formats are the ISO and DIN formats A0–
A7, B0–B7, C0–C7, D0–D7; the U.S. paper types letter, legal,
tabloid, ledger, statement, and executive; and the enve-
lope formats com10, monarch, and DL. Matching is performed
without regard for lettercase.

Alternatively, the argument can be a custom paper format in
the format length,width (with no spaces before or after the
comma). Both length and width must have a unit appended;
valid units are ‘i’ for inches, ‘c’ for centimeters, ‘p’ for points,
and ‘P’ for picas. Example: ‘12c,235p’. An argument that
starts with a digit is always treated as a custom paper format.

Finally, the argument can be a file name (e.g., /etc/papersize);
if the file can be opened, the first line is read and a match
attempted against each of the other forms. No comment syntax
is supported.

More than one argument can be specified; each is scanned in
turn and the first valid paper specification used.

paperwidth n
The horizontal dimension of the output medium is n basic units
(deprecated: use papersize instead).

pass_filenames
Direct GNU troff to emit the name of the source file being pro-
cessed. This is achieved with the intermediate output command
‘x F’, which grohtml interprets.
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postpro program
Use program as the postprocessor.

prepro program
Use program as a preprocessor. The html and xhtml output
devices use this directive.

print program
Use program as a spooler program for printing. If omitted, the
-l and -L options of groff are ignored.

res n The device resolution is n basic units per inch.

sizes s1 . . . sn 0
The device has fonts at s1, . . . , sn scaled points (see below).
The list of sizes must be terminated by 0. Each si can also be a
range of sizes m–n. The list can extend over more than one line.

sizescale n
A typographical point is subdivided into n scaled points. The
default is 1. See Section 5.20.3 [Using Fractional Type Sizes],
page 152.

styles S1 . . . Sm
The first m mounting positions are associated with styles S1,
. . . , Sm.

tcommand The postprocessor can handle the ‘t’ and ‘u’ intermediate output
commands.

unicode The output device supports the complete Unicode repertoire.
This directive is useful only for devices that produce character
entities instead of glyphs.

If unicode is present, no charset section is required in the font
description files since the Unicode handling built into groff is
used. However, if there are entries in a font description file’s
charset section, they either override the default mappings for
those particular characters or add new mappings (normally for
composite characters).

The utf8, html, and xhtml output devices use this directive.

unitwidth n
Quantities in the font description files are in basic units for fonts
whose type size is n scaled points.

unscaled_charwidths
Make the font handling module always return unscaled character
widths. The grohtml driver uses this directive.

use_charnames_in_special
GNU troff should encode special characters inside device
control commands; see Section 5.34 [Postprocessor Access],
page 211. The grohtml driver uses this directive.
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vert n The vertical motion quantum is n basic units. All vertical quan-
tities are rounded to multiples of n.

charset This line and everything following it in the file are ignored. It is
recognized for compatibility with other troff implementations.
In GNU troff, character set repertoire is described on a per-
font basis.

GNU troff recognizes but ignores the directives spare1, spare2, and
biggestfont.

The res, unitwidth, fonts, and sizes lines are mandatory. Directives
not listed above are ignored by GNU troff but may be used by postproces-
sors to obtain further information about the device.

6.2.2 Font Description File Format

On typesetting output devices, each font is typically available at multiple
sizes. While paper measurements in the device description file are in ab-
solute units, measurements applicable to fonts must be proportional to the
type size. groff achieves this using the precedent set by AT&T device-
independent troff: one font size is chosen as a norm, and all others are
scaled linearly relative to that basis. The “unit width” is the number of
basic units per point when the font is rendered at this nominal size.

For instance, groff’s lbp device uses a unitwidth of 800. Its Times
roman font ‘TR’ has a spacewidth of 833; this is also the width of its comma,
period, centered period, and mathematical asterisk, while its ‘M’ is 2,963 basic
units. Thus, an ‘M’ on the lbp device is 2,963 basic units wide at a notional
type size of 800 points.3

A font description file has two sections. The first is a sequence of direc-
tives, and is parsed similarly to the DESC file described above. Except for
the directive names that begin the second section, their ordering is immate-
rial. Later directives of the same name override earlier ones, spaces and tabs
are handled in the same way, and the same comment syntax is supported.
Empty lines are ignored throughout.

name f The name of the font is f. ‘DESC’ is an invalid font name. Simple
integers are valid, but their use is discouraged.4

spacewidth n
The width of an unadjusted inter-word space is n basic units.

The directives above must appear in the first section; those below are
optional.

3 800-point type is not practical for most purposes, but using it enables the quantities
in the font description files to be expressed as integers.

4 groff requests and escape sequences interpret non-negative font names as mounting
positions instead. Further, a font named ‘0’ cannot be automatically mounted by the
fonts directive of a DESC file.
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slant n The font’s glyphs have a slant of n degrees; a positive n slants
in the direction of text flow.

ligatures lig1 . . . lign [0]
Glyphs lig1, . . . , lign are ligatures; possible ligatures are ‘ff’,
‘fi’, ‘fl’, ‘ffi’ and ‘ffl’. For compatibility with other troff
implementations, the list of ligatures may be terminated with
a 0. The list of ligatures must not extend over more than one
line.

special The font is special: when a glyph is requested that is not present
in the current font, it is sought in any mounted fonts that bear
this property.

Other directives in this section are ignored by GNU troff, but may be
used by postprocessors to obtain further information about the font.

The second section contains one or two subsections. These can appear
in either order; the first one encountered commences the second section.
Each starts with a directive on a line by itself. A charset subsection is
mandatory unless the associated DESC file contains the unicode directive.
Another subsection, kernpairs, is optional.

The directive charset starts the character set subsection.5 It precedes
a series of glyph descriptions, one per line. Each such glyph description
comprises a set of fields separated by spaces or tabs and organized as follows.

name metrics type code [entity-name] [-- comment]

name identifies the glyph: if name is a printable character c, it corresponds
to the troff ordinary character c. If name is a multi-character sequence not
beginning with \, it corresponds to the GNU troff special character escape
sequence ‘\[name]’. A name consisting of three minus signs, ‘---’, is special
and indicates that the glyph is unnamed: such glyphs can be accessed only
by the \N escape sequence in troff. A special character named ‘---’ can still
be defined using char and similar requests. The name ‘\-’ defines the minus
sign glyph. Finally, name can be the unbreakable one-sixth and one-twelfth
space escape sequences, \| and \^ (“thin” and “hair” spaces, respectively),
in which case only the width metric described below is interpreted; a font
can thus customize the widths of these spaces.

The form of the metrics field is as follows.

width[,[height[,[depth[,[italic-correction
[,[left-italic-correction[,[subscript-correction]]]]]]]]]]

There must not be any spaces, tabs, or newlines between these subfields
(which have been split here into two lines only for better legibility). The
subfields are in basic units expressed as decimal integers. Unspecified sub-
fields default to 0. Since there is no associated binary format, these values

5 For typesetter devices, this directive is misnamed since it starts a list of glyphs, not
characters.
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are not required to fit into the C language data type ‘char’ as they are in
AT&T device-independent troff.

The width subfield gives the width of the glyph. The height subfield
gives the height of the glyph (upward is positive); if a glyph does not extend
above the baseline, it should be given a zero height, rather than a negative
height. The depth subfield gives the depth of the glyph, that is, the distance
below the baseline to which the glyph extends (downward is positive); if a
glyph does not extend below the baseline, it should be given a zero depth,
rather than a negative depth. Italic corrections are relevant to glyphs in
italic or oblique styles. The italic-correction is the amount of space that
should be added after an oblique glyph to be followed immediately by an
upright glyph. The left-italic-correction is the amount of space that should
be added before an oblique glyph to be preceded immediately by an upright
glyph. The subscript-correction is the amount of space that should be added
after an oblique glyph to be followed by a subscript; it should be less than
the italic correction.

For fonts used with typesetting devices, the type field gives a featural
description of the glyph: it is a bit mask recording whether the glyph is
an ascender, descender, both, or neither. When a \w escape sequence is
interpolated, these values are bitwise or-ed together for each glyph and stored
in the nr register. In font descriptions for terminal devices, all glyphs might
have a type of zero, regardless of their appearance.

0 means the glyph lies entirely between the baseline and a hori-
zontal line at the “x-height” of the font; typical examples are
‘a’, ‘c’, and ‘x’;

1 means the glyph descends below the baseline, like ‘p’;

2 means the glyph ascends above the font’s x-height, like ‘A’ or
‘b’; and

3 means the glyph is both an ascender and a descender—this is
true of parentheses in some fonts.

The code field gives a numeric identifier that the postprocessor uses to
render the glyph. The glyph can be specified to troff using this code by
means of the \N escape sequence. code can be any integer.6

The entity-name field defines an identifier for the glyph that the postpro-
cessor uses to print the GNU troff glyph name. This field is optional; it
was introduced so that the grohtml output driver could encode its character
set. For example, the glyph ‘\[Po]’ is represented by ‘&pound;’ in HTML
4.0. For efficiency, these data are now compiled directly into grohtml. grops
uses the field to build sub-encoding arrays for PostScript fonts containing
more than 256 glyphs. Anything on the line after the entity-name field or
‘--’ is ignored.

6 that is, any integer parsable by the C standard library’s strtol(3) function
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A line in the charset section can also have the form

name "

identifying name as another name for the glyph mentioned in the preceding
line. Such aliases can be chained.

The directive kernpairs starts a list of kerning adjustments to be made to
adjacent glyph pairs from this font. It contains a sequence of lines formatted
as follows.

g1 g2 n

The foregoing means that when glyph g1 is typeset immediately before g2,
the space between them should be increased by n. Most kerning pairs should
have a negative value for n.
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Appendix A Copying This Manual

Version 1.3, 3 November 2008

Copyright c© 2000-2018 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document free in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or
to related matters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a textbook of

http://fsf.org/
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mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to
be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modi-
fication by readers is not Transparent. An image format is not Trans-
parent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTEX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

The “publisher” means any person or entity that distributes copies of
the Document to the public.
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A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses fol-
lowing text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as “Acknowledge-
ments”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical mea-
sures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque
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copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adja-
cent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
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there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—
for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through ar-
rangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.
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The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Enti-
tled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting
from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to
the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
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aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedi-
cations”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and
until the copyright holder explicitly and finally terminates your license,
and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of vi-
olation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new ver-
sions will be similar in spirit to the present version, but may differ in
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detail to address new problems or concerns. See http://www.gnu.org/
copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used,
that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A public
wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco, Califor-
nia, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License,
and if all works that were first published under this License somewhere
other than this MMC, and subsequently incorporated in whole or in
part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the
site under CC-BY-SA on the same site at any time before August 1,
2009, provided the MMC is eligible for relicensing.

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/
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ADDENDUM: How to use this License for your
documents
To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.
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Appendix B Request Index

Request names appear without a leading control character; the defaults are
. for the regular control character and ' for the no-break control character.

A
ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
ad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
af . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
aln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
als . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
am . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
am1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
ami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
ami1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
as1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
asciify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

B
backtrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
bd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
blm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
boxa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
bp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
br . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
brp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

C
c2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
ce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
cf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
cflags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
ch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
char . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
chop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
close . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
composite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
continue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
cp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
cu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

D
da . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
de . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
de1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
defcolor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
dei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
dei1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
devicem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
di . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
ds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28, 156
ds1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
dt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

E
ec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
ecr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
ecs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
el . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
em . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
eo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
ev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
evc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
ex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

F
fam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
fc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
fchar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
fcolor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
fl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
fp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
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Appendix C Escape Sequence Index

The escape character, \ by default, is always followed by at least one more
input character, making an escape sequence. Any input token \X with X not
in the list below emits a warning and interpolates glyph X. Note the entries
for \., which may be obscured by the leader dots, and for \RET and \SP,
which are sorted alphabetically, not by code point order.
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\m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
\M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
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Appendix E Register Index

The macro package or program a specific register belongs to is appended in
brackets.

A register name x consisting of exactly one character can be accessed
as ‘\nx’. A register name xx consisting of exactly two characters can be
accessed as ‘\n(xx’. Register names xxx of any length can be accessed as
‘\n[xxx]’.
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Appendix F Macro Index

The macro package a specific macro belongs to is appended in brackets.
They appear without the leading control character (normally ‘.’).
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LD [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
LG [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
LP [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

M
MC [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
MS [man] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

N
ND [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
NE [man] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
NH [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
NL [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
NT [man] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

O
OF [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
OH [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

P
P1 [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
PE [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
PF [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Pn [man] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
PN [man] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
PP [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
PS [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
PT [man] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
PX [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Q
QE [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
QP [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
QS [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

R
R [man] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
R [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
RD [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
RE [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
RN [man] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
RP [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
RS [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

S
SH [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
SM [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

T
TA [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
TB [man] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
TC [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
TE [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
TL [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
TS [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

U
UL [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

V
VE [man] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
VS [man] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

X
XA [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
XE [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
XH [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
XH-REPLACEMENT [ms] . . . . . . . . . . . . . . . . . . . 55
XH-UPDATE-TOC [ms] . . . . . . . . . . . . . . . . . . . . 55
XN [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
XN-INIT [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
XN-REPLACEMENT [ms] . . . . . . . . . . . . . . . . . . . 55
XP [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
XS [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
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Appendix G String Index

The macro package or program a that defines or uses each string is appended
in brackets. (Only one string, .T, is defined by the troff formatter itself.)
See Section 5.22 [Strings], page 156.

!
! [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

’
' [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

*
* [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

,
, [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59, 60

–
- [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

.

. [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

.T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

/
/ [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

:
: [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

<
< [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

>
> [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

?
? [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

^
^ [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

_ [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

‘
` [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

{
{ [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

}
} [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

~
~ [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59, 60

3
3 [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8
8 [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A
ABSTRACT [ms] . . . . . . . . . . . . . . . . . . . . . . . . . 51
Ae [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
ae [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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C
C [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
CF [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
CH [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

D
d- [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
D- [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

F
FAM [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
FR [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

L
LF [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
LH [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

M
MONTH1 [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
MONTH10 [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
MONTH11 [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
MONTH12 [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
MONTH2 [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
MONTH3 [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
MONTH4 [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
MONTH5 [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
MONTH6 [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
MONTH7 [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
MONTH8 [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
MONTH9 [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

O
o [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
oe [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
OE [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Q
q [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Q [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

R
REFERENCES [ms] . . . . . . . . . . . . . . . . . . . . . . . 51
RF [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
RH [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

S
SN [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
SN-DOT [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
SN-NO-DOT [ms] . . . . . . . . . . . . . . . . . . . . . . . . 39
SN-STYLE [ms] . . . . . . . . . . . . . . . . . . . . . . 31, 39

T
Th [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
th [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
TOC [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

U
U [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

V
v [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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Appendix H File Keyword Index

#
# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242, 245

–
--- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

B
biggestfont . . . . . . . . . . . . . . . . . . . . . . . . . 245

C
charset . . . . . . . . . . . . . . . . . . . . . . . . . 245, 246

F
family . . . . . . . . . . . . . . . . . . . . . . . . . . 131, 242
fonts . . . . . . . . . . . . . . . . . . . . . . . 135, 144, 242

H
hor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

I
image_generator . . . . . . . . . . . . . . . . . . . . . 243

K
kernpairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

L
ligatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

N
name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

P
paperlength . . . . . . . . . . . . . . . . . . . . . . . . . 243
papersize . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
paperwidth . . . . . . . . . . . . . . . . . . . . . . . . . . 243
pass_filenames . . . . . . . . . . . . . . . . . . . . . . 243
postpro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
prepro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

R
res . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

S
sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
sizescale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
slant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
spacewidth . . . . . . . . . . . . . . . . . . . . . . . . . . 245
spare1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
spare2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
special . . . . . . . . . . . . . . . . . . . . . . . . . 146, 246
styles . . . . . . . . . . . . . . . . . . . . . 131, 134, 244

T
tcommand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

U
unicode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
unitwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
unscaled_charwidths . . . . . . . . . . . . . . . . 244
use_charnames_in_special . . . . . . 212, 244

V
vert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
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Appendix I Program and File Index

A
an.tmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

C
changebar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
composite.tmac . . . . . . . . . . . . . . . . . . . . . . 139
cp1047.tmac . . . . . . . . . . . . . . . . . . . . . . . . . . 70
cs.tmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

D
de.tmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
DESC . . . . . . . . . . . . . . 131, 134, 135, 139, 144
diffmk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

E
ec.tmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
en.tmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
eqn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

F
fr.tmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
freeeuro.pfa . . . . . . . . . . . . . . . . . . . . . . . . . 71

G
gchem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
gdiffmk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
geqn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
ggrn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
gpic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
grap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
grefer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
groff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
gsoelim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
gtbl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
gtroff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I
it.tmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

J
ja.tmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

L
latin1.tmac . . . . . . . . . . . . . . . . . . . . . . . . . . 70
latin2.tmac . . . . . . . . . . . . . . . . . . . . . . . . . . 71
latin5.tmac . . . . . . . . . . . . . . . . . . . . . . . . . . 71
latin9.tmac . . . . . . . . . . . . . . . . . . . . . . . . . . 71

M
makeindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
man.local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
man.tmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
man.ultrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

N
nrchbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

P
papersize.tmac . . . . . . . . . . . . . . . . . . . . . . . 13
perl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
pic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
post-grohtml . . . . . . . . . . . . . . . . . . . . . . . . . . 9
pre-grohtml . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
preconv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

R
refer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

S
soelim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
sv.tmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

T
tbl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
trace.tmac . . . . . . . . . . . . . . . . . . . . . . . . . . 170
troffrc . . . . . . . . . . . . . . 8, 13, 110, 111, 121
troffrc-end . . . . . . . . . . . . . . . . . . 8, 111, 121
tty.tmac . . . . . . . . . . . . . . . . . . . . . . . . 122, 123
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V
vtroff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Z
zh.tmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
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Appendix J Concept Index

"
", as delimiter . . . . . . . . . . . . . . . . . . . . . . . . . 89
", at end of sentence . . . . . . . . . . . . . . 65, 140
", embedding in a macro argument . . . . 86

%
%, as delimiter . . . . . . . . . . . . . . . . . . . . . . . . . 90

&
&, as delimiter . . . . . . . . . . . . . . . . . . . . . . . . . 90

’
', as a comment . . . . . . . . . . . . . . . . . . . . . . . 91
', as delimiter . . . . . . . . . . . . . . . . . . . . . . . . . 89
', at end of sentence . . . . . . . . . . . . . . 65, 140

(
(, as delimiter . . . . . . . . . . . . . . . . . . . . . . . . . 90

)
), as delimiter . . . . . . . . . . . . . . . . . . . . . . . . . 90
), at end of sentence . . . . . . . . . . . . . . 65, 140

*
*, as delimiter . . . . . . . . . . . . . . . . . . . . . . . . . 90
*, at end of sentence . . . . . . . . . . . . . . 65, 140

+
+, and page motion . . . . . . . . . . . . . . . . . . . . 79
+, as delimiter . . . . . . . . . . . . . . . . . . . . . . . . . 90

–
-, and page motion . . . . . . . . . . . . . . . . . . . . 79
-, as delimiter . . . . . . . . . . . . . . . . . . . . . . . . . 90
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character, defining (char) . . . . . . . . . . . . . 141
character, defining fallback (fchar,
fschar, schar) . . . . . . . . . . . . . . . . . . . . . 141

character, distinguished from glyph . . . 135
character, dummy (\&) . . . . . . . . . . . . . . . 148

character, dummy (\&), as control
character suppressor . . . . . . . . . . . . . . . . . 67

character, dummy (\&), effect on \l

escape sequence . . . . . . . . . . . . . . . . . . . . 181
character, dummy (\&),

effect on kerning . . . . . . . . . . . . . . . . . . . 147
character, escape, changing (ec) . . . . . . . 88
character, escape, while

defining glyph . . . . . . . . . . . . . . . . . . . . . . 141
character, field delimiting (fc) . . . . . . . . 119
character, field padding (fc) . . . . . . . . . . 119
character, horizontal tab . . . . . . . . . . . . . . . 67
character, hyphenation (\%) . . . . . . . . . . 106
character, leader . . . . . . . . . . . . . . . . . . . . . . . 67
character, leader repetition (lc) . . . . . . 118
character, leader, and translations . . . . 120
character, leader,

non-interpreted (\a) . . . . . . . . . . . . . . . . 118
character, named (\C) . . . . . . . . . . . . . . . . 139
character, newline, and translations . . . 120
character, no-break control (') . . . . . . . . . 67
character, no-break control,

changing (c2) . . . . . . . . . . . . . . . . . . . . . . . 83
character, ordinary . . . . . . . . . . . . . . . . . . . . 81
character, soft hyphen, setting (shc) . . 107
character, special . . . . . . . . . . . . . . . . . . . . . 120
character, tab repetition (tc) . . . . . . . . . 117
character, tab, and translations . . . . . . . 120
character, tab, non-interpreted (\t) . . . 115
character, transparent . . . . . . . . . . . . . . . . 140
character, transparent dummy (\)) . . . 149
characters, end-of-sentence . . . . . . . . . . . 140
characters, end-of-sentence

transparent . . . . . . . . . . . . . . . . . . . . . . . . . 65
characters, hyphenation . . . . . . . . . . . . . . 140
characters, input, and output glyphs,

compatibility with AT&T troff . . . . 227
characters, invalid for trf request . . . . . 207
characters, invalid input . . . . . . . . . . . . . . . 81
characters, overlapping . . . . . . . . . . . . . . . 140
characters, special . . . . . . . . . . . . . . . . . . . . . 65
characters, special, list of

(groff char(7) man page) . . . . . . . . . . . 136
characters, unnamed,

accessing with \N . . . . . . . . . . . . . . . . . . . 246
circle, filled, drawing (‘\D'C ...'’) . . . . 183
circle, outlined, drawing

(‘\D'c ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
circle, solid, drawing (‘\D'C ...'’) . . . . 183
circle, stroked, drawing

(‘\D'c ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
class of characters (class) . . . . . . . . . . . . 143
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classes, character . . . . . . . . . . . . . . . . . . . . . 142
clearing input line trap (it, itc) . . . . . 191
closing brace escape sequence (\}) . . . . 164
closing file (close) . . . . . . . . . . . . . . . . . . . 210
code page 1047 output encoding . . . . . . . . 9
code page 1047, input encoding . . . . . . . . 70
code, hyphenation (hcode) . . . . . . . . . . . . 111
color name, background,

register (.M) . . . . . . . . . . . . . . . . . . . . . . . . 155
color name, fill, register (.M) . . . . . . . . . . 155
color name, stroke, register (.m) . . . . . . 155
color, default . . . . . . . . . . . . . . . . . . . . . . . . . 155
color, fill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
color, stroke . . . . . . . . . . . . . . . . . . . . . . . . . . 154
colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
command prefix . . . . . . . . . . . . . . . . . . . . . . . 11
command-line options . . . . . . . . . . . . . . . . . . 6
comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
comments in device description files . . . 242
comments in font description files . . . . . 245
comments, lining up with tabs . . . . . . . . . 91
comments, with ds . . . . . . . . . . . . . . . . . . . 156
common features . . . . . . . . . . . . . . . . . . . . . . 17
common name space of macros,

diversions, and strings . . . . . . . . . . . . . . . 83
comparison of strings . . . . . . . . . . . . . . . . . 162
comparison operators . . . . . . . . . . . . . . . . . . 78
compatibility mode . . . . . . . . . . . . . . 222, 223
compatibility mode, and parameters . . 217
complementation, logical . . . . . . . . . . . . . . . 78
composite glyph names . . . . . . . . . . . . . . . 137
conditional block, beginning (\{) . . . . . 164
conditional block, end (\}) . . . . . . . . . . . 164
conditional blocks . . . . . . . . . . . . . . . . . . . . 164
conditional expressions . . . . . . . . . . . . . . . 160
conditional output for

terminal (TTY) . . . . . . . . . . . . . . . . . . . . 161
conditional page break (ne) . . . . . . . . . . . 128
conditionals and loops . . . . . . . . . . . . . . . . 160
configuring control characters . . . . . . . . . . 83
configuring the page length (pl) . . . . . . 126
consecutive hyphenated lines (hlm) . . . 111
constant glyph space mode (cs) . . . . . . 146
contents, table of . . . . . . . . . . . . . . . . . 19, 119
continuation, input line (\RET) . . . . . . . . 125
continuation, output line (\c) . . . . . . . . . 125
continue request, in a while loop . . . . 167
continued output line

register (.int) . . . . . . . . . . . . . . . . . . . . . 126
continuous underlining (cu) . . . . . . . . . . . 145
control character (.) . . . . . . . . . . . . . . . . . . . 67
control character, changing (cc) . . . . . . . 83

control character, no-break (') . . . . . . . . . 67
control character, no-break,

changing (c2) . . . . . . . . . . . . . . . . . . . . . . . 83
control characters . . . . . . . . . . . . . . . . . . . . . 83
control line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
control, line . . . . . . . . . . . . . . . . . . . . . . . . . . 125
control, page . . . . . . . . . . . . . . . . . . . . . . . . . 128
conventions for input . . . . . . . . . . . . . . . . . . 71
conversion to basic units . . . . . . . . . . . . . . . 75
copy mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
copy mode, and \! . . . . . . . . . . . . . . . . . . . 199
copy mode, and \? . . . . . . . . . . . . . . 162, 199
copy mode, and \a . . . . . . . . . . . . . . . . . . . 118
copy mode, and \t . . . . . . . . . . . . . . . . . . . 115
copy mode, and \V . . . . . . . . . . . . . . . . . . . 211
copy mode, and cf request . . . . . . . . . . . 207
copy mode, and device request . . . . . . . 211
copy mode, and length request . . . . . . . 158
copy mode, and macro parameters . . . . 171
copy mode, and output request . . . . . . . 200
copy mode, and trf request . . . . . . . . . . 207
copy mode, and write request . . . . . . . . 210
copy mode, and writec request . . . . . . . 210
copy mode, and writem request . . . . . . . 210
copying environment (evc) . . . . . . . . . . . 204
correction between oblique and

upright glyph (\/, \,) . . . . . . . . . . . . . . 147
correction between upright and

oblique glyph (\/, \,) . . . . . . . . . . . . . . 148
correction, italic (\/) . . . . . . . . . . . . . . . . . 147
correction, left italic (\,) . . . . . . . . . . . . . 148
cover page in [ms], example markup . . . . 34
cp request, and glyph definitions . . . . . . 141
cq glyph, at end of sentence . . . . . . . 65, 140
creating alias for register (aln) . . . . . . . . . 94
creating alias, for diversion (als) . . . . . 159
creating alias, for macro (als) . . . . . . . . 159
creating alias, for string (als) . . . . . . . . 159
creating new characters (char) . . . . . . . . 141
credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
cs request, and font styles . . . . . . . . . . . . 134
cs request, and font translations . . . . . . 132
cs request, incompatibilities

with AT&T troff . . . . . . . . . . . . . . . . . . 227
cs request, with

fractional type sizes . . . . . . . . . . . . . . . . 152
CSTR #54 errata . . 99, 123, 128, 145, 150,

180
CSTR #54 erratum, \s

escape sequence . . . . . . . . . . . . . . . . . . . . 150
CSTR #54 erratum, \S escape . . . . . . . 145
CSTR #54 erratum, bp request . . . . . . . 128
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CSTR #54 erratum, po request . . . . . . . 123
CSTR #54 erratum, ps request . . . . . . . 150
CSTR #54 erratum, sb register . . . . . . 180
CSTR #54 erratum, st register . . . . . . 180
CSTR #54 erratum, yr register . . . . . . . . 99
current directory . . . . . . . . . . . . . . . . . . . . . . 12
current input file name register (.F) . . . 98
current page number (%) . . . . . . . . . . . . . . 128
current time, hours (hours) . . . . . . . . . . . . 99
current time, minutes (minutes) . . . . . . . 99
current time, seconds (seconds) . . . . . . . 99

D
da request, and dn (dl) . . . . . . . . . . . . . . . 198
da request, and warnings . . . . . . . . . . . . . 222
date, day of the month register (dy) . . . . 99
date, day of the week register (dw) . . . . . 99
date, month of the year register (mo) . . . 99
date, year register (year, yr) . . . . . . . . . . 99
day of the month register (dy) . . . . . . . . . 99
day of the week register (dw) . . . . . . . . . . . 99
dd glyph, at end of sentence . . . . . . . 65, 140
de request, and while . . . . . . . . . . . . . . . . 166
de, de1, dei requests, and warnings . . . 222
debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
debugging page location traps . . . . . . . . 187
decimal point, as delimiter . . . . . . . . . . . . . 90
decrementation, automatic,

of a register . . . . . . . . . . . . . . . . . . . . . . . . . 95
default color . . . . . . . . . . . . . . . . . . . . . . . . . . 155
default tab stops . . . . . . . . . . . . . . . . . . . . . 115
default units . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
deferred output . . . . . . . . . . . . . . . . . . . . . . . 185
defining character (char) . . . . . . . . . . . . . 141
defining character class (class) . . . . . . . 143
defining fallback character (fchar,
fschar, schar) . . . . . . . . . . . . . . . . . . . . . 141

defining glyph (char) . . . . . . . . . . . . . . . . . 141
defining symbol (char) . . . . . . . . . . . . . . . 141
delimited arguments, incompatibilities

with AT&T troff . . . . . . . . . . . . . . . . . . 225
delimiters, for escape

sequence arguments . . . . . . . . . . . . . . . . . 89
delimiting character, for fields (fc) . . . . 119
delimiting escape

sequence arguments . . . . . . . . . . . . . . . . . 89
depth, interpolation . . . . . . . . . . . . . . . . . . . 87
depth, of last glyph (.cdp) . . . . . . . . . . . 205
DESC file format . . . . . . . . . . . . . . . . . . . . . . 242
DESC file, and font mounting . . . . . . . . . . 135

DESC file, and use_charnames_in_

special keyword . . . . . . . . . . . . . . . . . . . 212
description file, font . . . . . . . . . . . . . . . . . . 130
device description files, comments . . . . . 242
device request, and copy mode . . . . . . . 211
device resolution . . . . . . . . . . . . . . . . . . 74, 244
device resolution, obtaining in

the formatter . . . . . . . . . . . . . . . . . . . . . . . . 75
devices for output . . . . . . . . . . . . . . . . . . . . . . 3
dg glyph, at end of sentence . . . . . . . 65, 140
di request, and warnings . . . . . . . . . . . . . 222
differences in implementation . . . . . . . . . 223
digit-width space (\0) . . . . . . . . . . . . . . . . 179
digits, as delimiters . . . . . . . . . . . . . . . . . . . . 90
dimensions, line . . . . . . . . . . . . . . . . . . . . . . 122
directories for fonts . . . . . . . . . . . . . . . . . . . . 12
directories for macros . . . . . . . . . . . . . . . . . . 12
directory, current . . . . . . . . . . . . . . . . . . . . . . 12
directory, for tmac files . . . . . . . . . . . . . . . . 12
directory, home . . . . . . . . . . . . . . . . . . . . . . . . 12
directory, platform-specific . . . . . . . . . . . . . 12
directory, site-local . . . . . . . . . . . . . . . . . 12, 13
disabling \ (eo) . . . . . . . . . . . . . . . . . . . . . . . . 88
disabling hyphenation (\%) . . . . . . . . . . . 106
discardable horizontal space . . . . . . . . . . 105
displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
displays [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
displays, and footnotes [ms] . . . . . . . . . . . . 50
distance to next vertical position

trap register (.t) . . . . . . . . . . . . . . . . . . . 188
diversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
diversion name register (.z) . . . . . . . . . . 197
diversion trap, setting (dt) . . . . . . . . . . . 191
diversion traps . . . . . . . . . . . . . . . . . . . . . . . 191
diversion, appending to (da, boxa) . . . . 196
diversion, beginning (di, box) . . . . . . . . . 196
diversion, creating alias for (als) . . . . . 159
diversion, ending (di, box) . . . . . . . . . . . . 196
diversion, nested . . . . . . . . . . . . . . . . . . . . . 197
diversion, removing (rm) . . . . . . . . . . . . . . 159
diversion, removing alias for (rm) . . . . . 160
diversion, renaming (rn) . . . . . . . . . . . . . . 159
diversion, stripping final newline . . . . . . 202
diversion, top-level . . . . . . . . . . . . . . . . . . . 196
diversion, top-level, and \! . . . . . . . . . . . 199
diversion, top-level, and \? . . . . . . . . . . . 200
diversion, top-level, and bp . . . . . . . . . . . 128
diversion, unformatting (asciify) . . . . 200
diversion, vertical position in,

register (.d) . . . . . . . . . . . . . . . . . . . . . . . . 197
diversions . . . . . . . . . . . . . . . . . . . . . . . 196, 201
diversions, and traps . . . . . . . . . . . . . . . . . 190
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diversions, shared name space with
macros and strings . . . . . . . . . . . . . . . . . . 83

division, truncating . . . . . . . . . . . . . . . . . . . . 77
dl register, and da (boxa) . . . . . . . . . . . . 198
dn register, and da (boxa) . . . . . . . . . . . . 198
document description macros, [ms] . . . . . 33
document formats . . . . . . . . . . . . . . . . . . . . . 20
documents, multi-file . . . . . . . . . . . . . . . . . 218
documents, structuring the source of . . . 85
dot, as delimiter . . . . . . . . . . . . . . . . . . . . . . . 90
double quote, embedding in a

macro argument . . . . . . . . . . . . . . . . . . . . . 86
double quotes, trailing, in strings . . . . . 157
double-spacing (ls) . . . . . . . . . . . . . . . . . . . 113
double-spacing (vs, pvs) . . . . . . . . . . . . . . 152
down-casing a string (stringdown) . . . . 159
drawing a filled circle (‘\D'C ...'’) . . . 183
drawing a filled ellipse (‘\D'E ...'’) . . 183
drawing a filled polygon

(‘\D'P ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
drawing a line (‘\D'l ...'’) . . . . . . . . . . 183
drawing a solid circle (‘\D'C ...'’) . . . 183
drawing a solid ellipse (‘\D'E ...'’) . . 183
drawing a solid polygon

(‘\D'P ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
drawing a spline (‘\D'~ ...'’) . . . . . . . . 183
drawing a stroked circle

(‘\D'c ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
drawing a stroked ellipse

(‘\D'e ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
drawing a stroked polygon

(‘\D'p ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
drawing an arc (‘\D'a ...'’) . . . . . . . . . 183
drawing an outlined circle

(‘\D'c ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
drawing an outlined ellipse

(‘\D'e ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
drawing an outlined polygon

(‘\D'p ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
drawing horizontal lines (\l) . . . . . . . . . . 181
drawing position . . . . . . . . . . . . . . . . . . . . . . . 74
drawing position, vertical (nl) . . . . . . . . 129
drawing requests . . . . . . . . . . . . . . . . . . . . . 181
drawing vertical lines (\L) . . . . . . . . . . . . 182
ds request, and comments . . . . . . . . . . . . 156
ds request, and double quotes . . . . . . . . 157
ds request, and leading spaces . . . . . . . . 157
ds, ds1 requests, and comments . . . . . . . . 91
ds, ds1 requests, and warnings . . . . . . . . 222
dummy character (\&) . . . . . . . . . . . . . . . . 148
dummy character (\&), as control

character suppressor . . . . . . . . . . . . . . . . . 67

dummy character (\&), effect on \l

escape sequence . . . . . . . . . . . . . . . . . . . . 181
dummy character (\&),

effect on kerning . . . . . . . . . . . . . . . . . . . 147
dummy character, transparent (\)) . . . 149
dummy environment, used by \w

escape sequence . . . . . . . . . . . . . . . . . . . . 179
dumping environments (pev) . . . . . . . . . 219
dumping page location traps (ptr) . . . . 219
dumping registers (pnr) . . . . . . . . . . . . . . 219
dumping symbol table (pm) . . . . . . . . . . . 219

E
EBCDIC output encoding . . . . . . . . . . . . . . . 9
EBCDIC, input encoding . . . . . . . . . . . . . . . 70
ejection, page . . . . . . . . . . . . . . . . 74, 128, 190
ejection, page, of final page . . . . . . . . . . . 194
ejection, page, prevented by vpt . . . . . . 186
el request, and warnings . . . . . . . . . . . . . 221
ellipse, filled, drawing (‘\D'E ...'’) . . . 183
ellipse, outlined, drawing

(‘\D'e ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
ellipse, solid, drawing (‘\D'E ...'’) . . . 183
ellipse, stroked, drawing

(‘\D'e ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
em glyph, and cflags . . . . . . . . . . . . . . . . . 140
em scaling unit (m) . . . . . . . . . . . . . . . . . . . . 75
embolding of special fonts . . . . . . . . . . . . 146
empty line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
en scaling unit (n) . . . . . . . . . . . . . . . . . . . . . 75
enabling vertical position

traps (vpt) . . . . . . . . . . . . . . . . . . . . . . . . . 186
encoding, input, code page 1047 . . . . . . . 70
encoding, input, EBCDIC . . . . . . . . . . . . . . 70
encoding, input, Latin-1

(ISO 8859-1) . . . . . . . . . . . . . . . . . . . . . . . . 70
encoding, input, Latin-2

(ISO 8859-2) . . . . . . . . . . . . . . . . . . . . . . . . 71
encoding, input, Latin-5

(ISO 8859-9) . . . . . . . . . . . . . . . . . . . . . . . . 71
encoding, input, Latin-9

(ISO 8859-15) . . . . . . . . . . . . . . . . . . . . . . . 71
encoding, output, ASCII . . . . . . . . . . . . . . . . 9
encoding, output, code page 1047 . . . . . . . 9
encoding, output, EBCDIC . . . . . . . . . . . . . . 9
encoding, output, ISO 646 . . . . . . . . . . . . . . 9
encoding, output, Latin-1

(ISO 8859-1) . . . . . . . . . . . . . . . . . . . . . . . . . 9
encoding, output, UTF-8 . . . . . . . . . . . . . . . 9
end of conditional block (\}) . . . . . . . . . 164
end-of-input macro (em) . . . . . . . . . . . . . . 194
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end-of-input trap, setting (em) . . . . . . . . 194
end-of-input traps . . . . . . . . . . . . . . . . . . . . 194
end-of-sentence characters . . . . . . . . 64, 140
end-of-sentence

transparent characters . . . . . . . . . . . . . . . 65
ending diversion (di, box) . . . . . . . . . . . . 196
endnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
environment . . . . . . . . . . . . . . . . . . . . . . . . . . 185
environment availability and naming,

incompatibilities with . . . . . . . . . . . . . . 227
environment number/name

register (.ev) . . . . . . . . . . . . . . . . . . . . . . 203
environment variables . . . . . . . . . . . . . . . . . 10
environment, copying (evc) . . . . . . . . . . . 204
environment, dimensions of last glyph (.w,
.cht, .cdp, .csk) . . . . . . . . . . . . . . . . . . 205

environment, dummy, used by \w

escape sequence . . . . . . . . . . . . . . . . . . . . 179
environment, previous line

length (.n) . . . . . . . . . . . . . . . . . . . . . . . . . 205
environment, switching (ev) . . . . . . . . . . 203
environments . . . . . . . . . . . . . . . . . . . . . . . . . 203
environments, dumping (pev) . . . . . . . . . 219
equality operator . . . . . . . . . . . . . . . . . . . . . . 78
equation example [ms] . . . . . . . . . . . . . . . . . 49
equations [ms] . . . . . . . . . . . . . . . . . . . . . . . . . 48
escape character, changing (ec) . . . . . . . . 88
escape character, formatting (\e) . . . . . . 88
escape character, while

defining glyph . . . . . . . . . . . . . . . . . . . . . . 141
escape sequence . . . . . . . . . . . . . . . . . . . . . . . 83
escape sequence argument delimiters . . . 89
escape sequences . . . . . . . . . . . . . . . . . . . . . . 87
escape sequences, brace (\{, \}) . . . . . . 164
escaping newline

characters, in strings . . . . . . . . . . . . . . . 157
ex request, use in debugging . . . . . . . . . . 219
ex request, used with nx and rd . . . . . . 208
example markup, bulleted list [ms] . . . . . 42
example markup, cover page in [ms] . . . . 34
example markup,

glossary-style list [ms] . . . . . . . . . . . . . . . . 43
example markup, numbered list [ms] . . . 43
examples of invocation . . . . . . . . . . . . . . . . . 14
exiting (ex) . . . . . . . . . . . . . . . . . . . . . . . . . . 219
expansion of strings (\*) . . . . . . . . . . . . . . 156
explicit hyphen (\%) . . . . . . . . . . . . . . . . . . 111
explicit hyphenation . . . . . . . . . . . . . . . . . . 106
expression, limitation of

logical not in . . . . . . . . . . . . . . . . . . . . . . . . 78
expression, order of evaluation . . . . . . . . . 78
expressions, and register format . . . . . . . . 97

expressions, and space characters . . . . . . 80
expressions, conditional . . . . . . . . . . . . . . . 160
expressions, numeric . . . . . . . . . . . . . . . . . . . 77
extra post-vertical line space (\x) . . . . . 152
extra post-vertical line space

register (.a) . . . . . . . . . . . . . . . . . . . . . . . . 114
extra pre-vertical line space (\x) . . . . . . 152
extra spaces between words . . . . . . . . . . . . 67
extreme values representable with

Roman numerals . . . . . . . . . . . . . . . . . . . . 97
extremum operators (>?, <?) . . . . . . . . . . . 78

F
f scaling unit . . . . . . . . . . . . . . . . . . . . . . . . . 154
factor, zoom, of a font (fzoom) . . . . . . . . 132
fallback character, defining (fchar,
fschar, schar) . . . . . . . . . . . . . . . . . . . . . 141

fallback glyph, removing definition
(rchar, rfschar) . . . . . . . . . . . . . . . . . . . 142

fam request, and changing fonts . . . . . . . 131
families, font . . . . . . . . . . . . . . . . . . . . . . . . . 132
family, font . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
features, common . . . . . . . . . . . . . . . . . . . . . . 17
fi request, causing implicit break . . . . . . 99
field delimiting character (fc) . . . . . . . . 119
field padding character (fc) . . . . . . . . . . 119
fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
fields, and tabs . . . . . . . . . . . . . . . . . . . . . . . 115
figure space (\0) . . . . . . . . . . . . . . . . . . . . . . 179
figures [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
file formats . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
file names, breaking (\:) . . . . . . . . . . . . . 107
file, appending to (opena) . . . . . . . . . . . . 210
file, closing (close) . . . . . . . . . . . . . . . . . . . 210
file, font description . . . . . . . . . . . . . . . . . . 130
file, inclusion (so) . . . . . . . . . . . . . . . . . . . . 206
file, macro, search path . . . . . . . . . . . . . . . . 12
file, opening (open) . . . . . . . . . . . . . . . . . . . 210
file, processing next (nx) . . . . . . . . . . . . . . 208
file, writing to (write, writec) . . . . . . . 210
files, font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
fill color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
fill color name register (.M) . . . . . . . . . . . 155
fill mode (fi), enabling . . . . . . . . . . . . . . . 100
fill mode, and \c . . . . . . . . . . . . . . . . . . . . . 125
fill mode, disabling . . . . . . . . . . . . . . . . . . . 101
filled circle, drawing (‘\D'C ...'’) . . . . 183
filled ellipse, drawing (‘\D'E ...'’) . . . 183
filled polygon, drawing

(‘\D'P ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



288 The GNU Troff Manual

filling and adjustment, manipulating . . . 99
filling of output, disabling (nf) . . . . . . . 101
filling of output, enabling (fi) . . . . . . . . 100
filling, and break warnings . . . . . . . . . . . 221
filling, and inter-sentence space . . . . . . . 105
final newline, stripping in diversions . . 202
fl request, causing implicit break . . . . . . 99
floating keep . . . . . . . . . . . . . . . . . . . . . . . . . . 19
flush output (fl) . . . . . . . . . . . . . . . . . . . . . 219
font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
font aliasing with third

argument to fp request . . . . . . . . . . . . . 135
font description file . . . . . . . . . . . . . . . . . . . 130
font description file format . . . . . . . . . . . . 242
font description file, format . . . . . . . . . . . 245
font description files, comments . . . . . . . 245
font directories . . . . . . . . . . . . . . . . . . . . . . . . 12
font families . . . . . . . . . . . . . . . . . . . . . . . . . . 132
font family . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
font family, changing (fam, \F) . . . . . . . . 133
font file, format . . . . . . . . . . . . . . . . . . . . . . 245
font files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
font for underlining (uf) . . . . . . . . . . . . . . 145
font height, changing (\H) . . . . . . . . . . . . 144
font metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 130
font mounting, automatic . . . . . . . . . . . . . 131
font path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
font position register (.f) . . . . . . . . . . . . . 135
font positions . . . . . . . . . . . . . . . . . . . . . . . . . 134
font slant, changing (\S) . . . . . . . . . . . . . . 145
font style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
font style, abstract . . . . . . . . . . . . . . . . . . . 130
font style, abstract, setting up (sty) . . 134
font styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
font translation (ftr) . . . . . . . . . . . . . . . . . 132
font, magnification (fzoom) . . . . . . . . . . . 132
font, mounting (fp) . . . . . . . . . . . . . . . . . . 134
font, optical size . . . . . . . . . . . . . . . . . . . . . . 132
font, previous, selecting (\f[], \fP) . . . 131
font, previous, slecting (ft) . . . . . . . . . . . 131
font, selection . . . . . . . . . . . . . . . . . . . . . . . . 131
font, special . . . . . . . . . . . . . . . . . . . . . . . . . . 130
font, text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
font, unstyled . . . . . . . . . . . . . . . . . . . . . . . . 130
font, zoom factor (fzoom) . . . . . . . . . . . . . 132
fonts, artificial . . . . . . . . . . . . . . . . . . . . . . . . 144
fonts, changing (ft, \f) . . . . . . . . . . . . . . . 131
fonts, searching . . . . . . . . . . . . . . . . . . . . . . . . 12
fonts, special . . . . . . . . . . . . . . . . . . . . . . . . . 144
footers . . . . . . . . . . . . . . . . . . . . . . . . . . 127, 187
footers [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
footnote marker [ms] . . . . . . . . . . . . . . . . . . . 49

footnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
footnotes [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . 49
footnotes, and displays [ms] . . . . . . . . . . . . 50
footnotes, and keeps [ms] . . . . . . . . . . . . . . . 50
form letters . . . . . . . . . . . . . . . . . . . . . . . . . . 208
format of font description file . . . . . . . . . 242
format of font description files . . . . . . . . 245
format of font files . . . . . . . . . . . . . . . . . . . . 245
format of register (\g) . . . . . . . . . . . . . . . . . 97
format, paper . . . . . . . . . . . . . . . . . . . . . . . . . 13
formats, file . . . . . . . . . . . . . . . . . . . . . . . . . . 229
formatter instructions . . . . . . . . . . . . . . . . . 83
formatting a backslash glyph (\[rs]) . . 88
formatting a title line (tl) . . . . . . . . . . . . 127
formatting the escape character (\e) . . . 88
formatting the time . . . . . . . . . . . . . . . . . . 209
fp request, and font translations . . . . . . 132
fp request, incompatibilities

with AT&T troff . . . . . . . . . . . . . . . . . . 227
fractional point sizes . . . . . . . . . . . . . 152, 227
fractional type sizes . . . . . . . . . . . . . . 152, 227
fractional type sizes in ms macros . . . . . . 57
French spacing . . . . . . . . . . . . . . . . . . . . . . . . 64
fspecial request, and font styles . . . . . 134
fspecial request, and font

translations . . . . . . . . . . . . . . . . . . . . . . . . 132
fspecial request, and glyph

search order . . . . . . . . . . . . . . . . . . . . . . . . 135
fspecial request, and

imitating bold . . . . . . . . . . . . . . . . . . . . . . 146
ft request, and font translations . . . . . . 132
full-service macro package . . . . . . . . . . . . . 21

G
geometry, page . . . . . . . . . . . . . . . . . . . . . . . . 74
GGL (groff glyph list) . . . . . . . . . . 137, 143
glossary-style list, example

markup [ms] . . . . . . . . . . . . . . . . . . . . . . . . . 43
glyph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
glyph for line drawing . . . . . . . . . . . . . . . . 182
glyph names, composite . . . . . . . . . . . . . . 137
glyph pile (\b) . . . . . . . . . . . . . . . . . . . . . . . 184
glyph properties (cflags) . . . . . . . . . . . . 140
glyph, box rule (\[br]) . . . . . . . . . . . . . . . 182
glyph, constant space . . . . . . . . . . . . . . . . . 146
glyph, defining (char) . . . . . . . . . . . . . . . . 141
glyph, distinguished from character . . . 135
glyph, for line drawing . . . . . . . . . . . . . . . . 181
glyph, for margins (mc) . . . . . . . . . . . . . . . 214
glyph, last, dimensions (.w,
.cht, .cdp, .csk) . . . . . . . . . . . . . . . . . . 205



Appendix J: Concept Index 289

glyph, leader repetition (lc) . . . . . . . . . . 118
glyph, numbered (\N) . . . . . . . . . . . . 120, 139
glyph, removing definition

(rchar, rfschar) . . . . . . . . . . . . . . . . . . . 142
glyph, soft hyphen (hy) . . . . . . . . . . . . . . . 107
glyph, tab repetition (tc) . . . . . . . . . . . . . 117
glyph, underscore (\[ru]) . . . . . . . . . . . . 181
glyphs, available, list of

(groff char(7) man page) . . . . . . . . . . . 136
glyphs, output, and input characters,

compatibility with AT&T troff . . . . 227
glyphs, overstriking (\o) . . . . . . . . . . . . . . 180
glyphs, unnamed . . . . . . . . . . . . . . . . . . . . . 139
glyphs, unnamed, accessing with \N . . . 246
GNU troff, identification

register (.g) . . . . . . . . . . . . . . . . . . . . . . . . . 98
GNU troff, PID register ($$) . . . . . . . . . 99
GNU troff, process ID register ($$) . . . 99
GNU-specific register (.g) . . . . . . . . . . . . . 98
graphic renditions . . . . . . . . . . . . . . . . . . . . 130
greater than (or equal to) operator . . . . . 78
groff capabilities . . . . . . . . . . . . . . . . . . . . . . . 2
groff glyph list (GGL) . . . . . . . . . . 137, 143
groff invocation . . . . . . . . . . . . . . . . . . . . . . . 5
groff, and pi request . . . . . . . . . . . . . . . . 209
groff—what is it? . . . . . . . . . . . . . . . . . . . . . . 1
GROFF_BIN_PATH,

environment variable . . . . . . . . . . . . . . . . 11
GROFF_COMMAND_PREFIX,

environment variable . . . . . . . . . . . . . . . . 11
GROFF_ENCODING,

environment variable . . . . . . . . . . . . . . . . 11
GROFF_FONT_PATH,

environment variable . . . . . . . . . . . . 11, 13
GROFF_TMAC_PATH,

environment variable . . . . . . . . . . . . 11, 12
GROFF_TMPDIR, environment variable . . . 11
GROFF_TYPESETTER,

environment variable . . . . . . . . . . . . . . . . 11
grohtml, the program . . . . . . . . . . . . . . . . . . . 9
gtroff, interactive use . . . . . . . . . . . . . . . 219
gtroff, output . . . . . . . . . . . . . . . . . . . . . . . 229
gtroff, reference . . . . . . . . . . . . . . . . . . . . . . 63

H
hair space (\^) . . . . . . . . . . . . . . . . . . . . . . . 179
hcode request, and glyph definitions . . 141
headers . . . . . . . . . . . . . . . . . . . . . . . . . . 127, 187
headers [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
height, font, changing (\H) . . . . . . . . . . . . 144
height, of last glyph (.cht) . . . . . . . . . . . 205
high-water mark register (.h) . . . . . . . . . 198
home directory . . . . . . . . . . . . . . . . . . . . . . . . 12
horizontal discardable space . . . . . . . . . . 105
horizontal input line position

register (hp) . . . . . . . . . . . . . . . . . . . . . . . . 180
horizontal input line

position, saving (\k) . . . . . . . . . . . . . . . 180
horizontal line, drawing (\l) . . . . . . . . . . 181
horizontal motion (\h) . . . . . . . . . . . . . . . . 178
horizontal motion quantum . . . . . . . . . . . 243
horizontal motion quantum

register (.H) . . . . . . . . . . . . . . . . . . . . . . . . . 76
horizontal output line position

register (.k) . . . . . . . . . . . . . . . . . . . . . . . . 180
horizontal resolution . . . . . . . . . . . . . . . . . . 243
horizontal resolution register (.H) . . . . . . 76
horizontal space (\h) . . . . . . . . . . . . . . . . . 178
horizontal space, unformatting . . . . . . . . 202
horizontal tab character . . . . . . . . . . . . . . . 67
hours, current time (hours) . . . . . . . . . . . . 99
hpf request, and

hyphenation language . . . . . . . . . . . . . . 111
hw request, and hy restrictions . . . . . . . . 106
hw request, and

hyphenation language . . . . . . . . . . . . . . 111
hy glyph, and cflags . . . . . . . . . . . . . . . . . 140
hyphen, explicit (\%) . . . . . . . . . . . . . . . . . 111
hyphenated lines, consecutive (hlm) . . . 111
hyphenating characters . . . . . . . . . . . . . . . 140
hyphenation . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
hyphenation character (\%) . . . . . . . . . . . 106
hyphenation code (hcode) . . . . . . . . . . . . 111
hyphenation consecutive line count

register (.hlc) . . . . . . . . . . . . . . . . . . . . . 112
hyphenation consecutive line limit

register (.hlm) . . . . . . . . . . . . . . . . . . . . . 112
hyphenation exceptions . . . . . . . . . . . . . . . 106
hyphenation language

register (.hla) . . . . . . . . . . . . . . . . . . . . . 111
hyphenation margin (hym) . . . . . . . . . . . . 112
hyphenation margin register (.hym) . . . 112
hyphenation mode register (.hy) . . . . . . 107
hyphenation parameters, automatic . . . 107
hyphenation pattern files . . . . . . . . . . . . . 109
hyphenation patterns (hpf) . . . . . . . . . . . 110



290 The GNU Troff Manual

hyphenation space (hys) . . . . . . . . . . . . . . 112
hyphenation space

adjustment threshold . . . . . . . . . . . . . . . 112
hyphenation space adjustment

threshold register (.hys) . . . . . . . . . . . 112
hyphenation, automatic . . . . . . . . . . . . . . 105
hyphenation, disabling (\%) . . . . . . . . . . . 106
hyphenation, explicit . . . . . . . . . . . . . . . . . 106
hyphenation, incompatibilities

with AT&T troff . . . . . . . . . . . . . . . . . . 226
hyphenation, manipulating . . . . . . . . . . . 105
hyphenation, manual . . . . . . . . . . . . . . . . . 106

I
i scaling unit . . . . . . . . . . . . . . . . . . . . . . . . . . 75
i/o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
IBM code page 1047 input encoding . . . 70
IBM code page 1047 output encoding . . . 9
identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
identifiers, undefined . . . . . . . . . . . . . . . . . . . 82
ie request, and font translations . . . . . . 132
ie request, and warnings . . . . . . . . . . . . . 221
ie request, operators to use with . . . . . 160
if request, and font translations . . . . . . 132
if request, and the ‘!’ operator . . . . . . . . 77
if request, operators to use with . . . . . 160
if-else . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
if-then . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
imitating boldface (bd) . . . . . . . . . . . . . . . 146
implementation differences . . . . . . . . . . . . 223
implicit line break . . . . . . . . . . . . . . . . . . . . . 66
implicit trap . . . . . . . . . . . . . . . . . . . . . . . . . 190
in request, causing implicit break . . . . . . 99
in request, using + and - with . . . . . . . . . 79
inch scaling unit (i) . . . . . . . . . . . . . . . . . . . 75
including a file (so) . . . . . . . . . . . . . . . . . . . 206
incompatibilities with AT&T troff . . . 223
increment value without

changing the register . . . . . . . . . . . . . . . . 96
incrementation, automatic,

of a register . . . . . . . . . . . . . . . . . . . . . . . . . 95
indentation (in) . . . . . . . . . . . . . . . . . . . . . . 122
indentation, of roff source code . . . . . . . 85
index, in macro package . . . . . . . . . . . . . . . 20
indicator, scaling . . . . . . . . . . . . . . . . . . . . . . 75
indirect assignments . . . . . . . . . . . . . . . . . . . 94
input and output requests . . . . . . . . . . . . 206
input characters and output glyphs,

compatibility with AT&T troff . . . . 227
input characters, invalid . . . . . . . . . . . . . . . 81
input conventions . . . . . . . . . . . . . . . . . . . . . . 71

input encoding, code page 1047 . . . . . . . . 70
input encoding, EBCDIC . . . . . . . . . . . . . . . 70
input encoding, Latin-1 (ISO 8859-1) . . 70
input encoding, Latin-2 (ISO 8859-2) . . 71
input encoding, Latin-5 (ISO 8859-9) . . 71
input encoding, Latin-9

(ISO 8859-15) . . . . . . . . . . . . . . . . . . . . . . . 71
input file name, current, register (.F) . . 98
input level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
input level in delimited arguments . . . . 225
input line continuation (\RET) . . . . . . . . 125
input line number register (.c, c.) . . . . . 98
input line number, setting (lf) . . . . . . . 218
input line position,

horizontal, saving (\k) . . . . . . . . . . . . . 180
input line trap, clearing (it, itc) . . . . . 191
input line trap, setting (it, itc) . . . . . . 191
input line traps . . . . . . . . . . . . . . . . . . . . . . . 191
input line traps and

interrupted lines (itc) . . . . . . . . . . . . . 191
input line, horizontal position,

register (hp) . . . . . . . . . . . . . . . . . . . . . . . . 180
input line, productive . . . . . . . . . . . . . . . . . 103
input stack, backtrace (backtrace) . . . 219
input stack, setting limit . . . . . . . . . . . . . 220
input token . . . . . . . . . . . . . . . . . . . . . . . . . . 216
input, 8-bit . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
input, standard, reading from (rd) . . . . 208
inserting horizontal space (\h) . . . . . . . . 178
installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
instructing the formatter . . . . . . . . . . . . . . 83
inter-sentence space size

register (.sss) . . . . . . . . . . . . . . . . . . . . . 105
inter-sentence space, additional . . . . . . . 105
inter-word spacing, minimal . . . . . . . . . . 105
interactive use of gtroff . . . . . . . . . . . . . 219
intercepting requests . . . . . . . . . . . . . . . . . . . 84
intermediate output . . . . . . . . . . . . . . . . . . 229
interpolating registers (\n) . . . . . . . . . . . . . 94
interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 68
interpolation depth . . . . . . . . . . . . . . . . . . . . 87
interpolation depth in

delimited arguments . . . . . . . . . . . . . . . . 225
interpolation of strings (\*) . . . . . . . . . . . 156
interpretation mode . . . . . . . . . . . . . . . . . . 173
interrupted line . . . . . . . . . . . . . . . . . . . . . . . 125
interrupted line register (.int) . . . . . . . 126
interrupted lines and input

line traps (itc) . . . . . . . . . . . . . . . . . . . . 191
introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
invalid characters for trf request . . . . . 207
invalid input characters . . . . . . . . . . . . . . . . 81



Appendix J: Concept Index 291

invocation examples . . . . . . . . . . . . . . . . . . . 14
invoking groff . . . . . . . . . . . . . . . . . . . . . . . . . 5
invoking requests . . . . . . . . . . . . . . . . . . . . . . 84
ISO 8859-1 (Latin-1) output encoding . . . 9
ISO 8859-1 (Latin-1), input encoding . . 70
ISO 8859-15 (Latin-9),

input encoding . . . . . . . . . . . . . . . . . . . . . . 71
ISO 8859-2 (Latin-2), input encoding . . 71
ISO 8859-9 (Latin-5), input encoding . . 71
ISO 646 output encoding . . . . . . . . . . . . . . . 9
italic correction (\/) . . . . . . . . . . . . . . . . . . 147

J
justifying text . . . . . . . . . . . . . . . . . . . . . . . . . 99
justifying text (rj) . . . . . . . . . . . . . . . . . . . 104

K
keep, floating . . . . . . . . . . . . . . . . . . . . . . . . . . 19
keeps (introduction) . . . . . . . . . . . . . . . . . . . 19
keeps [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
keeps, and footnotes [ms] . . . . . . . . . . . . . . . 50
kerning and ligatures . . . . . . . . . . . . . . . . . 146
kerning enabled register (.kern) . . . . . . 147
kerning, activating (kern) . . . . . . . . . . . . 147
kerning, track . . . . . . . . . . . . . . . . . . . . . . . . 147

L
landscape page orientation . . . . . . . . . . . . . 13
language [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . 51
last glyph, dimensions (.w,
.cht, .cdp, .csk) . . . . . . . . . . . . . . . . . . 205

last-requested point size
registers (.psr, .sr) . . . . . . . . . . . . . . . . 153

last-requested type size
registers (.psr, .sr) . . . . . . . . . . . . . . . . 153

Latin-1 (ISO 8859-1) output encoding . . . 9
Latin-1 (ISO 8859-1), input encoding . . 70
Latin-2 (ISO 8859-2), input encoding . . 71
Latin-5 (ISO 8859-9), input encoding . . 71
Latin-9 (ISO 8859-15),

input encoding . . . . . . . . . . . . . . . . . . . . . . 71
layout, line . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
layout, page . . . . . . . . . . . . . . . . . . . . . . . . . . 126
lc request, and glyph definitions . . . . . . 141
leader character . . . . . . . . . . . . . . . . . . . 67, 118
leader character, and translations . . . . . 120
leader character,

non-interpreted (\a) . . . . . . . . . . . . . . . . 118

leader repetition character (lc) . . . . . . . 118
leaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
leading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
leading space macro (lsm) . . . . . . . . . . . . . 66
leading space traps . . . . . . . . . . . . . . . . . . . 193
leading spaces . . . . . . . . . . . . . . . . . . . . . . . . . 66
leading spaces macro (lsm) . . . . . . . . . . . 193
leading spaces with ds . . . . . . . . . . . . . . . . 157
left italic correction (\,) . . . . . . . . . . . . . . 148
left margin (po) . . . . . . . . . . . . . . . . . . . . . . 122
length of a string (length) . . . . . . . . . . . 158
length of line (ll) . . . . . . . . . . . . . . . . . . . . 122
length of previous line (.n) . . . . . . . . . . . 205
length of the page, configuring (pl) . . . 126
length of title line, configuring (lt) . . . 127
length request, and copy mode . . . . . . . 158
less than (or equal to) operator . . . . . . . . 78
letters, form . . . . . . . . . . . . . . . . . . . . . . . . . . 208
level, input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
level, suppression nesting, register . . . . 206
lf request, incompatibilities

with AT&T troff . . . . . . . . . . . . . . . . . . 226
ligature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
ligatures and kerning . . . . . . . . . . . . . . . . . 146
ligatures enabled register (.lg) . . . . . . . 146
ligatures, activating (lg) . . . . . . . . . . . . . . 146
limitations of \b escape sequence . . . . . 184
line break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
line break (introduction) . . . . . . . . . . . . . . . 17
line break, output . . . . . . . . . . . . . . . . . . . . . 66
line control . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
line dimensions . . . . . . . . . . . . . . . . . . . . . . . 122
line drawing glyph . . . . . . . . . . . . . . . 181, 182
line indentation (in) . . . . . . . . . . . . . . . . . . 122
line layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
line length (ll) . . . . . . . . . . . . . . . . . . . . . . . 122
line length register (.l) . . . . . . . . . . . . . . . 124
line length, previous (.n) . . . . . . . . . . . . . 205
line number, input, register (.c, c.) . . . . 98
line number, output, register (ln) . . . . . 213
line numbers, printing (nm) . . . . . . . . . . . 212
line space, extra post-vertical (\x) . . . . 152
line space, extra pre-vertical (\x) . . . . . 152
line spacing register (.L) . . . . . . . . . . . . . . 113
line spacing, post-vertical (pvs) . . . . . . . 152
line thickness (‘\D't ...'’) . . . . . . . . . . . 184
line, blank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
line, drawing (‘\D'l ...'’) . . . . . . . . . . . 183
line, horizontal, drawing (\l) . . . . . . . . . 181
line, input, continuation (\RET) . . . . . . . 125
line, input, horizontal

position, register (hp) . . . . . . . . . . . . . . 180



292 The GNU Troff Manual

line, input, horizontal
position, saving (\k) . . . . . . . . . . . . . . . 180

line, interrupted . . . . . . . . . . . . . . . . . . . . . . 125
line, output, continuation (\c) . . . . . . . . 125
line, output, horizontal

position, register (.k) . . . . . . . . . . . . . . 180
line, productive input . . . . . . . . . . . . . . . . . 103
line, vertical, drawing (\L) . . . . . . . . . . . . 182
line-tabs mode . . . . . . . . . . . . . . . . . . . . . . . 117
lines, blank, disabling . . . . . . . . . . . . . . . . . 115
lines, centering (ce) . . . . . . . . . . . . . . . . . . 103
lines, centering (introduction) . . . . . . . . . . 17
lines, consecutive hyphenated (hlm) . . . 111
lines, interrupted, and input

line traps (itc) . . . . . . . . . . . . . . . . . . . . 191
lines, right-aligning (introduction) . . . . . 17
lines, right-justifying (introduction) . . . . 17
list of special characters

(groff char(7) man page) . . . . . . . . . . . 136
listing page location traps (ptr) . . . . . . 219
lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
ll request, using + and - with . . . . . . . . . 79
localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
localization [ms] . . . . . . . . . . . . . . . . . . . . . . . 51
locating macro files . . . . . . . . . . . . . . . . . . . . 12
locating macro packages . . . . . . . . . . . . . . . 12
location, vertical, page,

marking (mk) . . . . . . . . . . . . . . . . . . . . . . . 176
location, vertical, page, returning

to marked (rt) . . . . . . . . . . . . . . . . . . . . . 176
logical “and” operator . . . . . . . . . . . . . . . . . 78
logical “or” operator . . . . . . . . . . . . . . . . . . . 78
logical complementation operator . . . . . . 78
logical conjunction operator . . . . . . . . . . . 78
logical disjunction operator . . . . . . . . . . . . 78
logical not, limitation in expression . . . . 78
logical operators . . . . . . . . . . . . . . . . . . . . . . . 78
long names . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
loops and conditionals . . . . . . . . . . . . . . . . 160
lowercasing a string (stringdown) . . . . 159
ls request, alternative to (pvs) . . . . . . . 152
lt request, using + and - with . . . . . . . . . 79

M
m scaling unit . . . . . . . . . . . . . . . . . . . . . . . . . . 75
M scaling unit . . . . . . . . . . . . . . . . . . . . . . . . . . 75
machine units . . . . . . . . . . . . . . . . . . . . . . . . . 74
macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
macro arguments . . . . . . . . . . . . . . . . . . . . . . 86
macro arguments, and

compatibility mode . . . . . . . . . . . . . . . . . 217

macro arguments, and tabs . . . . . . . . . . . . 84
macro directories . . . . . . . . . . . . . . . . . . . . . . 12
macro file search path . . . . . . . . . . . . . . . . . 12
macro name register (\$0) . . . . . . . . . . . . 172
macro names, starting with [ or
], and refer . . . . . . . . . . . . . . . . . . . . . . . . 82

macro package . . . . . . . . . . . . . . . . . . . . . . . . . 70
macro package search path . . . . . . . . . . . . . 12
macro package usage, basics of . . . . . . . . . 15
macro package, auxiliary . . . . . . . . . . . . . . . 21
macro package, full-service . . . . . . . . . . . . . 21
macro package, introduction . . . . . . . . . . . . 2
macro package, major . . . . . . . . . . . . . . . . . 21
macro package, minor . . . . . . . . . . . . . . . . . 21
macro package, structuring

the source of . . . . . . . . . . . . . . . . . . . . . . . . 85
macro, appending to (am) . . . . . . . . . . . . . 170
macro, creating alias for (als) . . . . . . . . 159
macro, end-of-input (em) . . . . . . . . . . . . . . 194
macro, parameters (\$) . . . . . . . . . . . . . . . 171
macro, removing (rm) . . . . . . . . . . . . . . . . . 159
macro, removing alias for (rm) . . . . . . . . 160
macro, renaming (rn) . . . . . . . . . . . . . . . . . 159
macros, recursive . . . . . . . . . . . . . . . . . . . . . 166
macros, searching . . . . . . . . . . . . . . . . . . . . . . 12
macros, shared name space with

strings and diversions . . . . . . . . . . . . . . . 83
macros, tutorial for users . . . . . . . . . . . . . . 15
macros, writing . . . . . . . . . . . . . . . . . . . . . . . 167
magnification of a font (fzoom) . . . . . . . 132
major macro package . . . . . . . . . . . . . . . . . . 21
major version number register (.x) . . . . 98
man macros, custom headers

and footers . . . . . . . . . . . . . . . . . . . . . . . . . . 21
man macros, Ultrix-specific . . . . . . . . . . . . . 22
man pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
manipulating filling and adjustment . . . . 99
manipulating hyphenation . . . . . . . . . . . . 105
manipulating spacing . . . . . . . . . . . . . . . . . 112
manipulating type size and

vertical spacing . . . . . . . . . . . . . . . . . . . . 150
manual hyphenation . . . . . . . . . . . . . . . . . . 106
manual pages . . . . . . . . . . . . . . . . . . . . . . . . . . 21
margin for hyphenation (hym) . . . . . . . . . 112
margin glyph (mc) . . . . . . . . . . . . . . . . . . . . 214
margin, bottom . . . . . . . . . . . . . . . . . . . . . . 187
margin, left (po) . . . . . . . . . . . . . . . . . . . . . . 122
margin, right . . . . . . . . . . . . . . . . . . . . . . . . . 122
margin, top . . . . . . . . . . . . . . . . . . . . . . . . . . 187
mark, high-water, register (.h) . . . . . . . . 198
marker, footnote [ms] . . . . . . . . . . . . . . . . . . 49
marking vertical page location (mk) . . . 176



Appendix J: Concept Index 293

maximum operator . . . . . . . . . . . . . . . . . . . . 78
maximum value representable with

Roman numerals . . . . . . . . . . . . . . . . . . . . 97
mdoc macros . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
me macro package . . . . . . . . . . . . . . . . . . . . . . 24
measurement units . . . . . . . . . . . . . . . . . . . . 75
measurements . . . . . . . . . . . . . . . . . . . . . . . . . 75
measurements, specifying safely . . . . . . . . 76
metrics, font . . . . . . . . . . . . . . . . . . . . . . . . . 130
minimal inter-word spacing . . . . . . . . . . . 105
minimum operator . . . . . . . . . . . . . . . . . . . . . 78
minimum value representable with

Roman numerals . . . . . . . . . . . . . . . . . . . . 97
minor macro package . . . . . . . . . . . . . . . . . . 21
minor version number register (.y) . . . . . 98
minutes, current time (minutes) . . . . . . . 99
mm macro package . . . . . . . . . . . . . . . . . . . . . . 24
mode for constant glyph space (cs) . . . 146
mode, compatibility . . . . . . . . . . . . . . . . . . 223
mode, compatibility, and

parameters . . . . . . . . . . . . . . . . . . . . . . . . . 217
mode, copy . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
mode, copy, and \! . . . . . . . . . . . . . . . . . . . 199
mode, copy, and \? . . . . . . . . . . . . . . 162, 199
mode, copy, and \a . . . . . . . . . . . . . . . . . . . 118
mode, copy, and \t . . . . . . . . . . . . . . . . . . . 115
mode, copy, and \V . . . . . . . . . . . . . . . . . . . 211
mode, copy, and cf request . . . . . . . . . . . 207
mode, copy, and device request . . . . . . 211
mode, copy, and length request . . . . . . 158
mode, copy, and macro parameters . . . 171
mode, copy, and output request . . . . . . 200
mode, copy, and trf request . . . . . . . . . . 207
mode, copy, and write request . . . . . . . . 210
mode, copy, and writec request . . . . . . 210
mode, copy, and writem request . . . . . . 210
mode, fill (fi), enabling . . . . . . . . . . . . . . 100
mode, fill, and \c . . . . . . . . . . . . . . . . . . . . . 125
mode, fill, and break warnings . . . . . . . . 221
mode, fill, and inter-sentence space . . . 105
mode, fill, disabling . . . . . . . . . . . . . . . . . . . 101
mode, interpretation . . . . . . . . . . . . . . . . . . 173
mode, line-tabs . . . . . . . . . . . . . . . . . . . . . . . 117
mode, no-fill . . . . . . . . . . . . . . . . . . . . . . . . . . 101
mode, no-fill, and \c . . . . . . . . . . . . . . . . . 126
mode, no-space (ns) . . . . . . . . . . . . . . . . . . 115
mode, nroff . . . . . . . . . . . . . . . . . . . . . . . . . 121
mode, safer . . . 9, 12, 98, 207, 209, 210, 223
mode, troff . . . . . . . . . . . . . . . . . . . . . . . . . 121
mode, unsafe . . . . . 10, 12, 98, 207, 209, 210
modifying requests . . . . . . . . . . . . . . . . . . . . 84
modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

mom macro package . . . . . . . . . . . . . . . . . . . . 24
month of the year register (mo) . . . . . . . . . 99
motion operators . . . . . . . . . . . . . . . . . . . . . . 79
motion quanta . . . . . . . . . . . . . . . . . . . . . . . . . 76
motion quantum, horizontal . . . . . . . . . . 243
motion quantum, horizontal,

register (.H) . . . . . . . . . . . . . . . . . . . . . . . . . 76
motion quantum, vertical . . . . . . . . . . . . . 245
motion, horizontal (\h) . . . . . . . . . . . . . . . 178
motion, vertical (\v) . . . . . . . . . . . . . . . . . . 178
motions, page . . . . . . . . . . . . . . . . . . . . . . . . 176
mounting a font (fp) . . . . . . . . . . . . . . . . . 134
mounting position . . . . . . . . . . . . . . . . . . . . 130
mounting, font, automatic . . . . . . . . . . . . 131
ms macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
ms macros, accent marks . . . . . . . . . . . . . . . 59
ms macros, body text . . . . . . . . . . . . . . . . . . 35
ms macros, creating table of contents . . . 53
ms macros, displays . . . . . . . . . . . . . . . . . . . . 46
ms macros, document control settings . . 28
ms macros, document description . . . . . . . 33
ms macros, equations . . . . . . . . . . . . . . . . . . 48
ms macros, figures . . . . . . . . . . . . . . . . . . . . . 48
ms macros, footers . . . . . . . . . . . . . . . . . . . . . 52
ms macros, footnotes . . . . . . . . . . . . . . . . . . . 49
ms macros, fractional type sizes in . . . . . . 57
ms macros, general structure . . . . . . . . . . . 27
ms macros, groff differences

from AT&T . . . . . . . . . . . . . . . . . . . . . . . . . 56
ms macros, headers . . . . . . . . . . . . . . . . . . . . 52
ms macros, headings . . . . . . . . . . . . . . . . . . . 38
ms macros, keeps . . . . . . . . . . . . . . . . . . . . . . 46
ms macros, language . . . . . . . . . . . . . . . . . . . 51
ms macros, lists . . . . . . . . . . . . . . . . . . . . . . . . 42
ms macros, localization . . . . . . . . . . . . . . . . 51
ms macros, margins . . . . . . . . . . . . . . . . . . . . 53
ms macros, multiple columns . . . . . . . . . . . 53
ms macros, naming conventions . . . . . . . . 61
ms macros, nested lists . . . . . . . . . . . . . . . . . 45
ms macros, obtaining

typographical symbols . . . . . . . . . . . . . . . 36
ms macros, page layout . . . . . . . . . . . . . . . . 51
ms macros, paragraph handling . . . . . . . . 36
ms macros, references . . . . . . . . . . . . . . . . . . 48
ms macros, special characters . . . . . . . . . . 59
ms macros, strings . . . . . . . . . . . . . . . . . . . . . 59
ms macros, tables . . . . . . . . . . . . . . . . . . . . . . 48
ms macros, text settings . . . . . . . . . . . . . . . 35
multi-file documents . . . . . . . . . . . . . . . . . . 218
multi-line strings . . . . . . . . . . . . . . . . . . . . . 157
multi-page table example [ms] . . . . . . . . . . 48
multiple columns [ms] . . . . . . . . . . . . . . . . . . 53



294 The GNU Troff Manual

multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 77

N
n scaling unit . . . . . . . . . . . . . . . . . . . . . . . . . . 75
name space, common, of macros,

diversions, and strings . . . . . . . . . . . . . . . 83
name, background color,

register (.M) . . . . . . . . . . . . . . . . . . . . . . . . 155
name, fill color, register (.M) . . . . . . . . . . 155
name, stroke color, register (.m) . . . . . . 155
named character (\C) . . . . . . . . . . . . . . . . . 139
names, long . . . . . . . . . . . . . . . . . . . . . . . . . . 223
naming conventions, ms macros . . . . . . . . 61
ne request, and the .trunc register . . . 190
ne request, comparison with sv . . . . . . . 129
negating register values . . . . . . . . . . . . . . . . 93
negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
nested assignments . . . . . . . . . . . . . . . . . . . . 94
nested diversions . . . . . . . . . . . . . . . . . . . . . 197
nested lists [ms] . . . . . . . . . . . . . . . . . . . . . . . . 45
nesting level, suppression, register . . . . 206
new page (bp) . . . . . . . . . . . . . . . . . . . . . . . . 128
newline character, and translations . . . 120
newline character, in

strings, escaping . . . . . . . . . . . . . . . . . . . 157
newline, as delimiter . . . . . . . . . . . . . . . . . . . 89
newline, final, stripping

in diversions . . . . . . . . . . . . . . . . . . . . . . . 202
next file, processing (nx) . . . . . . . . . . . . . . 208
next free font position register (.fp) . . 135
next page number register (.pn) . . . . . . 126
next page number, configuring (pn) . . . 126
nf request, causing implicit break . . . . . . 99
nl register, and .d . . . . . . . . . . . . . . . . . . . 197
nl register, difference from .h . . . . . . . . 198
nm request, using + and - with . . . . . . . . . 79
no-break control character (') . . . . . . . . . 67
no-break control character,

changing (c2) . . . . . . . . . . . . . . . . . . . . . . . 83
no-fill mode . . . . . . . . . . . . . . . . . . . . . . . . . . 101
no-fill mode, and \c . . . . . . . . . . . . . . . . . . 126
no-space mode (ns) . . . . . . . . . . . . . . . . . . . 115
node, output . . . . . . . . . . . . . . . . . . . . . . . . . 216
non-printing break point (\:) . . . . . . . . . 107
nr request, and warnings . . . . . . . . . . . . . 222
nr request, using + and - with . . . . . . . . . 79
nroff mode . . . . . . . . . . . . . . . . . . . . . . . . . . 121
number formats, assigning to

register (af) . . . . . . . . . . . . . . . . . . . . . . . . . 96
number of registers register (.R) . . . . . . . 98
number, input line, setting (lf) . . . . . . . 218

number, page, next, configuring (pn) . . 126
numbered glyph (\N) . . . . . . . . . . . . 120, 139
numbered list, example markup [ms] . . . 43
numbers, line, printing (nm) . . . . . . . . . . . 212
numeral-width space (\0) . . . . . . . . . . . . . 179
numerals, as delimiters . . . . . . . . . . . . . . . . 90
numerals, Roman . . . . . . . . . . . . . . . . . . . . . . 96
numeric expression, valid . . . . . . . . . . . . . . 80
numeric expressions . . . . . . . . . . . . . . . . . . . 77

O
object creation . . . . . . . . . . . . . . . . . . . . . . . 170
offset, page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
offset, page (po) . . . . . . . . . . . . . . . . . . . . . . 122
open request, and safer mode . . . . . . . . . . . 9
opena request, and safer mode . . . . . . . . . . 9
opening brace escape sequence (\}) . . . 164
opening file (open) . . . . . . . . . . . . . . . . . . . 210
operator, scaling . . . . . . . . . . . . . . . . . . . . . . . 77
operators, arithmetic . . . . . . . . . . . . . . . . . . 77
operators, as delimiters . . . . . . . . . . . . . . . . 90
operators, comparison . . . . . . . . . . . . . . . . . 78
operators, extremum (>?, <?) . . . . . . . . . . 78
operators, logical . . . . . . . . . . . . . . . . . . . . . . 78
operators, motion . . . . . . . . . . . . . . . . . . . . . . 79
operators, unary arithmetic . . . . . . . . . . . . 77
optical size of a font . . . . . . . . . . . . . . . . . . 132
options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
order of evaluation in expressions . . . . . . 78
ordinary character . . . . . . . . . . . . . . . . . . . . . 81
orientation, landscape . . . . . . . . . . . . . . . . . 13
orphan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
orphan lines, preventing with ne . . . . . . 128
os request, and no-space mode . . . . . . . . 129
outlined circle, drawing

(‘\D'c ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
outlined ellipse, drawing

(‘\D'e ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
outlined polygon, drawing

(‘\D'p ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
output and input requests . . . . . . . . . . . . 206
output comparison operator . . . . . . . . . . 161
output device name string (.T) . . . . 10, 156
output device name string (.T), in other

implementations . . . . . . . . . . . . . . . . . . . 226
output device usage register (.T) . . . . . . . 10
output device usage register (.T),

incompatibility with AT&T troff . . 226
output devices . . . . . . . . . . . . . . . . . . . . . . . . . . 3
output encoding, ASCII . . . . . . . . . . . . . . . . . 9
output encoding, code page 1047 . . . . . . . . 9
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output encoding, EBCDIC . . . . . . . . . . . . . . 9
output encoding, ISO 646 . . . . . . . . . . . . . . . 9
output encoding, Latin-1 (ISO 8859-1) . . 9
output encoding, UTF-8 . . . . . . . . . . . . . . . . 9
output glyphs, and input characters,

compatibility with AT&T troff . . . . 227
output line break . . . . . . . . . . . . . . . . . . . . . . 66
output line number register (ln) . . . . . . 213
output line properties . . . . . . . . . . . . . . . . 100
output line, continuation (\c) . . . . . . . . . 125
output line, horizontal

position, register (.k) . . . . . . . . . . . . . . 180
output node . . . . . . . . . . . . . . . . . . . . . . . . . . 216
output request, and \! . . . . . . . . . . . . . . . 200
output request, and copy mode . . . . . . . 200
output, filling, disablement of (nf) . . . . 101
output, filling, enablement of (fi) . . . . 100
output, flush (fl) . . . . . . . . . . . . . . . . . . . . 219
output, gtroff . . . . . . . . . . . . . . . . . . . . . . . 229
output, intermediate . . . . . . . . . . . . . . . . . . 229
output, suppressing (\O) . . . . . . . . . . . . . . 205
output, transparent (\!, \?) . . . . . . . . . . 199
output, transparent (cf, trf) . . . . . . . . . 207
output, transparent, incompatibilities

with AT&T troff . . . . . . . . . . . . . . . . . . 228
output, troff . . . . . . . . . . . . . . . . . . . . . . . . 229
overlapping characters . . . . . . . . . . . . . . . . 140
overstriking glyphs (\o) . . . . . . . . . . . . . . 180

P
p scaling unit . . . . . . . . . . . . . . . . . . . . . . . . . . 75
P scaling unit . . . . . . . . . . . . . . . . . . . . . . . . . . 75
package, macro . . . . . . . . . . . . . . . . . . . . . . . . 70
package, macro, auxiliary . . . . . . . . . . . . . . 21
package, macro, full-service . . . . . . . . . . . . 21
package, macro, introduction . . . . . . . . . . . . 2
package, macro, major . . . . . . . . . . . . . . . . . 21
package, macro, minor . . . . . . . . . . . . . . . . . 21
package, macro, search path . . . . . . . . . . . 12
package, package, structuring

the source of . . . . . . . . . . . . . . . . . . . . . . . . 85
padding character, for fields (fc) . . . . . . 119
page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
page break . . . . . . . . . . . . . . . . . . . 74, 128, 190
page break (introduction) . . . . . . . . . . . . . . 17
page break, conditional (ne) . . . . . . . . . . 128
page break, final . . . . . . . . . . . . . . . . . . . . . . 194
page break, prevented by vpt . . . . . . . . . 186
page control . . . . . . . . . . . . . . . . . . . . . . . . . . 128
page ejection . . . . . . . . . . . . . . . . . 74, 128, 190
page ejection status register (.pe) . . . . 190

page ejection, of final page . . . . . . . . . . . . 194
page ejection, prevented by vpt . . . . . . . 186
page footers . . . . . . . . . . . . . . . . . . . . . . . . . . 187
page headers . . . . . . . . . . . . . . . . . . . . . . . . . 187
page layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
page layout [ms] . . . . . . . . . . . . . . . . . . . . . . . 51
page length register (.p) . . . . . . . . . . . . . . 126
page length, configuring (pl) . . . . . . . . . 126
page location traps . . . . . . . . . . . . . . . . . . . 186
page location traps, debugging . . . . . . . . 187
page location, vertical, marking (mk) . . 176
page location, vertical, returning

to marked (rt) . . . . . . . . . . . . . . . . . . . . . 176
page motions . . . . . . . . . . . . . . . . . . . . . . . . . 176
page number character (%) . . . . . . . . . . . . 127
page number character,

changing (pc) . . . . . . . . . . . . . . . . . . . . . . 127
page number register (%) . . . . . . . . . . . . . 128
page number, configuring next (pn) . . . 126
page number, next, register (.pn) . . . . . 126
page offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
page offset (po) . . . . . . . . . . . . . . . . . . . . . . . 122
page orientation, landscape . . . . . . . . . . . . 13
page, geometry of . . . . . . . . . . . . . . . . . . . . . 74
page, new (bp) . . . . . . . . . . . . . . . . . . . . . . . 128
paper format . . . . . . . . . . . . . . . . . . . . . . . . . . 13
paper size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
paragraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
parameter count register (.$) . . . . . . . . . 170
parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
parameters, and compatibility mode . . 217
parameters, macro (\$) . . . . . . . . . . . . . . . 171
parentheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
partially collected line . . . . . . . . . . . . . . . . 100
path, for font files . . . . . . . . . . . . . . . . . . . . . 13
path, for tmac files . . . . . . . . . . . . . . . . . . . . 12
pattern files, for hyphenation . . . . . . . . . 109
patterns for hyphenation (hpf) . . . . . . . 110
pending output line . . . . . . . . . . . . . . . . . . 100
pi request, and groff . . . . . . . . . . . . . . . . 209
pi request, and safer mode . . . . . . . . . . . . . . 9
pi request, disabled by default . . . . . . . . 223
pica scaling unit (P) . . . . . . . . . . . . . . . . . . . 75
PID of GNU troff register ($$) . . . . . . . 99
pile, glyph (\b) . . . . . . . . . . . . . . . . . . . . . . . 184
pl request, using + and - with . . . . . . . . . 79
plain text approximation

output register (.A) . . . . . . . . . . . . . . . 6, 98
planting a trap . . . . . . . . . . . . . . . . . . . . . . . 186
platform-specific directory . . . . . . . . . . . . . 12
pm request, incompatibilities

with AT&T troff . . . . . . . . . . . . . . . . . . 227
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pn request, using + and - with . . . . . . . . . 79
PNG image generation

from PostScript . . . . . . . . . . . . . . . . . . . . 243
po request, using + and - with . . . . . . . . . 79
point scaling unit (p) . . . . . . . . . . . . . . . . . . 75
point size registers (.s, .ps) . . . . . . . . . . 150
point size registers,

last-requested (.psr, .sr) . . . . . . . . . . 153
point sizes, changing (ps, \s) . . . . . . . . . 150
point sizes, fractional . . . . . . . . . . . . 152, 227
polygon, filled, drawing

(‘\D'P ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
polygon, outlined, drawing

(‘\D'p ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
polygon, solid, drawing

(‘\D'P ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
polygon, stroked, drawing

(‘\D'p ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
position of lowest text line (.h) . . . . . . . 198
position, absolute (sic) operator (|) . . . . 79
position, drawing . . . . . . . . . . . . . . . . . . . . . . 74
position, horizontal input

line, saving (\k) . . . . . . . . . . . . . . . . . . . . 180
position, horizontal, in input

line, register (hp) . . . . . . . . . . . . . . . . . . . 180
position, horizontal, in output

line, register (.k) . . . . . . . . . . . . . . . . . . . 180
position, mounting . . . . . . . . . . . . . . . . . . . 130
position, vertical, in diversion,

register (.d) . . . . . . . . . . . . . . . . . . . . . . . . 197
positions, font . . . . . . . . . . . . . . . . . . . . . . . . 134
post-vertical line spacing . . . . . . . . . . . . . 152
post-vertical line spacing

register (.pvs) . . . . . . . . . . . . . . . . . . . . . 152
post-vertical line spacing,

changing (pvs) . . . . . . . . . . . . . . . . . . . . . 152
postprocessor access . . . . . . . . . . . . . . . . . . 211
postprocessors . . . . . . . . . . . . . . . . . . . . . . . . . . 3
PostScript, bounding box . . . . . . . . . . . . . 215
PostScript, PNG image generation . . . . 243
prefix, for commands . . . . . . . . . . . . . . . . . . 11
preprocessors . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
previous font, selecting (\f[], \fP) . . . 131
previous font, selecting (ft) . . . . . . . . . . 131
previous line length (.n) . . . . . . . . . . . . . . 205
print current page register (.P) . . . . . . . . . 8
printing backslash (\\, \e,
\E, \[rs]) . . . . . . . . . . . . . . . . . . . . . . . . . 228

printing line numbers (nm) . . . . . . . . . . . . 212
printing to stderr (tm, tm1, tmc) . . . . . . 218
printing, zero-width (\z, \Z) . . . . . . . . . . 181

process ID of GNU troff

register ($$) . . . . . . . . . . . . . . . . . . . . . . . . . 99
processing next file (nx) . . . . . . . . . . . . . . 208
productive input line . . . . . . . . . . . . . . . . . 103
properties of characters (cflags) . . . . . 140
properties of glyphs (cflags) . . . . . . . . . 140
properties of output lines . . . . . . . . . . . . . 100
ps request, and constant

glyph space mode . . . . . . . . . . . . . . . . . . 146
ps request, incompatibilities

with AT&T troff . . . . . . . . . . . . . . . . . . 227
ps request, using + and - with . . . . . . . . . 79
ps request, with

fractional type sizes . . . . . . . . . . . . . . . . 152
pso request, and safer mode . . . . . . . . . . . . 9
pvs request, using + and - with . . . . . . . . 79

Q
quanta, motion . . . . . . . . . . . . . . . . . . . . . . . . 76
quantum, horizontal motion . . . . . . . . . . 243
quantum, vertical motion . . . . . . . . . . . . . 245

R
radicalex glyph, and cflags . . . . . . . . . 140
ragged-left text . . . . . . . . . . . . . . . . . . . . . . . 101
ragged-right text . . . . . . . . . . . . . . . . . . . . . 101
rc request, and glyph definitions . . . . . . 141
read-only register removal, incompatibility

with AT&T troff . . . . . . . . . . . . . . . . . . 226
read-only register, changing format . . . . 97
reading from standard input (rd) . . . . . 208
recursive macros . . . . . . . . . . . . . . . . . . . . . . 166
refer, and macro names

starting with [ or ] . . . . . . . . . . . . . . . . . 82
reference, gtroff . . . . . . . . . . . . . . . . . . . . . . 63
references [ms] . . . . . . . . . . . . . . . . . . . . . . . . . 48
register format, in expressions . . . . . . . . . 97
register, assigning number

format to (af) . . . . . . . . . . . . . . . . . . . . . . . 96
register, built-in, removing . . . . . . . . . . . . . 98
register, creating alias for (aln) . . . . . . . . 94
register, format (\g) . . . . . . . . . . . . . . . . . . . 97
register, read-only, removal,

incompatibility with AT&T troff . . 226
register, removing (rr) . . . . . . . . . . . . . . . . . 94
register, removing alias for (rr) . . . . . . . . 94
register, renaming (rnn) . . . . . . . . . . . . . . . 94
registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
registers, built-in . . . . . . . . . . . . . . . . . . . . . . 98
registers, dumping (pnr) . . . . . . . . . . . . . . 219
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registers, interpolating (\n) . . . . . . . . . . . . 94
registers, number of, register (.R) . . . . . . 98
registers, setting (nr, \R) . . . . . . . . . . . . . . 92
removal of read-only registers,

incompatibility with AT&T troff . . 226
removing a built-in register . . . . . . . . . . . . 98
removing a register (rr) . . . . . . . . . . . . . . . 94
removing alias for register (rr) . . . . . . . . . 94
removing alias, for diversion (rm) . . . . . 160
removing alias, for macro (rm) . . . . . . . . 160
removing alias, for string (rm) . . . . . . . . 160
removing diversion (rm) . . . . . . . . . . . . . . . 159
removing glyph definition

(rchar, rfschar) . . . . . . . . . . . . . . . . . . . 142
removing macro (rm) . . . . . . . . . . . . . . . . . 159
removing request (rm) . . . . . . . . . . . . . . . . 159
removing string (rm) . . . . . . . . . . . . . . . . . . 159
renaming a register (rnn) . . . . . . . . . . . . . . 94
renaming diversion (rn) . . . . . . . . . . . . . . 159
renaming macro (rn) . . . . . . . . . . . . . . . . . 159
renaming request (rn) . . . . . . . . . . . . . . . . 159
renaming string (rn) . . . . . . . . . . . . . . . . . . 159
renditions, graphic . . . . . . . . . . . . . . . . . . . 130
request . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67, 83
request arguments . . . . . . . . . . . . . . . . . . . . . 84
request arguments, and

compatibility mode . . . . . . . . . . . . . . . . . 217
request arguments, and tabs . . . . . . . . . . . 84
request, removing (rm) . . . . . . . . . . . . . . . . 159
request, renaming (rn) . . . . . . . . . . . . . . . 159
request, undefined . . . . . . . . . . . . . . . . . . . . . 91
requests for drawing . . . . . . . . . . . . . . . . . . 181
requests for input and output . . . . . . . . . 206
requests, intercepting . . . . . . . . . . . . . . . . . . 84
requests, invoking . . . . . . . . . . . . . . . . . . . . . 84
requests, modifying . . . . . . . . . . . . . . . . . . . . 84
resolution, device . . . . . . . . . . . . . . . . . 74, 244
resolution, device, obtaining in

the formatter . . . . . . . . . . . . . . . . . . . . . . . . 75
resolution, horizontal . . . . . . . . . . . . . . . . . 243
resolution, horizontal, register (.H) . . . . . 76
resolution, vertical . . . . . . . . . . . . . . . . . . . . 245
returning to marked vertical

page location (rt) . . . . . . . . . . . . . . . . . . 176
revision number register (.Y) . . . . . . . . . . 98
right margin . . . . . . . . . . . . . . . . . . . . . . . . . . 122
right-aligning lines (introduction) . . . . . . 17
right-justifying (rj) . . . . . . . . . . . . . . . . . . 104
right-justifying lines (introduction) . . . . . 17
rivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
rj request, causing implicit break . . . . . . 99
rn glyph, and cflags . . . . . . . . . . . . . . . . . 140

roman glyph, correction after
italic glyph (\/) . . . . . . . . . . . . . . . . . . . . 147

roman glyph, correction before
italic glyph (\,) . . . . . . . . . . . . . . . . . . . . 148

Roman numerals . . . . . . . . . . . . . . . . . . . . . . 96
Roman numerals, extrema

(maximum and minimum) . . . . . . . . . . . 97
rq glyph, at end of sentence . . . . . . . 65, 140
rt request, using + and - with . . . . . . . . . 79
ru glyph, and cflags . . . . . . . . . . . . . . . . . 140
running system commands . . . . . . . . . . . . 209

S
s scaling unit . . . . . . . . . . . . . . . . . . . . . . . . . 152
safer mode . . . 9, 12, 98, 207, 209, 210, 223
saving horizontal input line

position (\k) . . . . . . . . . . . . . . . . . . . . . . . 180
scaling indicator . . . . . . . . . . . . . . . . . . . . . . . 75
scaling operator . . . . . . . . . . . . . . . . . . . . . . . 77
scaling unit c . . . . . . . . . . . . . . . . . . . . . . . . . . 75
scaling unit f . . . . . . . . . . . . . . . . . . . . . . . . . 154
scaling unit i . . . . . . . . . . . . . . . . . . . . . . . . . . 75
scaling unit m . . . . . . . . . . . . . . . . . . . . . . . . . . 75
scaling unit M . . . . . . . . . . . . . . . . . . . . . . . . . . 75
scaling unit n . . . . . . . . . . . . . . . . . . . . . . . . . . 75
scaling unit p . . . . . . . . . . . . . . . . . . . . . . . . . . 75
scaling unit P . . . . . . . . . . . . . . . . . . . . . . . . . . 75
scaling unit s . . . . . . . . . . . . . . . . . . . . . . . . . 152
scaling unit u . . . . . . . . . . . . . . . . . . . . . . . . . . 75
scaling unit v . . . . . . . . . . . . . . . . . . . . . . . . . . 75
scaling unit z . . . . . . . . . . . . . . . . . . . . . . . . . 152
searching fonts . . . . . . . . . . . . . . . . . . . . . . . . 12
searching macros . . . . . . . . . . . . . . . . . . . . . . 12
seconds, current time (seconds) . . . . . . . 99
selecting the previous font (ft) . . . . . . . 131
sentence space . . . . . . . . . . . . . . . . . . . . . . . . . 64
sentence space size register (.sss) . . . . 105
sentences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
sequence, escape . . . . . . . . . . . . . . . . . . . . . . . 83
setting diversion trap (dt) . . . . . . . . . . . . 191
setting end-of-input trap (em) . . . . . . . . . 194
setting input line number (lf) . . . . . . . . 218
setting input line trap (it, itc) . . . . . . 191
setting registers (nr, \R) . . . . . . . . . . . . . . . 92
setting the page length (pl) . . . . . . . . . . 126
setting up an abstract font

style (sty) . . . . . . . . . . . . . . . . . . . . . . . . . 134
shc request, and translations . . . . . . . . . 120
site-local directory . . . . . . . . . . . . . . . . . 12, 13
size of sentence space

register (.sss) . . . . . . . . . . . . . . . . . . . . . 105
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size of word space register (.ss) . . . . . . 105
size, optical, of a font . . . . . . . . . . . . . . . . . 132
size, paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
size, size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
sizes, fractional . . . . . . . . . . . . . . . . . . . . . . . 227
sizes, fractional type . . . . . . . . . . . . . . . . . . 152
skew, of last glyph (.csk) . . . . . . . . . . . . 205
slant, font, changing (\S) . . . . . . . . . . . . . 145
soft hyphen character, setting (shc) . . . 107
soft hyphen glyph (hy) . . . . . . . . . . . . . . . 107
solid circle, drawing (‘\D'C ...'’) . . . . . 183
solid ellipse, drawing (‘\D'E ...'’) . . . . 183
solid polygon, drawing (‘\D'P ...'’) . . 183
SOURCE_DATE_EPOCH,

environment variable . . . . . . . . . . . . . . . . 12
sp request, and no-space mode . . . . . . . . 115
sp request, causing implicit break . . . . . . 99
space between sentences . . . . . . . . . . . . . . . 64
space between sentences

register (.sss) . . . . . . . . . . . . . . . . . . . . . 105
space between words register (.ss) . . . 105
space character, as delimiter . . . . . . . . . . . 90
space characters, in expressions . . . . . . . . 80
space, between sentences . . . . . . . . . . . . . 105
space, between words . . . . . . . . . . . . . . . . . 105
space, discardable, horizontal . . . . . . . . . 105
space, hair (\^) . . . . . . . . . . . . . . . . . . . . . . . 179
space, horizontal (\h) . . . . . . . . . . . . . . . . . 178
space, horizontal, unformatting . . . . . . . 202
space, thin (\|) . . . . . . . . . . . . . . . . . . . . . . 179
space, unbreakable (\~) . . . . . . . . . . . . . . . 100
space, unbreakable and

unadjustable (\SP) . . . . . . . . . . . . . . . . . 179
space, vertical, unit (v) . . . . . . . . . . . . . . . . 75
space, width of a digit

(numeral) (\0) . . . . . . . . . . . . . . . . . . . . . 179
spaces with ds . . . . . . . . . . . . . . . . . . . . . . . . 157
spaces, in a macro argument . . . . . . . . . . . 86
spaces, leading and trailing . . . . . . . . . . . . 66
spacing (introduction) . . . . . . . . . . . . . . . . . 16
spacing, manipulating . . . . . . . . . . . . . . . . 112
spacing, vertical . . . . . . . . . . . . . . . . . . 74, 150
spacing, vertical (introduction) . . . . . . . . 16
special characters . . . . . . . . . . . . . . . . . 65, 120
special characters [ms] . . . . . . . . . . . . . . . . . 59
special characters, list of

(groff char(7) man page) . . . . . . . . . . . 136
special font . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
special fonts . . . . . . . . . . . . . . . . 135, 144, 246
special fonts, emboldening . . . . . . . . . . . . 146
special request, and font

translations . . . . . . . . . . . . . . . . . . . . . . . . 132

special request, and glyph
search order . . . . . . . . . . . . . . . . . . . . . . . . 135

spline, drawing (‘\D'~ ...'’) . . . . . . . . . 183
springing a trap . . . . . . . . . . . . . . . . . . . . . . 186
sqrtex glyph, and cflags . . . . . . . . . . . . 140
ss request, incompatibilities

with AT&T troff . . . . . . . . . . . . . . . . . . 227
stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
stacking glyphs (\b) . . . . . . . . . . . . . . . . . . 184
standard input, reading from (rd) . . . . 208
stderr, printing to (tm, tm1, tmc) . . . . . . 218
stops, tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
string arguments . . . . . . . . . . . . . . . . . . . . . 156
string comparison . . . . . . . . . . . . . . . . . . . . 162
string expansion (\*) . . . . . . . . . . . . . . . . . 156
string interpolation (\*) . . . . . . . . . . . . . . 156
string, appending (as) . . . . . . . . . . . . . . . . 158
string, creating alias for (als) . . . . . . . . 159
string, length of (length) . . . . . . . . . . . . . 158
string, removing (rm) . . . . . . . . . . . . . . . . . 159
string, removing alias for (rm) . . . . . . . . 160
string, renaming (rn) . . . . . . . . . . . . . . . . . 159
strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
strings [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
strings, multi-line . . . . . . . . . . . . . . . . . . . . . 157
strings, shared name space with

macros and diversions . . . . . . . . . . . . . . . 83
stripping final newline in diversions . . . 202
stroke color . . . . . . . . . . . . . . . . . . . . . . . . . . 154
stroke color name register (.m) . . . . . . . . 155
stroked circle, drawing (‘\D'c ...'’) . . 183
stroked ellipse, drawing

(‘\D'e ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
stroked polygon, drawing

(‘\D'p ...'’) . . . . . . . . . . . . . . . . . . . . . . . 183
structuring source code of documents

or macro packages . . . . . . . . . . . . . . . . . . . 85
sty request, and changing fonts . . . . . . . 131
sty request, and font translations . . . . . 132
style, font . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
style, font, abstract . . . . . . . . . . . . . . . . . . . 130
style, font, abstract,

setting up (sty) . . . . . . . . . . . . . . . . . . . . 134
styles, font . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
substring (substring) . . . . . . . . . . . . . . . . 158
subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
suppressing output (\O) . . . . . . . . . . . . . . 205
suppression nesting level register . . . . . . 206
sv request, and no-space mode . . . . . . . . 129
switching environments (ev) . . . . . . . . . . 203
sy request, and safer mode . . . . . . . . . . . . . . 9
sy request, disabled by default . . . . . . . . 223
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symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
symbol table, dumping (pm) . . . . . . . . . . 219
symbol, defining (char) . . . . . . . . . . . . . . . 141
symbols, using . . . . . . . . . . . . . . . . . . . . . . . 135
system commands, running . . . . . . . . . . . 209
system() return value

register (systat) . . . . . . . . . . . . . . . . . . . 210

T
tab character . . . . . . . . . . . . . . . . . . . . . . . . . . 67
tab character encoding . . . . . . . . . . . . . . . 115
tab character, and translations . . . . . . . 120
tab character, as delimiter . . . . . . . . . . . . . 90
tab character, non-interpreted (\t) . . . 115
tab repetition character (tc) . . . . . . . . . . 117
tab stop settings register (.tabs) . . . . . 117
tab stops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
tab stops, default . . . . . . . . . . . . . . . . . . . . . 115
tab, line-tabs mode . . . . . . . . . . . . . . . . . . . 117
table of contents . . . . . . . . . . . . . . . . . . 19, 119
table of contents, creating [ms] . . . . . . . . . 53
table, multi-page, example [ms] . . . . . . . . . 48
tables [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
tabs, and fields . . . . . . . . . . . . . . . . . . . . . . . 115
tabs, and macro arguments . . . . . . . . . . . . 84
tabs, and request arguments . . . . . . . . . . . 84
tabs, before comments . . . . . . . . . . . . . . . . . 91
tagged paragraphs . . . . . . . . . . . . . . . . . . . . . 18
tags, paragraph . . . . . . . . . . . . . . . . . . . . . . . . 18
terminal, conditional output for . . . . . . . 161
text baseline . . . . . . . . . . . . . . . . . . . . . . 74, 150
text font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
text line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
text line, position of lowest (.h) . . . . . . 198
text, GNU troff processing . . . . . . . . . . . 63
text, justifying . . . . . . . . . . . . . . . . . . . . . . . . 99
text, justifying (rj) . . . . . . . . . . . . . . . . . . . 104
thickness of lines (‘\D't ...'’) . . . . . . . . 184
thin space (\|) . . . . . . . . . . . . . . . . . . . . . . . 179
three-part title (tl) . . . . . . . . . . . . . . . . . . 127
ti request, causing implicit break . . . . . . 99
ti request, using + and - with . . . . . . . . . 79
time, current, hours (hours) . . . . . . . . . . . 99
time, current, minutes (minutes) . . . . . . . 99
time, current, seconds (seconds) . . . . . . . 99
time, formatting . . . . . . . . . . . . . . . . . . . . . . 209
title length, configuring (lt) . . . . . . . . . . 127
title line length register (.lt) . . . . . . . . . 127
title line, formatting (tl) . . . . . . . . . . . . . 127
titles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
tkf request, and font styles . . . . . . . . . . . 134

tkf request, and font translations . . . . . 132
tkf request, with

fractional type sizes . . . . . . . . . . . . . . . . 152
tl request, and mc . . . . . . . . . . . . . . . . . . . . 214
tmac, directory . . . . . . . . . . . . . . . . . . . . . . . . 12
tmac, path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
TMPDIR, environment variable . . . . . . . . . . 11
token, input . . . . . . . . . . . . . . . . . . . . . . . . . . 216
top margin . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
top-level diversion . . . . . . . . . . . . . . . . . . . . 196
top-level diversion, and \! . . . . . . . . . . . . 199
top-level diversion, and \? . . . . . . . . . . . . 200
top-level diversion, and bp . . . . . . . . . . . . 128
tr request, and glyph definitions . . . . . . 141
tr request, and soft

hyphen character . . . . . . . . . . . . . . . . . . . 107
tr request, incompatibilities

with AT&T troff . . . . . . . . . . . . . . . . . . 227
track kerning . . . . . . . . . . . . . . . . . . . . . . . . . 147
track kerning, activating (tkf) . . . . . . . . 147
trailing double quotes in strings . . . . . . 157
trailing spaces in string definitions

and appendments . . . . . . . . . . . . . . . . . . 156
trailing spaces on text lines . . . . . . . . . . . . 66
translations of characters . . . . . . . . . . . . . 119
transparent characters . . . . . . . . . . . . . . . . 140
transparent dummy character (\)) . . . . 149
transparent output (\!, \?) . . . . . . . . . . . 199
transparent output (cf, trf) . . . . . . . . . . 207
transparent output, incompatibilities

with AT&T troff . . . . . . . . . . . . . . . . . . 228
trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
trap, changing location (ch) . . . . . . . . . . 188
trap, distance to next vertical

position, register (.t) . . . . . . . . . . . . . . 188
trap, diversion, setting (dt) . . . . . . . . . . . 191
trap, end-of-input, setting (em) . . . . . . . 194
trap, implicit . . . . . . . . . . . . . . . . . . . . . . . . . 190
trap, input line, clearing (it, itc) . . . . 191
trap, input line, setting (it, itc) . . . . . 191
trap, planting . . . . . . . . . . . . . . . . . . . . . . . . 186
trap, springing . . . . . . . . . . . . . . . . . . . . . . . 186
traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
traps, and diversions . . . . . . . . . . . . . . . . . 190
traps, blank line . . . . . . . . . . . . . . . . . . . . . . 193
traps, diversion . . . . . . . . . . . . . . . . . . . . . . . 191
traps, end-of-input . . . . . . . . . . . . . . . . . . . 194
traps, input line . . . . . . . . . . . . . . . . . . . . . . 191
traps, input line, and

interrupted lines (itc) . . . . . . . . . . . . . 191
traps, leading space . . . . . . . . . . . . . . . . . . 193
traps, page location . . . . . . . . . . . . . . . . . . 186
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traps, page location, dumping (ptr) . . 219
traps, page location, listing (ptr) . . . . . 219
traps, sprung by bp request (.pe) . . . . . 190
traps, vertical position . . . . . . . . . . . . . . . . 186
trf request, and copy mode . . . . . . . . . . 207
trf request, and invalid characters . . . . 207
trf request, causing implicit break . . . . . 99
trin request, and asciify . . . . . . . . . . . . 200
troff mode . . . . . . . . . . . . . . . . . . . . . . . . . . 121
troff output . . . . . . . . . . . . . . . . . . . . . . . . . 229
truncated vertical space

register (.trunc) . . . . . . . . . . . . . . . . . . . 190
truncating division . . . . . . . . . . . . . . . . . . . . 77
TTY, conditional output for . . . . . . . . . . 161
tutorial for macro users . . . . . . . . . . . . . . . . 15
type size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
type size registers (.s, .ps) . . . . . . . . . . . 150
type size registers,

last-requested (.psr, .sr) . . . . . . . . . . 153
type sizes, changing (ps, \s) . . . . . . . . . . 150
type sizes, fractional . . . . . . . . . . . . . 152, 227
typeface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
TZ, environment variable . . . . . . . . . . . . . . . 12

U
u scaling unit . . . . . . . . . . . . . . . . . . . . . . . . . . 75
uf request, and font styles . . . . . . . . . . . . 134
ul glyph, and cflags . . . . . . . . . . . . . . . . . 140
ul request, and font translations . . . . . . 132
Ultrix-specific man macros . . . . . . . . . . . . . 22
unadjustable and

unbreakable space (\SP) . . . . . . . . . . . . 179
unary arithmetic operators . . . . . . . . . . . . 77
unbreakable and

unadjustable space (\SP) . . . . . . . . . . . 179
unbreakable space (\~) . . . . . . . . . . . . . . . 100
undefined identifiers . . . . . . . . . . . . . . . . . . . 82
undefined request . . . . . . . . . . . . . . . . . . . . . . 91
underline font (uf) . . . . . . . . . . . . . . . . . . . 145
underlining (ul) . . . . . . . . . . . . . . . . . . . . . . 145
underlining, continuous (cu) . . . . . . . . . . 145
unformatting diversions (asciify) . . . . 200
unformatting horizontal space . . . . . . . . 202
Unicode . . . . . . . . . . . . . . . . . . . . . . . . . . 81, 139
unit, scaling, c . . . . . . . . . . . . . . . . . . . . . . . . 75
unit, scaling, f . . . . . . . . . . . . . . . . . . . . . . . 154
unit, scaling, i . . . . . . . . . . . . . . . . . . . . . . . . 75
unit, scaling, m . . . . . . . . . . . . . . . . . . . . . . . . 75
unit, scaling, M . . . . . . . . . . . . . . . . . . . . . . . . 75
unit, scaling, n . . . . . . . . . . . . . . . . . . . . . . . . 75
unit, scaling, p . . . . . . . . . . . . . . . . . . . . . . . . 75

unit, scaling, P . . . . . . . . . . . . . . . . . . . . . . . . 75
unit, scaling, s . . . . . . . . . . . . . . . . . . . . . . . 152
unit, scaling, u . . . . . . . . . . . . . . . . . . . . . . . . 75
unit, scaling, v . . . . . . . . . . . . . . . . . . . . . . . . 75
unit, scaling, z . . . . . . . . . . . . . . . . . . . . . . . 152
units of measurement . . . . . . . . . . . . . . . . . . 75
units, basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
units, basic, conversion to . . . . . . . . . . . . . 75
units, default . . . . . . . . . . . . . . . . . . . . . . . . . . 76
units, machine . . . . . . . . . . . . . . . . . . . . . . . . . 74
unnamed glyphs . . . . . . . . . . . . . . . . . . . . . . 139
unnamed glyphs, accessing with \N . . . 246
unsafe mode . . . . . 10, 12, 98, 207, 209, 210
unstyled font . . . . . . . . . . . . . . . . . . . . . . . . . 130
up-casing a string (stringup) . . . . . . . . . 159
uppercasing a string (stringup) . . . . . . 159
upright glyph, correction after

oblique glyph (\/) . . . . . . . . . . . . . . . . . . 147
upright glyph, correction before

oblique glyph (\,) . . . . . . . . . . . . . . . . . . 148
URLs, breaking (\:) . . . . . . . . . . . . . . . . . . 107
user’s macro tutorial . . . . . . . . . . . . . . . . . . . 15
user’s tutorial for macros . . . . . . . . . . . . . . 15
using escape sequences . . . . . . . . . . . . . . . . . 87
using symbols . . . . . . . . . . . . . . . . . . . . . . . . 135
UTF-8 output encoding . . . . . . . . . . . . . . . . . 9

V
v scaling unit . . . . . . . . . . . . . . . . . . . . . . . . . . 75
valid numeric expression . . . . . . . . . . . . . . . 80
value, incrementing without

changing the register . . . . . . . . . . . . . . . . 96
variables in environment . . . . . . . . . . . . . . . 10
vee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
vee scaling unit (v) . . . . . . . . . . . . . . . . . . . . 75
version number, major, register (.x) . . . 98
version number, minor, register (.y) . . . 98
vertical drawing position (nl) . . . . . . . . . 129
vertical line drawing (\L) . . . . . . . . . . . . . 182
vertical line spacing register (.v) . . . . . . 151
vertical line spacing, changing (vs) . . . 151
vertical line spacing, effective value . . . 152
vertical motion (\v) . . . . . . . . . . . . . . . . . . 178
vertical motion quantum . . . . . . . . . . . . . 245
vertical page location, marking (mk) . . . 176
vertical page location, returning

to marked (rt) . . . . . . . . . . . . . . . . . . . . . 176
vertical position in diversion

register (.d) . . . . . . . . . . . . . . . . . . . . . . . . 197
vertical position trap enable

register (.vpt) . . . . . . . . . . . . . . . . . . . . . 186
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vertical position traps . . . . . . . . . . . . . . . . 186
vertical position traps,

enabling (vpt) . . . . . . . . . . . . . . . . . . . . . 186
vertical position, drawing (nl) . . . . . . . . 129
vertical resolution . . . . . . . . . . . . . . . . . . . . 245
vertical space unit (v) . . . . . . . . . . . . . . . . . 75
vertical spacing . . . . . . . . . . . . . . . . . . . 74, 150
vertical spacing (introduction) . . . . . . . . . 16

W
warning categories . . . . . . . . . . . . . . . . . . . . 221
warning level (warn) . . . . . . . . . . . . . . . . . . 220
warnings . . . . . . . . . . . . . . . . . . . . . . . . 220, 221
what is groff? . . . . . . . . . . . . . . . . . . . . . . . . . 1
while . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
while request, and font translations . . 132
while request, and the ‘!’ operator . . . . 77
while request, confusing with br . . . . . . 167
while request, operators to use with . . 160

widow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
width escape (\w) . . . . . . . . . . . . . . . . . . . . 179
width, of last glyph (.w) . . . . . . . . . . . . . . 205
word space size register (.ss) . . . . . . . . . 105
word, definition of . . . . . . . . . . . . . . . . . . . . . 63
write request, and copy mode . . . . . . . . 210
writec request, and copy mode . . . . . . . 210
writem request, and copy mode . . . . . . . 210
writing macros . . . . . . . . . . . . . . . . . . . . . . . 167
writing to file (write, writec) . . . . . . . . 210

Y
year, current, register (year, yr) . . . . . . . 99

Z
z scaling unit . . . . . . . . . . . . . . . . . . . . . . . . . 152
zero-width printing (\z, \Z) . . . . . . . . . . 181
zoom factor of a font (fzoom) . . . . . . . . . 132
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