
DRAFT
GSL Technical Report #1

GSL-TR-001-20220827

Implementation of associated Legendre functions in GSL

Patrick Alken
August 27, 2022

Contents

1 Introduction 1

2 Normalization 1

3 Recurrence Relations 3

4 Recurrence Relations for Derivatives 4

5 Implementation Details 5

6 Verification 6

7 Benchmarks 7

8 List of Acronyms 8

Bibliography 8

A Source Code for Benchmarks 9

GSL Technical Report #1 ALFs

1 Introduction

This document provides details of the implementation of the associated Legendre functions
(ALFs) in the GNU Scientific Library (GSL) [Galassi et al, 2009]. We start from the unnor-
malized ALFs with integer degree and order,

Pm
l (x) = (−1)m

(
1− x2

)m/2 dm

dxm
Pl(x), 0 ≤ m ≤ l (1)

where Pl(x) is the Legendre polynomial of degree l and m is called the order. These functions
are defined on the interval x ∈ [−1, 1]. The factor (−1)m is known as the Condon-Shortley
phase factor, and is omitted by some authors. GSL provides the option to include or omit
this factor. When m is even, the Pm

l (x) are polynomials of degree l and some authors refer
to these functions as “associated Legendre polynomials.” However they are not polynomials
when m is odd.

The ALFs can be extended to negative orders −l ≤ m < 0 through the use of the Rodrigues
formula. We simply state the result here,

P−m
l = (−1)m

(l −m)!

(l +m)!
Pm
l (x), 0 ≤ m ≤ l (2)

We note that the factor (−1)m appearing in Eq. (2) is not the Condon-Shortley phase, and
appears regardless of whether the Condon-Shortley phase factor is included in the definition
of the ALFs. From a computational standpoint, GSL calculates only ALFs with m ≥ 0, as
the negative order functions can be readily determined from Eq. (2).

2 Normalization

The unnormalized functions defined in Eq. (1) can grow quite large even for modest degrees l,
and so many practical applications use instead normalized functions, defined as

Tm
l (x) = Am

l

√
(l −m)!

(l +m)!
Pm
l (x) (3)

where Am
l depends on normalization convention. There are several common conventions which

appear in the literature. The following sections describe the conventions implemented in GSL.

2.1 Schmidt quasi-normalization

The Schmidt quasi-normalized ALFs Sm
l (x) are defined with

Am
l =

{
1, m = 0√
2, m ̸= 0

(4)

so that

Sm
l (x) =

{
P 0
l (x), m = 0√

2 (l−m)!
(l+m)!

Pm
l (x), m ̸= 0

(5)

August 27, 2022 | 1

GSL Technical Report #1 ALFs

Schmidt quasi-normalized ALFs are often used in the definition of “real-valued” spherical
harmonics, namely

Ŝm
l (θ, ϕ) =

{
cos (mϕ)Sm

l (cos θ), m ≥ 0

sin (|m|ϕ)S|m|
l (cos θ), m < 0

(6)

These real-valued spherical harmonics have the convenient property that∫
Ŝm
l (θ, ϕ)Ŝm′

l′ (θ, ϕ)dΩ =
4π

2l + 1
δmm′δll′ (7)

Winch [2005] provides a detailed exposition of Schmidt quasi-normalized ALFs and real-valued
spherical harmonics. The Schmidt quasi-normalized ALFs themselves obey the normalization
condition, ∫ 1

−1

Sm
l (x)Sm

l′ (x)dx =

{
2

2l+1
δll′ , m = 0

4
2l+1

δll′ , m ̸= 0
(8)

2.2 Spherical harmonic normalization

The spherical harmonic normalized ALFs Y m
l (x) are defined with

Am
l =

√
2l + 1

4π
(9)

so that

Y m
l (x) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (x) (10)

These functions are suitable for use with the usual fully orthogonal complex-valued spherical
harmonics,

Ŷ m
l (θ, ϕ) = Y m

l (cos θ)eimϕ (11)

which satisfy ∫
Ŷ m
l (θ, ϕ)Ŷ m′∗

l′ (θ, ϕ)dΩ = δmm′δll′ (12)

The spherical harmonic normalized ALFs satisfy the following normalization condition,∫ 1

−1

Y m
l (x)Y m

l′ (x)dx =
δll′

2π
(13)

2.3 Full normalization

The fully normalized ALFs Nm
l (x) are defined with

Am
l =

√
l +

1

2
(14)

so that

Nm
l (x) =

√(
l +

1

2

)
(l −m)!

(l +m)!
Pm
l (x) (15)

These functions satisfy the condition∫ 1

−1

Nm
l (x)Nm

l′ (x)dx = δll′ (16)

August 27, 2022 | 2

GSL Technical Report #1 ALFs

2.4 4π normalization

The 4π normalized ALFs Rm
l (x) are defined with

Am
l =

{ √
2l + 1, m = 0√

2(2l + 1), m ̸= 0
(17)

so that

Rm
l (x) =

√
(2− δm0) (2l + 1)

(l −m)!

(l +m)!
Pm
l (x) (18)

3 Recurrence Relations

The unnormalized ALFs satisfy the following recurrence relations, which form the basis of the
algorithm used to compute them,

(l −m)Pm
l (x) = (2l − 1)xPm

l−1(x)− (l +m− 1)Pm
l−2(x), l ≥ m+ 2 (19)

P l
l+1(x) = (2l + 1)xP l

l (x), l ≥ 0 (20)

P l
l (x) = ηCS (2l − 1)uP l−1

l−1 (x), l ≥ 1 (21)

where u =
√
1− x2 and the parameter ηCS is defined as,

ηCS = −1, Condon-Shortley phase included (22)

ηCS = +1, Condon-Shortley phase omitted (23)

In terms of an angle θ ∈ [0, π], the parameters x, u can be assigned as follows,

x = cos θ (24)

u = sin θ (25)

Applying these recurrence relations to a general ALF Tm
l (x) as defined in Eq. (3) yields the

following,

Tm
l (x) = aml xT

m
l−1(x) + bml T

m
l−2(x), l ≥ m+ 2 (26)

T l
l+1(x) = clxT

l
l (x), l ≥ 0 (27)

T l
l (x) = dluT

l−1
l−1 (x), l ≥ 1 (28)

aml =
2l − 1√

(l +m)(l −m)

Am
l

Am
l−1

, l ≥ m+ 2 (29)

bml = −

√
(l +m− 1)(l −m− 1)

(l +m)(l −m)

Am
l

Am
l−2

, l ≥ m+ 2 (30)

cl =
√
2l + 1

Al
l+1

Al
l

, l ≥ 0 (31)

dl = ηCS

√
2l − 1

2l

Al
l

Al−1
l−1

, l ≥ 1 (32)

August 27, 2022 | 3

GSL Technical Report #1 ALFs

Here, Tm
l (x) can be any of Pm

l (x), Sm
l (x), Y m

l (x), Nm
l (x), or Rm

l (x). Eqs. (26) to (28) form the
basis of the algorithm used by GSL to compute the ALFs for all degrees and orders. The coeffi-
cients aml , b

m
l , cl, dl are precomputed when the user calls the function gsl sf legendre precompute

and are then used to efficiently evaluate the ALFs for any number of arguments x. Table 1
presents the coefficients for each normalized ALF.

Table 1: Coefficients of recurrence relations for different normalizations of ALFs.

Normalization Notation aml bml cl dl

Unnormalized Pm
l (x) 2l−1

l−m − l+m−1
l−m 2l + 1 ηCS (2l − 1)

Schmidt Sm
l (x) 2l−1√

(l+m)(l−m)
−
√

(l+m−1)(l−m−1)
(l+m)(l−m)

√
2l + 1

{
ηCS l = 1

ηCS

√
1− 1

2l l > 1

Spherical Harmonic Y m
l (x)

√
(2l+1)(2l−1)
(l+m)(l−m) −

√
(l+m−1)(l−m−1)(2l+1)

(l+m)(l−m)(2l−3)

√
2l + 3 ηCS

√
1 + 1

2l

Full Nm
l (x)

√
(2l+1)(2l−1)
(l+m)(l−m) −

√
(l+m−1)(l−m−1)(2l+1)

(l+m)(l−m)(2l−3)

√
2l + 3 ηCS

√
1 + 1

2l

4π Rm
l (x)

√
(2l+1)(2l−1)
(l+m)(l−m) −

√
(l+m−1)(l−m−1)(2l+1)

(l+m)(l−m)(2l−3)

√
2l + 3

{
ηCS

√
3 l = 1

ηCS

√
1 + 1

2l l > 1

We note that Eq. (28) contains an instability which could cause underflow when evaluating
ALFs for large degrees near the poles where u is small, due to the recursive multiplication by
u. GSL applies the method described in Holmes and Featherstone [2002] to rescale u as the
recursion progresses to avoid the instability. This allows the accurate calculation of normalized
ALFs up to degree and order approximately 2700 in double precision.

4 Recurrence Relations for Derivatives

Derivatives of associated Legendre functions are often required in applications, such as the
spherical harmonic expansions of potential fields. Derivatives of ALFs can be computed with
respect to the input argument x, but also with respect to a colatitude variable θ, where
x = cos θ,

dk

dxk
Pm
l (x) (33)

or
dk

dθk
Pm
l (cos θ) (34)

The first type of derivative with respect to x can contain singularities at the end points x = ±1.
For example,

d

dx
P 1
1 (x) = − x√

1− x2
(35)

which is undefined at the end points. However, the alternative derivative with respect to θ
is defined at the end points for all degrees and orders. Bosch [2000] derives the following

August 27, 2022 | 4

GSL Technical Report #1 ALFs

recurrence relations for any order derivative with respect to θ:

dk

dθk
P 0
0 (cos θ) = 0 (36)

dk

dθk
P 0
l (cos θ) = −ηCS

dk−1

dθk−1
P 1
l (cos θ), l ≥ 1

(37)

dk

dθk
Pm
l (cos θ) =

1

2
ηCS

[
(l +m)(l −m+ 1)

dk−1

dθk−1
Pm−1
l (cos θ)− dk−1

dθk−1
Pm+1
l (cos θ)

]
, l ≥ 1,m > 0

(38)

These formulas are valid for any k ≥ 1 and for all θ ∈ [0, π] including the end points. The
corresponding formulas for a normalized ALF Tm

l (cos θ) are

dk

dθk
T 0
0 (cos θ) = 0 (39)

dk

dθk
T 0
l (cos θ) = −ηCS

A0
l

A1
l

√
l(l + 1)

dk−1

dθk−1
T 1
l (cos θ), l ≥ 1 (40)

dk

dθk
Tm
l (cos θ) =

1

2
ηCS

[√
(l +m)(l −m+ 1)

Am
l

Am−1
l

dk−1

dθk−1
Tm−1
l (cos θ)−

√
(l +m+ 1)(l −m)

Am
l

Am+1
l

dk−1

dθk−1
Tm+1
l (cos θ)

]
, l ≥ 1,m > 0 (41)

These equations can be applied recursively to find any derivative order k. GSL provides
routines to calculate up to the second derivative (k = 2). First, the ALFs are computed using
the recurrence relations described in Sec. 3. The first derivatives with respect to θ are then
calculated using the relations above. Optionally, the second derivatives with respect to θ are
calculated by applying the above relations again to the computed first derivatives. Eqs. (40)-
(41) contain coefficients which are square roots of integers. In order to optimize the calculation,
these square root factors are calculated in the precomputing step.

5 Implementation Details

The recurrence relation Eq. (26) comprises the main computational effort of calculating the
associated Legendre functions. The output arrays of the associated Legendre calculations in
GSL version 2.7 and prior were indexed according to

Il(l,m) =
l(l + 1)

2
+m, 0 ≤ l ≤ L, 0 ≤ m ≤ l (42)

where L is the maximum degree and order input to the routines. This corresponds to the
following memory layout,

m

l = 0︷︸︸︷
0

l = 1︷︸︸︷
0 1

l = 2︷ ︸︸ ︷
0 1 2 · · ·

l = L︷ ︸︸ ︷
0 1 · · · L

So inside a given l block, consecutive elements correspond to different m. However a careful
analysis of Eq. (26) indicates that the recurrence proceeds by holding m fixed and increasing

August 27, 2022 | 5

GSL Technical Report #1 ALFs

l to calculate the next term. Therefore, using the Il(l,m) indexing for the coefficients aml and
bml during this recurrence would require accessing memory in non-sequential order, potentially
resulting in costly cache misses. A more cache efficient scheme would organize the arrays
holding the aml and bml coefficients so that consecutive memory locations are accessed at each
step of the recurrence. To do this, GSL version 2.8 and later defines the alternate indexing
scheme,

Im(l,m, L) = mL− m(m− 1)

2
+ l, 0 ≤ l ≤ L, 0 ≤ m ≤ l (43)

which corresponds to the memory layout

l

m = 0︷ ︸︸ ︷
0 1 2 · · · L

m = 1︷ ︸︸ ︷
1 2 · · · L

m = 2︷ ︸︸ ︷
2 · · · L · · ·

m = L︷︸︸︷
L

This memory layout was inspired by the SHTns software package [Schaeffer, 2013]. Here we
group entries according to order m, and in each m block, consecutive elements correspond to
increasing l. This memory scheme is ideal for the recurrence Eq. (26) since the terms aml , b

m
l

will be needed during one iteration, while the terms aml+1, b
m
l+1 will be needed on the next. We

go one step further and store the elements aml , b
m
l in a single array as follows,

m = 0︷ ︸︸ ︷
a00 b00 a01 b01 · · · a0L b0L

m = 1︷ ︸︸ ︷
a11 b11 a12 b12 · · · a1L b1L · · ·

m = L︷ ︸︸ ︷
aLL bLL

Therefore, on a given iteration of the recurrence, the required coefficients aml , b
m
l will be stored

in consecutive memory locations, allowing a cache-efficient implementation of Eq. (26).
We note that GSL v2.8 and later uses the Im(l,m, L) indexing scheme by default, but

provides the Il(l,m) scheme for backward compatibility.

6 Verification

There are a few ways to verify the calculation of the associated Legendre functions and their
derivatives.

6.1 Known identities

A useful method for testing the accuracy of high degree and order ALFs is to use the following
identity for the Schmidt quasi-normalized ALFs,

l∑
m=0

(Sm
l (x))2 = 1 (44)

We define the following quantity for testing purposes,

ϵl(x) =
l∑

m=0

(Sm
l (x))2 − 1 (45)

Figure 1 (left) shows the value of ϵ2700(x) for 2000 randomly chosen points x on [−1, 1].
The right panel shows a heat map of log10(ϵl(x)) as a function of degree l and input x.

August 27, 2022 | 6

GSL Technical Report #1 ALFs

Figure 1: Left: ϵ2700(x) for 2000 randomly distributed points on [−1, 1]. Right: Map of
log10(ϵl(x)) as a function of ALF degree l and x. Schmidt normalization is used.

6.2 Comparison with arbitrary precision libraries

Here, we compare the GSL ALF calculation against the arbitrary precision Python library,
mpmath, using a working precision of 50 digits. In the case of ALFs, arbitrary precision
libraries avoid the underflow problem at high orders, and can serve as a truth reference for
the double precision GSL calculations. Figure 2 presents the logarithm of the relative error
between GSL and mpmath, using spherical harmonic normalized ALFs up to degree and order
3000, for three different input values, x = cos θ. The left panel shows θ = 60◦, the middle panel
θ = 40◦, and the right panel θ = 25◦. The whitespace under the black diagonal line indicates
that the resulting ALF cannot be represented in double precision, and the GSL calculation
underflowed. We see that the underflow problem increases as we move closer to the pole region
at high degrees and orders. The blue regions indicate that GSL matches the arbitrary precision
result to around 12-16 significant digits. The red portion of the right panel indicates a loss
of many significant digits in the GSL result, starting around degree 2000 and order 1500 for
θ = 25◦.

7 Benchmarks

Here, we compare the performance of the GSL implementation of ALFs against two other
libraries. The first, known as SHTOOLS [Wieczorek and Meschede, 2018], provides numerous
normalization conventions and uses L-major indexing in the output arrays. The second, called
SHTns [Schaeffer, 2013], provides highly optimized ALFs with the spherical harmonic normal-
ization, and uses M-major indexing in its output arrays. All benchmarks were performed on
an Intel Xeon CPU E5-2620 v3 @ 2.40GHz with 64GB RAM. Figure 3 presents the result
of calculating ALFs using each library interface for a fixed input point x = −0.75. The top
panel displays the wall clock time for each implementation as a function of ALF degree up

August 27, 2022 | 7

GSL Technical Report #1 ALFs

Figure 2: Log of relative error between GSL and mpmath calculations plotted versus ALF
degree and order for θ = 60◦ (left), θ = 40◦ (middle), θ = 25◦ (right). This figure uses the
spherical harmonic normalization.

to L = 1500. The SHTns and GSL implementions (with M-major indexing) perform best at
nearly all degrees, with SHTns performing slightly faster than GSL. The bottom panel shows
the wall clock time compared with SHTns (e.g. the ratio between the GSL/SHTOOLS time
and SHTns). The green curve shows that GSL (M-major indexing) performs nearly as well
as SHTns at all degrees up to 1500. The blue curve shows that GSL (L-major indexing) is
competitive with SHTns up to about degree 1100 at which point it begins to significantly un-
derperform. The SHTOOLS library underperforms SHTns at all degrees, which we attribute
to its cache-inefficient implementation. The source code used for these benchmarks is listed in
Appendix A.

8 List of Acronyms

Acronym Meaning

ALF Associated Legendre Function
GSL GNU Scientific Library

Bibliography

Bosch, W., “On the computation of derivatives of Legendre functions,”, Phys. Chem. Earth,
25, 9–11, pg. 655–659, 2000.

Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., and Rossi,
F., “GNU Scientific Library Reference Manual,” 3rd edition, Network Theory Ltd, 2009.

Holmes, S., Featherstone, W., “A unified approach to the Clenshaw summation and the recur-
sive computation of very high degree and order normalised associated Legendre functions,”
Journal of Geodesy, 279-299, 2002.

Schaeffer, N., “Efficient spherical harmonic transforms aimed at pseudospectral numerical
simulations”, Geochem. Geophys. Geosys., 14, 3, 751–758, doi:10.1002/ggge.20071, 2013.

Wieczorek, M. A., Meschede M., “Tools for working with spherical harmonics”, Geochem.
Geophys. Geosys., 19, 2574–2592, doi:10.1029/2018GC007529, 2018.

August 27, 2022 | 8

GSL Technical Report #1 ALFs

Figure 3: Top: Average time of ALF calculation for different libraries as a function of ALF
degree, for the input x = −0.75. Bottom: Ratio of library times to the SHTns library.

Winch, D. E., Ivers, D. J., Turner, J. P. R., and Stening, R. J., “Geomagnetism and Schmidt
quasi-normalization,” Geophys. J. Int., 160, p. 487-504, 2005.

A Source Code for Benchmarks

The following code was used to generate Figure 3. It was compiled with the command:

g++ -O2 -Wall -W -o bench bench.cc -lm -lgsl -lshtns -lfftw3 -lSHTOOLS -llapack -lcblas -lf77blas -lgfortran

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <math.h>

4 #include <sys/time.h>

5 #include <omp.h>

6

7 #include <gsl/gsl_math.h>

8 #include <gsl/gsl_errno.h>

9 #include <gsl/gsl_sf_legendre.h>

10 #include <gsl/gsl_vector.h>

August 27, 2022 | 9

GSL Technical Report #1 ALFs

11

12 #include <shtns.h>

13

14 #include "shtools.h"

15

16 #define TIME_DIFF(a,b) (((b).tv_sec + (b).tv_usec * 1.0e-6) - ((a).tv_sec +

(a).tv_usec * 1.0e-6))

17

18 /* GSL */

19 double

20 proc_P_gsl(const size_t flags , const size_t lmax , const size_t n, const

double x, double * Plm)

21 {

22 struct timeval tv0 , tv1;

23 double dt;

24 size_t i;

25

26 gettimeofday (&tv0 , NULL);

27

28 gsl_sf_legendre_precompute(GSL_SF_LEGENDRE_SPHARM , lmax , flags , Plm);

29

30 for (i = 0; i < n; ++i)

31 gsl_sf_legendre_arrayx(GSL_SF_LEGENDRE_SPHARM , lmax , x, Plm);

32

33 gettimeofday (&tv1 , NULL);

34

35 dt = TIME_DIFF(tv0 , tv1);

36

37 return dt;

38 }

39

40 /* SHTOOLS , l indexing */

41 double

42 proc_P_shtools(const size_t lmax , const size_t n, const double x, double *

Plm)

43 {

44 struct timeval tv0 , tv1;

45 size_t i;

46 int lmaxi = (int) lmax;

47 int csphase = 1;

48 int cnorm = 1;

49 int status;

50 double dt;

51

52 gettimeofday (&tv0 , NULL);

53

54 for (i = 0; i < n; ++i)

55 shtools :: PlmON(&Plm[0], lmaxi , x, &csphase , &cnorm , &status);

56

57 gettimeofday (&tv1 , NULL);

58

59 dt = TIME_DIFF(tv0 , tv1);

60

61 /* deallocate memory */

62 shtools :: PlmON(&Plm[0], -1, x, &csphase , &cnorm , &status);

August 27, 2022 | 10

GSL Technical Report #1 ALFs

63

64 return dt;

65 }

66

67 double

68 proc_P_shtns(shtns_cfg shtns , const size_t lmax , const size_t n, const

double x, double * Plm)

69 {

70 struct timeval tv0 , tv1;

71 size_t i;

72 double dt;

73

74 gettimeofday (&tv0 , NULL);

75

76 for (i = 0; i < n; ++i)

77 {

78 size_t idx = 0;

79 int m;

80

81 for (m = 0; m <= (int) lmax; ++m)

82 {

83 legendre_sphPlm_array(shtns , lmax , m, x, &Plm[idx]);

84 idx += lmax + 1 - m;

85 }

86 }

87

88 gettimeofday (&tv1 , NULL);

89

90 dt = TIME_DIFF(tv0 , tv1);

91

92 return dt;

93 }

94

95 int

96 main(int argc , char * argv [])

97 {

98 const size_t lmax = 1500;

99 const double x = -0.75;

100 size_t eval_lmin = 2;

101 size_t eval_lmax = 400;

102 size_t n = 2000;

103 const size_t plm_size = gsl_sf_legendre_array_n(lmax);

104 double * Plm = (double *) malloc(plm_size * sizeof(double));

105 shtns_cfg shtns = shtns_create ((int) lmax , (int) lmax , 1, (shtns_norm) (

sht_orthonormal | SHT_NO_CS_PHASE));

106 size_t l;

107

108 if (argc > 1)

109 eval_lmin = (size_t) atoi(argv [1]);

110 if (argc > 2)

111 eval_lmax = (size_t) atoi(argv [2]);

112 if (argc > 3)

113 n = (size_t) atoi(argv [3]);

114

115 l = 1;

August 27, 2022 | 11

GSL Technical Report #1 ALFs

116 printf("Field %zu: ALF degree\n", l++);

117 printf("Field %zu: GSL (l indexing) (seconds)\n", l++);

118 printf("Field %zu: GSL (m indexing) (seconds)\n", l++);

119 printf("Field %zu: SHTOOLS (seconds)\n", l++);

120 printf("Field %zu: SHTns (seconds)\n", l++);

121

122 for (l = eval_lmin; l <= eval_lmax; ++l)

123 {

124 double dt_gsll = proc_P_gsl(GSL_SF_LEGENDRE_FLG_INDEXL , l, n, x, Plm);

125 double dt_gslm = proc_P_gsl (0, l, n, x, Plm);

126 double dt_shtools = proc_P_shtools(l, n, x, Plm);

127 double dt_shtns = proc_P_shtns(shtns , l, n, x, Plm);

128

129 printf("%zu %.12e %.12e %.12e %.12e\n",

130 l,

131 dt_gsll / n,

132 dt_gslm / n,

133 dt_shtools / n,

134 dt_shtns / n);

135 fflush(stdout);

136 }

137

138 free(Plm);

139 shtns_destroy(shtns);

140

141 return 0;

142 }

August 27, 2022 | 12

	Introduction
	Normalization
	Recurrence Relations
	Recurrence Relations for Derivatives
	Implementation Details
	Verification
	Benchmarks
	List of Acronyms
	Bibliography
	Source Code for Benchmarks

