GNU Source Release Collection

for version 2014.10.11, 6 January 2014

bug-gsrc@gnu.org

mailto:bug-gsrc@gnu.org

This manual is for the GNU Source Release Collection (version 2014.10.11, updated 6
January 2014).

Copyright (©) 2011, 2012, 2013, 2014 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License.”

Table of Contents

1 Introduction.................., 1
1.1 Building GNU packageso.iiiiiiiiiiiiiiiii .. 1

2 Getting started ...l 3
2.1 Initial SetUpP 3
2.2 Building a simple package o i 4
2.3 Installing a package ... 4
2.4 Setting your environment. 4
2.5 Useful targetsovnn i 5)
2.6 Complex packages.ouuirriiii 6
2.7 Finding packages. ..o 7

3 Advanced configuration........................ 9
3.1 Global configuration.......... ... i 9
3.2 Package configuration.............. .. i i i 10
3.3 Patching packages....... ... i 11
3.4 Package Versionsc.uuuuiititee e 11
Appendix A Technical information............ 13
A1 The GSRC build system ..., 13
A.2 Anatomy of a GSRC Makefile............. ..., 14
A.2.1 Metadata variables 14

A.2.2 Build variables 15

A23 Buildrecipeso 17

A24 Asimpleexample........ ... 17

A.2,5 A complex example...... ...t 18

Appendix B GNU Free Documentation License

.. 20

Chapter 1: Introduction 1

1 Introduction

The GNU Source Release Collection (GSRC) provides a simple way to install the latest
GNU packages on an existing distribution. By using GSRC, the GNU source packages from
ftp.gnu.org are automatically downloaded, compiled and installed, either in your home
directory or a system-wide directory such as /opt.

At its core, it is a presentation of the current state of the GNU system, in the most
appropriate form: buildable and installable source code. GSRC makes it easy to discover
great new software from the GNU system, as well as providing other benefits over standard
software distributions. It allows you, for example, to install easily GNU software for yourself
on a system on which you do not have permission to install software system-wide; or to
install the latest, unpatched packages when those distributed with your operating system
are outdated or not configured to your liking.

GSRC is based on the GAR build system by Nick Moffitt and the GARstow enhance-
ments by Adam Sampson. GAR was inspired by BSD Ports, a Makefile-based build system,
and is written in GNU Make. The GARNOME build system for GNOME was another ex-
ample of a system using GAR.

Note that GSRC is not intended to be a full package-management system or source
distribution. It is just a more convenient way to compile GNU packages from source on an
existing system.

Because GSRC is not a full distribution you will sometimes need to install other packages
from your distribution to build and run GNU programs. For example, GSRC itself does not
include Perl or Python, so you will need to make sure these are already installed for GNU
programs which use them.

1.1 Building GNU packages

If you have never built a GNU package by hand, this section will briefly show the process
so you will have an idea of what GSRC is doing. If you are already familiar with this, you
may skip this section.

The build process is performed via commands entered into a shell, which is generally done
in a terminal or a terminal emulator. The dollar sign in the following examples represents
the shell prompt, denoting the point at which you enter commands, while the characters
following the prompt show the commands that you must enter. While much of the build
process is conveniently automated, such that you do not need to manually compile every
file, you still must take a few steps.

For example, to build the package “hello” version 2.9, you must perform the following
steps in your terminal:

1. Download the package and unpack it

$ wget http://ftpmirror.gnu.org/gnu/hello/hello-2.9.tar.gz
$ tar xvfz hello-2.9.tar.gz

2. Run the configure script

$ cd hello-2.9
$./configure

3. Compile the source code

Chapter 1: Introduction 2

$ make
4. Install it
$ make install
In some unfortunate cases, the process is not as straight-forward and may require some

extra intervention on your part. GSRC abstracts away most of these steps so that all you
need to enter to install a program is make install.

Chapter 2: Getting started 3

2 Getting started

GSRC is distributed directly using the Bazaar version control system or via a compressed
archive. You can check out the latest version from the Bazaar repository using

$ bzr checkout bzr://bzr.savannah.gnu.org/gsrc/trunk/ gsrc

This will create a directory gsrc. The build definitions for GNU packages are in the gnu
subdirectory. Large sub-projects, such as GNOME, have their own subdirectory containing
packages (i.e. gnome). The external subdirectory contains references to dependencies
which you may have to install outside of GSRC, such as via your GNU/Linux distribution’s
package manager (APT, Pacman, Yum, etc.). If these dependencies are required for a given
package and are not found on your system, you will be automatically notified. Finally, the
decommissioned directory contains former GNU packages that have been decommissioned.

Each package has its own subdirectory within its parent directory, for example gnu/emacs
or gnome/evince. Package directories contain a config.mk file for configuring the package
and a Makefile for building it. This Makefile will automate the usual ./configure and
make commands needed to build a GNU package.

To stay up-to-date with the latest releases of GNU software, you can pull in recent
changes to your local copy of GSRC:

$ bzr update

Alternatively, quarter-annual “snapshots” of GSRC are made available for download at
http://ftpmirror.gnu.org/gnu/gsrc.

2.1 Initial setup

If you have checked out the source tree from the Bazaar repository you will need to create
the build files with the following command,

$./bootstrap

Before building any packages you will need to run the top-level configure script. There
is only one configuration parameter, the installation prefix, specified with --prefix. For
example, to install all the compiled packages under /gnu use:

$./configure --prefix=/gnu

checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes

checking for a thread-safe mkdir -p... /usr/bin/mkdir -p
checking for gawk... gawk

checking whether make sets $(MAKE)... yes

checking whether make supports nested variables... yes
checking for recsel... /usr/bin/recsel

checking for recfmt... /usr/bin/recfmt

checking that generated files are newer than configure... done

configure: creating ./config.status
config.status: creating gsrc
config.status: creating config.mk
config.status: creating setup.sh
config.status: creating GNUmakefile

http://ftpmirror.gnu.org/gnu/gsrc

Chapter 2: Getting started 4

config.status: creating doc/Makefile

You can optionally install the documentation and the gsrc script (see Section 2.7 [Find-
ing packages|, page 7). Note that these are installed to the directory specified in the previous
step. Be sure to set your environment to be able to use them (see Section 2.4 [Setting your
environment|, page 4).

$ make install

2.2 Building a simple package

All interaction with GSRC is performed via the program Make. When you execute Make
via the make command, you generally must provide a target that tells Make which recipe,
consisting of a series of pre-defined commands, to execute. For example, the build target
will tell Make to execute a recipe to build the software, while the install target will execute
a recipe for installing it. Often, a default recipe will be available that will typically build
the software, allowing you to omit the build target.

Thus, in GSRC, to build any package, type make build (or, simply make) in the package’s
subdirectory. You can change to the directory with the cd command in the shell, or with the
-C option of make. For example, to build the hello package in the gnu/hello subdirectory
from the root GSRC directory use:

$ make -C gnu/hello

This will download, unpack, configure and build the hello package. The package will be

built in the subdirectory gnu/hello/work.

$./gnu/hello/work/hello-2.9/src/hello
Hello, world!

2.3 Installing a package
You are now ready to install the package. If you are installing to a new directory tree, first
create the directory specified in the top-level configure —-prefix option if necessary,
$ mkdir /gnu
Then to install the package use the install target,
$ make -C gnu/hello install

The package should be automatically installed under /gnu, with any executable programs
under /gnu/bin/.
$ /gnu/bin/hello --version
hello (GNU hello) 2.9

2.4 Setting your environment

If you want to use the newly installed package without having to specify its full path, you
will need to modify the relevant variables in your environment, such as PATH, LD_LIBRARY_
PATH, INFOPATH, etc. These variables inform your system of the locations of relevant files
on it. For example, PATH contains a list of all directories that contain executable files.

There is a sample script setup.sh in the top-level GSRC directory which can be used
to set the main environment variables.

Chapter 2: Getting started 5

$ source setup.sh

Note that you need to load this file into the current shell with the source command,
instead of executing it (which would only apply the definitions temporarily in a subshell).

After loading this file, your environment variables should include the target directory so
you can run the new packages directly:

$ echo $PATH
/gnu/bin:/usr/local/bin:/usr/bin:/bin
$ which hello

/gnu/bin/hello

If you want to restore your original environment variables they are saved in the variables
ORIG_PATH, ORIG_LD_LIBRARY_PATH, etc.

$ PATH=$0RIG_PATH
$ LD_LIBRARY_PATH=$0RIG_LD_LIBRARY_PATH

2.5 Useful targets

To clean up the build directory and delete any downloaded files, use the clean target:
$ make -C gnu/hello clean

There are other useful targets. For example, the whole build sequence can be broken
down into stages as follows:

$ make -C gnu/hello fetch checksum extract configure build install

Each target depends on the previous one, so typing make -C gnu/hello install exe-
cutes all the earlier targets first

You can install the source code of a package (to, i.e., /gnu/src/hello-2.9) using the
install-src target. Likewise, the source can be removed using the uninstall-src target.

To see some information about a package, use the target pkg-info.

$ make -C gnu/hello pkg-info
make: Entering directory ¢/home/gnu/gsrc/gnu/hello’

Name: GNU Hello

Version: 2.9

URL: http://www.gnu.org/software/hello/manual/
Description:

GNU Hello prints the message "Hello, world!" and then exits. It
serves as an example of standard GNU coding practices. As such, it
supports command-line arguments, multiple languages, and so on.
Status: installed (stowed)
make: Leaving directory ¢/home/gnu/gsrc/gnu/hello’

The “Status” can be any of: “not installed”, “installed (not stowed)” or “installed
(stowed)” (see Section 3.4 [Package versions|, page 11).

To view a more concise summary, ideal for producing a list of packages in script, use the
target pkg-info-curt.
$ make -C gnu/hello pkg-info-curt
make: Entering directory ‘/home/gnu/gsrc/gnu/hello’
gnu/hello 2.9

Chapter 2: Getting started 6

A program that produces a familiar, friendly greeting
make: Leaving directory ‘/home/gnu/gsrc/gnu/hello’

To get a better idea of what files will be downloaded and which dependencies must be
built in order to use a package, use the fetch-list target.

$ make -C gnu/hello fetch-list

make: Entering directory ‘/home/gnu/gsrc/gnu/hello’
Name: hello

Version: 2.9

Location: http://ftpmirror.gnu.org/hello/
Distribution files:

hello-2.9.tar.gz

Patch files:

Signature files:

hello-2.9.tar.gz.sig

Dependencies:

make: Leaving directory ‘/home/gnu/gsrc/gnu/hello’

Most GNU packages are highly configurable. To see which configuration options are
available to you, you may invoke the help-config target.

Finally, if you choose to remove a package, you may use the uninstall target. This
target “un-stows” the package; if you were to re-install it, the package would not need to
be re-built. Instead, it would merely be re-stowed. To completely remove a package, use
the uninstall-pkg target. When you update a package to a new version, the old version
is merely un-stowed and the new version is installed alongside it (see Section 3.4 [Package
versions|, page 11). In order to clean out old package versions, use the uninstall-pkg-old
target.

2.6 Complex packages

If building or using a package depends on other GNU packages, these will be built auto-
matically in the correct order. To see the dependencies of any package use the dep-list
target.

$ make -C gnu/gnupg dep-list

make: Entering directory ‘/home/gnu/gsrc/gnu/gnupg’

libgpg-error libgcrypt libassuan libksba pth zlib readline

make: Leaving directory ‘/home/gnu/gsrc/gnu/gnupg’

The dependencies are searched for in the gnu, gnustep and gnome subdirectories by
default. Of course, packages might depend on software that does not belong to the GNU
project. In those cases, GSRC will try to determine whether these external packages are
installed on your system. If one is not present, you will have to install it separately, for
example via your distribution’s software repositories.

Note that the dependencies can be more than one level deep,

$ make -C gnu/readline dep-list

make: Entering directory ¢/home/gnu/gsrc/gnu/readline’
ncurses

make: Leaving directory ¢/home/gnu/gsrc/gnu/readline’

Chapter 2: Getting started 7

So, to install a complex package like gnupg use the same commands as for a simple
package,
$ make -C gnu/gnupg
$ make -C gnu/gnupg install

All of the dependencies (and the dependencies’ dependencies) will be built and installed
first, as needed.

2.7 Finding packages

GSRC provides build recipes for several hundred packages. So, how can you find or discover
a package relevant to your needs? Fortunately, the build recipes are described by metadata,
which can help you in searching. For example, you can use standard GNU tools such as
grep to search the text of the build recipes for key words.

A template script is installed, called gsrc, that provides a simple means for searching
for packages via keywords, printing information about a package, and printing its location.
Since gsrc is installed to the same location as executables installed by GSRC, if you have
set up your environment to use GSRC packages (see Section 2.4 [Setting your environment],
page 4), you can use the gsrc script to access GSRC from outside the GSRC directory.

For example, here we search for an editor, discover the program moe, read information
about it, and then install it.

$ gsrc search editor
gnu/denemo 1.0.0
A music notation editor
gnu/ed 1.7
An implementation of the standard Unix editor
gnu/emacs 24.3
The extensible, customizable text editor
gnu/global 6.2.8
A source code tag system
gnu/gnusound 0.7.5
A multitrack sound editor
gnu/leg
Libraries for game engines and game development
gnu/less 451
A pager
gnu/mc 4.6.1
A two-paned file manager
gnu/mit-scheme 9.1.1
An implementation of the Scheme programming language
gnu/moe 1.5
A simple-to-use text editor
gnu/nano 2.3.2
A simple text editor
gnu/sed 4.2.2
A text stream editor
$ gsrc info moe

Chapter 2: Getting started 8

Name : Moe

Version: 1.5

URL: http://www.gnu.org/software/moe
Description:

GNU Moe is a powerful-but-simple-to-use text editor. It works in a
modeless manner, and features an intuitive set of key-bindings that
assign a degree of "severity" to each key; for example key
combinations with the Alt key are for harmless commands like cursor
movements while combinations with the Control key are for commands
that will modify the text. Moe features multiple windows, unlimited
undo/redo, unlimited line length, global search and replace, and
more.
Status: not installed

$ make -C $(gsrc path moe) install

If you view the gsrc script’s code, you will find that it is very simple and, indeed, can
be used as a template to be expanded to include the functionality that you desire.

More robust searching can be performed with the file MANIFEST . rec. If you have acquired
GSRC by downloading it as a tar.gz archive, this file should be present in the package’s
root directory. If you have acquired GSRC by cloning its code repository, you will have to
generate this file. Simply navigate to the package’s root directory and enter make manifest;
you will want to run this every time you pull updates to the repository. The resulting file is
a recfile, which can be queried as a database using GNU Recutils, which must be installed
(see Section “recsel” in Recutils).

Chapter 3: Advanced configuration 9

3 Advanced configuration

The default behavior of GSRC may be configured both globally and for individual packages.
All configuration is done in simple Makefiles, so some familiarity with GNU Make, while
not required, is recommended for more advanced changes.

3.1 Global configuration

Building a package loads the following configuration files:

config.mk
Specifies the installation directory prefix. Created by the configure script from
config.mk.in

gar.conf .mk
Specifies general configuration variables

gar.env.mk
Defines the environment variables that are set during each build step.

gar .master.mk
Defines the list of mirror sites used to download the source tarballs. It is
recommended to modify this to use local mirrors.

gar.site.mk
An optional file that you can create to load extra recipes to use on packages.
This file must be created by the user (however, it is not an eroror if the file
does not exist).

Much of the behavior of GSRC is defined by variables that can be customized. Generally
speaking, you should override these variables in your config.mk file rather than in the
gar.*.mk files. That way, you do not have to worry about updates to GSRC overwriting
your changes.

Some of the more important configuration variables are:

BOOTSTRAP
If defined (the default), the environment variables C_INCLUDE_PATH, CPLUS_
INCLUDE_PATH and LDFLAGS point to the include and 1ib subdirectories of the
installation directory. This forces the use of any previously installed libraries
in preference to the normal system libraries. To disable this feature, remove
the definition BOOTSTRAP=1 in config.mk.in and rerun configure, or build with
BOOTSTRAP undefined on the command-line:

$ make -C gnu/gnupg BOOTSTRAP=
Set in conf .mk
IGNORE_DEPS
Specifies any packages that should be skipped as dependencies (for example, if

you prefer to use existing system packages instead). A space separated list. Set
in gar.conf .mk.

Chapter 3: Advanced configuration 10

GARCHIVEDIR

GARBALLDIR
Specifies the directories used to cache downloaded source code archives
(GARCHIVEDIR) and the archives of the installed packages (GARBALLDIR). Set
in gar.conf .mk.

MAKE_ARGS_PARALLEL
Set this to -j N to allow N parallel processes in the build. Note that multiple
dependencies are built one-by-one; only the commands within each build are
performed in parallel. Set in gar.conf .mk

USE_COLOR

It’s easy to miss the messages printed by GSRC amongst all the output of the
build process. Set this to “y” to enable colorized output of GSRC messages,
which may make them more visible. Set it to anything else to disable color.
In either case, four more variables are defined: MSG, MSG2, ERR, 0K and OFF.
The first four define strings to insert at the beginning of a normal message
(MSG, MSG2), an error message (ERR), or a message indicating success (0K). The
OFF code is inserted at the end of the message. When USE_COLOR is “y”, these
variables contain ANSI escape sequences to change properties of the text (i.e.
to set colors or text weight). Otherwise, they may contain textual indicators,
such as “==>" to begin a message. Some sensible default values for both cases
are included. Set in gar.conf .mk.

REDIRECT_QUTPUT

A typical build process produces a lot of textual output. In some cases, you
may wish to redirect this output to somewhere other than your screen. In
this case, you may set the variable REDIRECT_QUTPUT to any value other than
“n”. To edit where the output will be redirected, set the OUTPUT variable. By
default, if you set REDIRECT_QUTPUT, standard text output will be redirected
to /dev/null, which means it is thrown away, while errors will be printed to
the screen. You can instead, for example, redirect to log files of your choosing
(see Section “Redirections” in Bash for more details on redirection). Set in
gar.conf .mk

3.2 Package configuration

Each package can be customized to your liking. Because GNU packages follow a standard-
ized build process, customizing the GSRC build for one is straightforward.

GNU packages take most of their configuration in the form of options passed to the
configure script. One may easily customize these options in a GSRC Makefile by setting
the CONFIGURE_OPTS variable. Any options added to this variable will be appended to the
options set by default by GSRC.

CONFIGURE_OPTS = --disable-gtk --without-png

For convenience, every package has a file called config.mk in its directory which is
imported by its build script. Typically, all user configuration should be done here. By
default, it contains the CONFIGURE_OPTS and BUILD_OPTS variables. In some special cases,
package-specific, user-customize-able variables are also defined in this file.

Chapter 3: Advanced configuration 11

Generally speaking, user configuration is done exclusively in config.mk while Makefile
contains the information and recipes necessary for the package to build correctly. Thus, you
should not need to modify the Makefile unless you have special requirements. Note that
most configuration options relating to directory locations (such as where to install, where
to search for libraries, etc.) are set in the Makefile, because they are necessary for proper
building and installation in GSRC. Therefore, you do not need to worry about setting them
correctly in config.mk.

3.3 Patching packages

If you have a patch that you would like to apply to a package, the process can be automated
by GSRC. First, in the package’s directory, make a subdirectory called files and move the
patch file(s) there. Next, create two variables in the package’s Makefile:

PATCHFILES = my-patch.diff my-patch2.diff
PATCHOPTS = -p0

PATCHFILES holds a list of all the patch files in the files subdirectory. PATCHOPTS
contains the option switches to pass to the patch program.

Next, the patch file’s checksum is added to the checksums file for the package.
$ make makesum

Note that if the make makesums command fails due to GPG verification and you trust
the source from which the package or patch was downloaded, you may instead use make
makesums GPGV=true to skip this key verification step.

Finally, you may build the package as normal. The patch(es) will be applied automati-
cally in the process.

$ make install

If the patching process fails and you are sure that the patch is for the version of the
package contained in GSRC, then you may have to modify the -p option in the PATCHOPTS
variable (see Section “patch Options” in patch).

If the package requires a patch to even build properly, then this is a bug in GSRC. Please
report such build problems to bug-gsrc@gnu.org. You should also contact the maintainers
of the software package to make them aware of the problem.

3.4 Package versions

What is actually happening “under the hood” when GSRC installs a package is slightly
more complicated than what has been described so far.

When you install a package, it is first actually installed to the /gnu/packages directory
in a sub-directory with the name <package>-<version> (i.e. /gnu/packages/hello-
2.8). In the example of the package hello, the executable hello is installed to
/gnu/packages/hello-2.8/bin/hello instead of /gnu/bin/hello. All other files
installed by the package are installed in a similar manner. Next, GSRC makes symbolic
links to those files inside the parent /gnu directory. Thus, /gnu/bin/hello is ultimately
a symlink to /gnu/packages/hello-2.8/bin/hello. This is referred to as stowing; a
package with symlinks to its files installed in the system is said to be stowed.

When a new version of a package is released, you do not have to uninstall the previous
version first. When hello 2.9 is built and installed, it is put into its own package directory,

mailto:bug-gsrc@gnu.org

Chapter 3: Advanced configuration 12

/gnu/packages/hello-2.9 and the directory of hello 2.8 is left untouched. When GSRC
finalizes the installation, the old symlinks are removed and new ones are created to the
latest version’s files. Thus, while there would then actually be two versions of the package
installed, only the latest one would be stowed.

If you want to stow a particular version of the package, you may pass the GARVERSION
variable to make install. Be sure to update the checksums when you do so, otherwise the
process will fail!

$ make -C gnu/hello makesum install GARVERSION=2.8

If you had previously built version 2.8, then GSRC will merely re-stow those files. Of
course, if you have not previously built it, or if you have previously run make clean, the
package will be built from scratch.

Note: this method may fail if the package naming format or compression algorithm has
changed between versions (i.e. a change from tar.gz to tar.xz); in this case you must also
modify DISTFILES.

Users wishing to maintain different configurations of a package may take advantage of the
GARPROFILE variable. Its value is merely appended to the package directory name, allowing
you to have multiple configurations of the same package version installed. For example:

$ make -C gnu/hello install CONFIGURE_QPTS="--disable-nls" GARPROFILE="-no-nls"
This would install the newly configured package to /gnu/packages/hello-2.9-no-nls.

Appendix A: Technical information 13

Appendix A Technical information

This appendix gives detailed information on the GSRC build system. This information is
not necessary for most users but it may be of interest to developers and GSRC maintainers.

A.1 The GSRC build system

The GSRC build system is based on a system called GARstow by Adam Sampson, which,
in turn, was based on an earlier system called GAR by Nick Moffitt. In this section, the
basic architecture of the GSRC build system will be described.

GSRC consists of several system Makefiles plus the Makefile for each package. When the
user calls make on a package’s Makefile, the GSRC system Makefiles are pulled in. There
are several of these system Makefiles:

File Description
gar.mk This file contains the top-level targets such as build or install.
gar.lib.mk This file contains recipes to perform the sub-tasks for each top-

level target (see below).

gar.master.mk This file contains master URLs for downloading packages (i.e.
http://ftp.gnu.org/gnu).

gar.lib This directory contains further Makefiles to define common vari-
able values for typical build systems, such as the standard GNU
Autotools process.

gar.conf .mk This file contains the general configuration of GSRC.

gar.env.mk The variables in this file are used to properly set the build envi-

ronment for GSRC.

config.mk This file contains the user’s particular GSRC configuration.

The typical user-level GSRC Make targets, such as fetch, build or install, come from
gar.mk. Depending on the package’s build requirements, as defined in the package’s GSRC
Makefile, these user-level targets will depend on lower-level targets that actually perform
the required tasks.

For example, in a typical GNU package, configuration is done with a configure script
while building and installing are done with a Makefile. So, for the package hello, the build
target will depend on a target called build-work/hello-2.9/Makefile (build- plus the
location of the Makefile distributed with the package). For a Python-based package that is
installed via a setup.py, the install target will depend on the target install-work/foo-
1.0/setup.py. The file gar.lib.mk contains many generalized Make recipes to handle each
of these different scenarios.

http://ftp.gnu.org/gnu

Appendix A: Technical information 14

The directory gar.1ib contains Makefiles that set common variable values for packages
that share similar build systems. It has a file called auto.mk, for example, that defines the
settings for a package that uses the standard Autotools process.

A.2 Anatomy of a GSRC Makefile

GSRC Makefiles are the point of entry for the user into the GSRC system. Since GSRC
supplies GNU software and there are GNU coding standards that dictate how package
installation is supposed to work, the GSRC Makefiles for most GNU software packages are
similar.

In order to facilitate working with the GSRC Makefiles in an automated way, such as
searching them via a script, they all share a common structure, split into three sections:
metadata variables, build variables, and the build recipes. By convention, these three
sections are separated by lines of seventy hash symbols (“#”). This helps to visually
separate the sections, as well as to provide convenient stopping points when scanning or
searching the files.

A.2.1 Metadata variables

This section consists of variable declarations that describe the package itself. The following
variables should be present:

Variable name Description

NAME This is the common-language, official name of the package. It
may contain multiple words and any character. Example: “GNU
Source-highlight”

GARNAME This is the internal GSRC name of the package. It should match
the name of the directory containing the package and, by con-
vention, for GNU packages it is the name of the package’s HT'TP
subdirectory on http://www.gnu.org/software. It should con-
sist of only lower case letters, numbers, hyphens or underscores.
Example: “src-highlite”

UPSTREAMNAME [optional] If the package maintainers ever use a different name
for the package, for example a different spelling or capitalization,
include it here. This is often useful in specifying URLs or package
arcive names. Example: “source-highlight”

GARVERSION This is the current version number of the package. Example:
“3.1.7"
DISTNAME [optional] This variable contains the distribution name of the pack-

age. This variable is automatically constructed and by default it
is $ (GARNAME) -$ (GARVERSION). Example: “src-highlite-3.1.7”

http://www.gnu.org/software

Appendix A: Technical information 15

HOME_URL

DESCRIPTION

BLURB

This is the home URL of the package, where a user
might find more information about it. Example:
“http://www.gnu.org/software/src-highlite”

This variable should have a short, one-line description of the pack-
age.

[optional] This should contain a longer, multi-line description of
the package. To achieve this, its value needs to be declared using
the Make define statement.

A.2.2 Build variables

The second section of a GSRC Makefile holds variable definitions that are used in the build
process. When possible, it is preferable to use the metadata variables in the build variable
definitions, to minimize the number of items that need to be modified should anything

change.

Variable name

MASTER_SITES

MASTER_SUBDIR

DISTFILE_SITES

DISTFILE_SUBDIR

SIGFILE_SITES

SIGFILE_SUBDIR

Description

This variable defines the top-level URL from where the package
files should be retrieved. Many URLs are already defined in vari-
ables in the file gar.master.mk. Most GNU packages are retriev-
able from http://ftp.gnu.org/gnu, which is assigned to the
variable MASTER_GNU in gar.master.mk, so for a GNU package,
MASTER_SITES would be set to $(MASTER_GNU). Multiple sites
may be listed; attempts to download a files will proceed for each
site listed until one succeeds.

This is the directory of the master site under which the package
files can be found. For most GNU packages, this can simply be
$ (GARNAME) /.

This variable contains URL(s) from which source distribution
archives only are to be downloaded.

This variable contains the sub-directory of DISTFILE_SITES where
the source distributions can be found.

This variable contains URL(s) from which signature files only are
to be downloaded.

This variable contains the sub-directory of SIGFILE_SITES where
the signature files can be found.

http://ftp.gnu.org/gnu

Appendix A: Technical information 16

PATCHFILE_SITES

PATCHFILE_SUBDIR

FILE_SITES

DISTFILES

SIGFILES

PATCHFILES

WORKSRC

WORKOBJ

CONFIGURE_SCRIPTS

BUILD_SCRIPTS

INSTALL_SCRIPTS

This variable contains URL(s) from which patch files only are to
be downloaded.

This variable contains the sub-directory of DISTFILE_SITES where
the source distributions can be found.

This variable lists file URIs where files can be found locally. By de-
fault this contains the files sub-directory of the package’s GSRC
directory and the location specified by the variable GARCHIVEDIR.
Note that these URIs should be prefaced with “file://”.

This variable contains a space-separated list of all of the source
distribution archives to be fetched.

This variable contains a space-separated list of all the signature
files to fetch.

This variable contains a space-separated list of all the patch files
to fetch.

This variable contains the name of the directory where
all of the work should take place. Its default value is
$ (WORKDIR)/$(DISTNAME), which should be sufficient for most
cases, so it is normally not necessary to set this variable. If,
however, the package’s source archive extracts to a directory with
some other name, you should set it here. This should always begin
with $ (WORKDIR), which by default is the work subdirectory of the
GSRC package’s sub-directory.

This variable defines the location where the build process should
take place. Normally, and by default, this is the same as WORKSRC,
however some packages recommend building in a directory sepa-
rate from the location of the source code.

This variable contains a list of the scripts or files that need to
be run during the configuration step of the build process. Phony
targets may also be included.

This variable contains a list of the scripts or files that need to be
run during the build step of the build process. Phony targets may
also be included.

This variable contains a list of the scripts or files that need to be
run during the install step of the build process. Phony targets
may also be included.

Appendix A: Technical information 17

INFO_FILES This variable contains a list of all of the Info documentation files
installed by a program. To use this variable, you must include the
info.mk file from the gar.lib directory. If this variable is not
defined and info.mk is included, then it will have a default value
of $(GARNAME) . info

BUILDDEPS This variable contains a space-separated list of the programs re-
quired to build the package, using their GARNAMEs.

LIBDEPS This variable is slightly a misnomer. It is a space-separated list
of all the programs and/or libraries required at run-time by the
package.

A.2.3 Build recipes

The final section of the GSRC Makefile contains the specifics of building the package. For
most cases, it is sufficient to just add include ../../gar.lib/auto.mk, which will work
for any package that follows the GNU building and installation standards. This will, among
other actions, automatically define the CONFIGURE_SCRIPTS, BUILD_SCRIPTS and INSTALL_
SCRIPTS variables and it will include the gar.mk Makefile. If the package does not follow
this building standard, then add include ../../gar.mk directly. Following this, the user’s
package configuration should be loaded with include config.mk.

Because there is the possibility that the user specify some configuration options, any
further options that must be set within the Makefile should be done after the user con-
figuration has been loaded. By convention, whereas the user specifies options with the
CONFIGURE_OPTS and BUILD_OPTS variables, inside the GSRC Makefile options should be
included by appending to the CONFIGURE_ARGS and BUILD_ARGS variables:

CONFIGURE_ARGS += --some-option

Finally, if necessary, the actual recipes are written. Note that if gar.lib/auto.mk was
included, no recipes should need to be written. In general, there are two kinds of targets
for which recipes may need to be written.

The first correspond to the files listed under CONFIGURE_SCRIPTS, BUILD_SCRIPTS and
INSTALL_SCRIPTS. As mentioned previously, user-level targets, such as build, depend
on lower-level targets such as build-work/hello-2.9/Makefile. These are the targets
that must be implemented for each of the designated configure/build/install scripts. For
each target, a recipe is written using the normal Make syntax to perform the necessary
task. Recall that phony targets may be specified as configure/build/install scripts. So, if
INSTALL_SCRIPTS = java, then a target named install-java must be written.

The second kind of targets that may be written are pre- and post- rules. These recipes are
run before or after the specified top-level target. For example, a target called pre-build is
run immediately before the build target. These targets are convenient for performing pre-
or post-processing on files. Note that there are also pre-everything and post-everything
targets that can be written.

A.2.4 A simple example

NAME = GNU Hello
GARNAME = hello

Appendix A: Technical information 18

GARVERSION = 2.9

HOME_URL = http://www.gnu.org/software/hello/manual/

DESCRIPTION = A program that produces a familiar, friendly greeting
define BLURB

GNU Hello prints the message "Hello, world!" and then exits. It
serves as an example of standard GNU coding practices. As such, it
supports command-line arguments, multiple languages, and so on.
endef

S

MASTER_SITES = $(MASTER_GNU)
MASTER_SUBDIR = $(GARNAME)/
DISTFILES = $(DISTNAME).tar.gz
SIGFILES = $(DISTNAME).tar.gz.sig

BUILDDEPS =
LIBDEPS =

HUH A

include ../../gar.lib/auto.mk
include config.mk

A.2.5 A complex example

NAME = Linux Libre

GARNAME = linux-libre

GARVERSION = 3.8.5

HOME_URL = http://www.fsfla.org/svnwiki/selibre/linux-libre/
DESCRIPTION = A free version of the Linux kernel

define BLURB

Linux Libre is a free (as in freedom) variant of the Linux kernel.
It has been modified to remove any non-free binary blobs.

endef

HUHFHHBHHHBAFH BB F R H B RS R F B HRAFH BB F AR R F RS AR

MASTER_SITES = http://linux-libre.fsfla.org/pub/
MASTER_SUBDIR = $(GARNAME)/releases/$(GARVERSION)-gnu/
DISTFILES = $(DISTNAME)-gnu.tar.xz

SIGFILES = $(DISTNAME)-gnu.tar.xz.sign

WORKSRC = $(WORKDIR)/linux-$(GARVERSION)
CONFIGURE_SCRIPTS = $(WORKSRC)/Makefile
BUILD_SCRIPTS = $(WORKSRC)/Makefile
INSTALL_SCRIPTS = kernel

Appendix A: Technical information 19

BUILDDEPS =
LIBDEPS =

USSR

include ../../gar.mk
include config.mk

CONFIGURE_ARGS = $(CONFIGURE_OPTS)
BUILD_ARGS += $(if $(USE_PARALLEL),$(MAKE_ARGS_PARALLEL),)

CREATED_MERGE_DIRS = \
sysconf $(sysconfdir) \
var $(vardir) \

rootlib /1lib

pre-configure:
make -C $(WORKSRC) mrproper
$ (MAKECOOKIE)

configure-7/Makefile:
$ (CONFIGURE_ENV) make -C $* $(MAKE_ARGS) $(CONFIGURE_ARGS) $(CONFIGURE_TARGET)
$ (MAKECOOKIE)

post-configure:
cd $(WORKSRC) && make $(MAKE_ARGS) prepare
$ (MAKECOOKIE)

build-%/Makefile:
$ (BUILD_ENV) make -C $* $(BUILD_ARGS)
$ (MAKECOOKIE)

install-kernel:

make -C $(WORKOBJ) $(MAKE_ARGS) \

INSTALL_MOD_PATH=$ (packageprefix) \

INSTALL_HDR_PATH=$ (packageprefix) \

modules_install \

headers_install \

firmware_install

@install -m755 -D $(WORKSRC)/arch/$(ARCH) /boot/bzImage $(packageprefix)/boot/vmlinuz-$
@install -m755 $(WORKSRC)/System.map $(packageprefix)/boot/System.map-$(GARVERSION)
@install -m755 $(WORKSRC)/.config $(packageprefix)/boot/config-$(GARVERSION)

$ (MAKECOOKIE)

Appendix B: GNU Free Documentation License 20

Appendix B GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

Appendix B: GNU Free Documentation License 21

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix B: GNU Free Documentation License 22

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix B: GNU Free Documentation License 23

=

N.

O.

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix B: GNU Free Documentation License 24

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix B: GNU Free Documentation License 25

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix B: GNU Free Documentation License 26

10.

11.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix B: GNU Free Documentation License 27

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

	Introduction
	Building GNU packages

	Getting started
	Initial setup
	Building a simple package
	Installing a package
	Setting your environment
	Useful targets
	Complex packages
	Finding packages

	Advanced configuration
	Global configuration
	Package configuration
	Patching packages
	Package versions

	Technical information
	The GSRC build system
	Anatomy of a GSRC Makefile
	Metadata variables
	Build variables
	Build recipes
	A simple example
	A complex example

	GNU Free Documentation License

