Guile Reference Manual
Edition 3.0.10, revision 1, for use with Guile 3.0.10

The Guile Developers

This manual documents Guile version 3.0.10.

Copyright (C) 1996-1997, 2000-2005, 2009-2023 Free Software Foundation, Inc.
Copyright (C) 2021 Maxime Devos
Copyright (C) 2024 Tomas Volf

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License.”

Table of Contents

Preface............ 1
Contributors to this Manual o i 1
The Guile LICENSEottt e 1

1 Introduction.................... 3
1.1 Guile and Scheme i 3
1.2 Combining with C Code ...t 4
1.3 Guile and the GNU Project...... ..., 4
1.4 Interactive Programming, 5
1.5 Supporting Multiple Languages................ooiiiiiii .. 5
1.6 Obtaining and Installing Guile..............)
1.7 Organisation of this Manual 6
1.8 Typographical Conventionscooiiiiiiiiiiin... 7

2 Hello Guile!................ ... 9
2.1 Running Guile Interactively............... 9
2.2 Running Guile ScriptSo 9
2.3 Linking Guile into Programs............ L. 9
2.4 Writing Guile Extensionst .. 10
2.5 Using the Guile Module System..................... ... 11

2.5.1 Using Modules. ... 11
2.5.2 Writing new Modules............ ... i i 12
2.5.3 Putting Extensions into Modules.......................... 12
2.6 Reporting Bugs ... 12

3 Hello Scheme!, 15

3.1 Data Types, Values and Variables.............................. 15
3.1.1 Latent Typing......ccoovviiiiiiii e 15
3.1.2 Values and Variables............. i il 15
3.1.3 Defining and Setting Variables............................ 16

3.2 The Representation and Use of Procedures..................... 17
3.2.1 Procedures as Values ... 17
3.2.2 Simple Procedure Invocation................... 18
3.2.3 Creating and Using a New Procedure 19
3.2.4 Lambda Alternativesc.oviiiiiteiiiiennin.n. 20

3.3 Expressions and Evaluation.................. 20
3.3.1 Evaluating Expressions and Executing Programs.......... 21

3.3.1.1 Evaluating Literal Data..................... 21
3.3.1.2 Evaluating a Variable Reference...................... 22
3.3.1.3 Evaluating a Procedure Invocation Expression........ 22
3.3.1.4 Evaluating Special Syntactic Expressions............. 23

3.3.2 Tail calls . ..o 24

3.3.3 Using the Guile REPL........ 25

3.3.4 Summary of Common Syntax.............ccooiiiiii... 25
3.4 The Concept of Closure, 26
3.4.1 Names, Locations, Values and Environments.............. 26
3.4.2 Local Variables and Environments 27
3.4.3 Environment Chaining...........o, 27
3.4.4 Lexical SCOPEe. ... 28
3.4.4.1 An Example of Non-Lexical Scoping.................. 28

345 ClOSUTE . .. ettt 30
3.4.6 Example 1: A Serial Number Generator................... 31
3.4.7 Example 2: A Shared Persistent Variable.................. 31
3.4.8 Example 3: The Callback Closure Problem................ 32
3.4.9 Example 4: Object Orientation 33
3.5 Further Reading............co i 34
Programming in Scheme....................... 35
4.1 Guile’s Implementation of Scheme 35
4.2 TInvoking Guile. 35
4.2.1 Command-line Options ..., 35
4.2.2 Environment Variables.......... 38
4.3 Guile Scripting 41
4.3.1 The Top of a Script File............ ... i i i 41
4.3.2 The Meta Switch...... ... 42
4.3.3 Command Line Handling it 43
4.3.4 Scripting Examples i 44
4.4 Using Guile Interactively i, 48
4.4.1 The Init File, "/.guile......coiiiiiiiiiiiiii i 48
4.4.2 Readline.........c.ooiiiiiiiii 48
4.4.3 Value History....... ..o 48
4.44 REPL Commandsccoiiiiiiiiiiiiiiiiannn.. 49
4.44.1 Help Commands...........ooiiiiiiiiiiiiiinn... 50
4.4.4.2 Module Commandsccoiiiiiiiiiiiiii... 50
4.4.4.3 Language Commandscooiiiiiinniinne.n. 51
4.44.4 Compile Commandsc.cooviiiiiiiienia... 51
4.4.4.5 Profile Commandscoiiiiiiiiiiiiii. 51
4.4.4.6 Debug Commandsciiiiiiiiiiiia.. 52
4.4.4.7 Inspect Commandsccoiiiiiiiiennaa.... 53
4.4.4.8 System Commandsc.ciiiiiiiiiiiian... 53

4.4.5 Error Handling o i 54
4.4.6 Interactive Debugging i i 54
4.5 Using Guile in Emacs. ... 56
4.6 Using Guile ToOISottt e 57
4.7 Installing Site Packages.......... ..o i 57

4.8 Distributing Guile Code i 58

5 Programming in C............................. 59
5.1 Parallel Installations........... ... i i 59
5.2 Linking Programs With Guile 60

5.2.1 Guile Initialization Functions 60
5.2.2 A Sample Guile Main Program 61
5.2.3 Building the Example with Make 61
5.2.4 Building the Example with Autoconf...................... 62
5.3 Linking Guile with Libraries.............o i, 63
5.3.1 A Sample Guile Extension 64
5.4 General concepts for using libguile........... 64
5.4.1 Dynamic Types.....c.ouuuiiiiii i, 65
5.4.2 Garbage Collection, 67
5.4.3 Control Flowo i 68
5.4.4 Asynchronous Signals........... i 70
5.4.5 Multi-Threading........c.cooiiiiiiiii i 71
5.5 Defining New Foreign Object Types ..., 74
5.5.1 Defining Foreign Object Types..........coooiiiiiiiii.. 74
5.5.2 Creating Foreign Objects ... 75
5.5.3 Type Checking of Foreign Objects 76
5.5.4 Foreign Object Memory Management 7
5.5.5 Foreign Objects and Scheme 80
5.6 Function Snarfing 81
5.7 An Overview of Guile Programming 83
5.7.1 How One Might Extend Dia Using Guile.................. 83
5.7.1.1 Deciding Why You Want to Add Guile............... 84
5.7.1.2 Four Steps Required to Add Guile 84
5.7.1.3 How to Represent Dia Data in Scheme............... 85
5.7.1.4 Writing Guile Primitives for Dia 86
5.7.1.5 Providing a Hook for the Evaluation of Scheme Code. . 87
5.7.1.6 Top-level Structure of Guile-enabled Dia 88
5.7.1.7 Going Further with Dia and Guile 88

5.7.2 Why Scheme is More Hackable Than C................... 90
5.7.3 Example: Using Guile for an Application Testbed......... 90
5.7.4 A Choice of Programming Options........................ 91
5.7.4.1 What Functionality is Already Available? 92
5.7.4.2 Functional and Performance Constraints 92
5.7.4.3 Your Preferred Programming Style................... 92
5.7.4.4 What Controls Program Execution?.................. 92

5.7.5 How About Application Users?ooo.... 92
5.8 Autoconf Support 94
5.8.1 Autoconf Background..............l 94
5.8.2 Autoconf Macros ... 94

5.8.3 Using Autoconf MacroS.........covviiiieeniiiienninenann. 96

iii

iv

6 API Reference.................................. 99
6.1 Overview of the Guile API....... 99
6.2 Deprecation.......... ... 100
6.3 The SCM TYPe . .vvviit e e 100
6.4 Initializing Guile o 101
6.5 Snarfing Macros.coouiiiiiiiiii i 102
6.6 Data Typeso e 104

6.6.1 Booleanso 104
6.6.2 Numerical data types. ...t ... 105
6.6.2.1 Scheme’s Numerical “Tower” 105
6.6.2.2 Integersooiuuiii e 106
6.6.2.3 Real and Rational Numbers...................... ... 110
6.6.2.4 Complex Numbers.................ooiiiiiiiiia.. 113
6.6.2.5 Exact and Inexact Numbers 113
6.6.2.6 Read Syntax for Numerical Data.................... 115
6.6.2.7 Operations on Integer Values 116
6.6.2.8 Comparison Predicates 117
6.6.2.9 Converting Numbers To and From Strings........... 118
6.6.2.10 Complex Number Operations...................... 118
6.6.2.11 Arithmetic Functions.............................. 119
6.6.2.12 Scientific Functions............... oL 123
6.6.2.13 Bitwise Operationso, 125
6.6.2.14 Random Number Generation 127
6.6.3 Charactersouuiiiiite it 129
6.6.4 Character Setsouiiti i 134
6.6.4.1 Character Set Predicates/Comparison............... 134
6.6.4.2 Iterating Over Character Sets....................... 134
6.6.4.3 Creating Character Sets 135
6.6.4.4 Querying Character Sets............c.coiiiiiiii. .. 137
6.6.4.5 Character-Set Algebra............ ...t 138
6.6.4.6 Standard Character Sets............................ 139
6.6.5 SETINES ..ot e 141
6.6.5.1 String Read Syntax................ ..o i 141
6.6.5.2 String Predicates it 143
6.6.5.3 String Constructors. 144
6.6.5.4 List/String conversionooiii... 145
6.6.5.5 String Selection.......... ... il 145
6.6.5.6 String Modification............. ... oo, 147
6.6.5.7 String Comparison.............coouiiiiiiiiiii... 148
6.6.5.8 String Searching......... il 152
6.6.5.9 Alphabetic Case Mapping................oooiii.... 154
6.6.5.10 Reversing and Appending Strings.................. 155
6.6.5.11 Mapping, Folding, and Unfolding 156
6.6.5.12 Miscellaneous String Operations 158
6.6.5.13 Representing Strings as Bytes...................... 159

6.6.5.14 Conversion to/from C.................. 160

6.6.5.15 String Internals............o il 163

6.6.6 Symbols. ... 164
6.6.6.1 Symbols as Discrete Data........................... 165
6.6.6.2 Symbols as Lookup Keyso..o.. 166
6.6.6.3 Symbols as Denoting Variables...................... 167
6.6.6.4 Operations Related to Symbols 167
6.6.6.5 Extended Read Syntax for Symbols................. 170
6.6.6.6 Uninterned Symbols............... 171

6.6.7 Keywordscoiiuiiii 173
6.6.7.1 Why Use Keywords?.............ooiiiiiiiiiiiiii.. 173
6.6.7.2 Coding With Keywords..................oooiiin 174
6.6.7.3 Keyword Read Syntax............. ..., 175
6.6.7.4 Keyword Procedures.................ooiiiiiiii 176

6.6.8 Pairs.........oiiii 177

6.6.9 LAStS ..ot 180
6.6.9.1 List Read Syntax....... ..., 180
6.6.9.2 List Predicates ... 181
6.6.9.3 List Constructors........ ..., 181
6.6.9.4 List Selection........ ... 182
6.6.9.5 Append and Reverse.................coiiiiiiiii.. 183
6.6.9.6 List Modification i, 183
6.6.9.7 List Searchingo, 185
6.6.9.8 List Mapping.......couuuiiiiiiiiiiiiiiiiiiiie.. 185

6.6.10 VeCtors. 186
6.6.10.1 Read Syntax for Vectors......................c.... 186
6.6.10.2 Dynamic Vector Creation and Validation........... 186
6.6.10.3 Accessing and Modifying Vector Contents.......... 187
6.6.10.4 Vector Accessing from C........................... 189
6.6.10.5 Uniform Numeric Vectors................. 190

6.6.11 Bit Vectors. ..o 190

6.6.12 Bytevectors ...t 193
6.6.12.1 Endianness..............ccoiiiiiiiiiiiiiiiiii.., 193
6.6.12.2 Manipulating Bytevectors.......................... 194
6.6.12.3 Interpreting Bytevector Contents as Integers....... 195
6.6.12.4 Converting Bytevectors to/from Integer Lists 197
6.6.12.5 Interpreting Bytevector

Contents as Floating Point Numbers 198
6.6.12.6 Interpreting Bytevector Contents as Unicode Strings.. 199
6.6.12.7 Accessing Bytevectors with the Array API......... 200
6.6.12.8 Accessing Bytevectors with the SRFI-4 API........ 200
6.6.12.9 Bytevector Procedures in R7TRS.................... 200
6.6.12.10 Bytevector SHcesovviiiiiiiiiiiiea... 201

6.6.13 ATTAYS « ottt e 202
6.6.13.1 Array Syntax.......ooeiiii i 202
6.6.13.2 Array Procedures............. ... it 203
6.6.13.3 Shared Arrays.........ccoouiiiiiiiiiiiiiiiiin 207

6.6.13.4 Arrays as arrays of arrays...............ooiii.. 209

6.6.13.5 Accessing Arrays from C.............. 212

6.6.14 VLiStS. ... 217
6.6.15 Record Overviewcoviiiiiiiiiineeeeeennnnnnns 219
6.6.16 SRFI-9 Recordsccoviiiiiiiiiiiiiii.. 219
Non-toplevel Record Definitions 220
Custom Printers.............oo i 221
Functional “Setters”.............. . i 221
6.6.17 Records ...t 222
6.6.18 Structures.......ooviiiiiiiii 224
6.6.18.1 Vtables........ooiiii 225
6.6.18.2 Structure Basics........... ... i 225
6.6.18.3 Vtable Contents..............cciiiiiiiii... 227
6.6.18.4 Meta-Vtables..............c i 228
6.6.18.5 Vtable Example...........l 229
6.6.19 Dictionary Types........cooiiiiiiiiiiiiiiiii .. 231
6.6.20 Association Lists............ ..o 231
6.6.20.1 Alist Key Equality................oooiiiiiat. 232
6.6.20.2 Adding or Setting Alist Entries.................... 232
6.6.20.3 Retrieving Alist Entries............ 234
6.6.20.4 Removing Alist Entries............ 234
6.6.20.5 Sloppy Alist Functions............................. 235
6.6.20.6 Alist Example....... ... i 236
6.6.21 VList-Based Hash Lists or “VHashes” 237
6.6.22 Hash Tables...... ... 239
6.6.22.1 Hash Table Examples.............................. 239
6.6.22.2 Hash Table Reference.............................. 241
6.6.23 Other Typesot 245
6.7 Procedures......... ... 245
6.7.1 Lambda: Basic Procedure Creation...................... 245
6.7.2 Primitive Procedures.......... i, 246
6.7.3 Compiled Procedures................. . i, 247
6.7.4 Optional Arguments. ..., 249
6.7.4.1 lambda* and define®. 249
6.7.4.2 (ice-9 Optargs)ovuiniiiii i 251
6.7.5 Caselambda 252
6.7.6 Higher-Order Functions............ ...t 254
6.7.7 Procedure Properties and Meta-information.............. 255
6.7.8 Procedures with Setters 256
6.7.9 Inlinable Procedures............ 257
0.8 M ACIOS . e ettt ettt 258
6.8.1 Defining Macros.........c.oooviiiiiiiiiiiiiiiiia. 258
6.8.2 Syntax-rules Macros. ..., 259
6.8.2.1 Patterns..........oooiiiiiiiiiii 260
6.8.2.2 Hygieneccoiiiiiiiii i 262
6.8.2.3 Shorthands.............. 263
6.8.2.4 Reporting Syntax Errors in Macros 263

6.8.2.5 Specifying a Custom Ellipsis Identifier 264

vii

6.8.2.6 Further Information 264
6.8.3 Support for the syntax-case System 265
6.8.3.1 Why syntax-case?........cocoiiiiiiiiiniiniana.. 266
6.8.3.2 Custom Ellipsis Identifiers for syntax-case Macros ... 269
6.8.3.3 Syntax objects can be data too 270
6.8.4 Syntax Transformer Helpers............. 270
6.8.5 Lisp-style Macro Definitions 273
6.8.6 Identifier Macroscouiuiiiiiii i 274
6.8.7 Syntax Parametersoiiiiiiiiiiiiiiii. 275
6.8.8 Eval-when......... . i 276
6.8.9 Macro Expansion...........cooiiiiiiiiiiiiiiiii 277
6.8.10 Hygiene and the Top-Level 278
6.8.11 Internal Macrosccooiiiiiiii i 280
6.9 General Utility Functions............o o i, 281
6.9.1 Equality.......cooiiiiiii 281
6.9.2 Object Properties ... 283
6.9.3 SOrtIng.....oontti e 284
6.9.4 Copying Deep Structuresooiiiiiiii... 285
6.9.5 General String Conversion............. ..., 286
6.9.6 HOOKS. ..o 286
6.9.6.1 Hook Usage by Example............................ 286
6.9.6.2 Hook Reference............ i 287
6.9.6.3 Hooks For C Code. ..., 289
6.9.6.4 Hooks for Garbage Collection....................... 290
6.9.6.5 Hooks into the Guile REPL......................... 291
6.10 Definitions and Variable Bindings 291
6.10.1 Top Level Variable Definitions.......................... 291
6.10.2 Local Variable Bindings 292
6.10.3 Internal definitions il 294
6.10.4 Querying variable bindings 295
6.10.5 Binding multiple return values.......................... 296
6.11 Controlling the Flow of Program Execution.................. 296
6.11.1 Sequencing and Splicing ..., 296
6.11.2 Simple Conditional Evaluation.......................... 297
6.11.3 Conditional Evaluation of a Sequence of Expressions. ... 299
6.11.4 Tteration mechanisms............, 299
6.11.5 Promptsooiiiiiiiiii 301
6.11.5.1 Prompt Primitives............ L. 302
6.11.5.2 Shift, Reset, and All That 304
6.11.6 Continuationsc.ccoeiiiieiiiiin i, 305
6.11.7 Returning and Accepting Multiple Values............... 307
6.11.8 ExXCeptionscouiiiiiiiii i 309
6.11.8.1 Exception Objects...........oooiiiiiiiiiiiii .. 309
6.11.8.2 Raising and Handling Exceptions 313
6.11.8.3 Throw and Catch.............., 314
6.11.8.4 Exceptionsand C......... ... oL, 316

6.11.9 Procedures for Signaling Errors......................... 317

viii

6.11.10 Dynamic Wind......... ... o i 318
6.11.11 Fluids and Dynamic States........................... 321
6.11.12 Parameters..........c.coouiiiiiiiiiiii i 325
6.11.13 How to Handle Errors............ oot 326
6.11.13.1 C SUpport.ovvuriii i 327
6.11.13.2 Signaling Type Errors.....................ooo.. 328
6.11.14 Continuation Barriers............... 329
6.12 Input and OQutpub....... ..o 329
6.12.1 Ports. .. oo 329
6.12.2 Binary I/O 331
6.12.3 Encoding.......... ..o 334
6.12.4 Textual I/Oo 336
6.12.5 Simple Textual Output......... ..o, 338
6.12.6 Buffering...... ... i 338
6.12.7 Random ACCESSouuuiiitii i 340
6.12.8 Line Oriented and Delimited Text 341
6.12.9 Default Ports for Input, Output and Errors............. 343
6.12.10 Typesof Porto 344
6.12.10.1 File Ports 344
6.12.10.2 Bytevector Ports o i 347
6.12.10.3 String Ports....... ... 348
6.12.10.4 Custom Ports i 349
6.12.10.5 Soft Ports........oooiii i 351
6.12.10.6 Void Ports ... 352
6.12.10.7 Low-Level Custom Ports.......................... 353
6.12.10.8 Low-Level Custom Ports in C..................... 355
6.12.11 Venerable Port Interfaces..............., 357
6.12.12 Using Ports from C i, 358
6.12.13 Non-Blocking I/O ... 359
6.12.14 Handling of Unicode Byte Order Marks................ 361
6.13 Regular Expressions..........coooiiiiiiii i 362
6.13.1 Regexp Functionsl 362
6.13.2 Match Structures......... .ot 366
6.13.3 Backslash Escapes........... ... it 368
6.14 LALR(1) Parsing............ooiiiiiiiiiiiiiiiii .. 369
6.15 PEG Parsing..........coiiiiii 369
6.15.1 PEG Syntax Reference, 370
6.15.2 PEG API Reference................ooiiiiiiiiiiit, 371
6.15.3 PEG Tutorial o i 376
6.15.4 PEG Internals........ ..., 384
6.16 Reading and Evaluating Scheme Code....................... 385
6.16.1 Scheme Syntax: Standard and Guile Extensions......... 385
6.16.1.1 Expression Syntax............cciiiiiiiiiiiii. 385
6.16.1.2 Comments.oouuutiiiii i 387
6.16.1.3 Block Commentsccoiiiiiiiian... 387
6.16.1.4 Case Sensitivity ..o 388

6.16.1.5 Keyword Syntax...........ccoiiiiiiiiiiiiiii 388

6.16.1.6 Reader Extensions.....................ooiiii... 388
6.16.2 Reading Scheme Code................ooiiiiiiiiia.. 388
6.16.3 Reading Scheme Code, For the Compiler................ 389
6.16.4 Writing Scheme Values............ oot 390
6.16.5 Procedures for On the Fly Evaluation................... 391
6.16.6 Compiling Scheme Code.......... ... 393
6.16.7 Loading Scheme Code from File 396
6.16.8 Load Paths........ ... i 397
6.16.9 Character Encoding of Source Files..................... 399
6.16.10 Delayed Evaluation............... ... i 400
6.16.11 Local Evaluation...................o i i 401
6.16.12 Local Inclusion........... ..o, 402
6.16.13 Sandboxed Evaluation................., 402
6.16.14 REPL Servers.........cooiuiiiiiiiiiiiiiiiiiiiiaan. 407
6.16.15 Cooperative REPL Servers............................ 407

6.17 Memory Management and Garbage Collection 408
6.17.1 Function related to Garbage Collection 408
6.17.2 Memory Blocks. ... 409
6.17.3 Weak References i 411

6.17.3.1 Weak hash tables............... o .o L. 412

6.17.3.2 Weak vectors...... ... 413
6.17.4 Guardians.ooinuie i 413

6.18 Modulesooin i 414
6.18.1 General Information about Modules 414
6.18.2 Using Guile Modules ..., 415
6.18.3 Creating Guile Modules 417
6.18.4 Modules and the File System 420
6.18.5 RO6RS Version References............., 420
6.18.6 RO6RS Libraries..........ccooiiiiiiiiiiiiiiiii ., 421
6.18.7 Variables........ ... i 423
6.18.8 Module System Reflection 424
6.18.9 Declarative Modules. ...t 426
6.18.10 Accessing Modules from C............................. 428
6.18.11 provide and require.......... ... 430
6.18.12 Environments........... ... 431

6.19 Foreign Function Interface............o, 431
6.19.1 Foreign Libraries............cooiiiiiiiiiiiiiiiie... 431
6.19.2 Foreign Extensionsccooiiiiiiiiiiiiiiii.., 434
6.19.3 Foreign Pointers.......... o it 436
6.19.4 Foreign Types. ...couuitiii e 437
6.19.5 Foreign Functions i 438
6.19.6 Void Pointers and Byte Access............oooiiiiii.... 439
6.19.7 Foreign Structs....... ... 441
6.19.8 More Foreign Functions 443

6.20 Foreign Objectso 445

6.21 SIMODS . oo 447

6.22 Threads, Mutexes, Asyncs and Dynamic Roots 450

ix

6.22.1 Threads. 451

6.22.2 Thread-Local Variables.......................o ... 453
6.22.3 Asynchronous Interrupts............... L. 454
6.22.4 AtOMICS. ..ottt 456
6.22.5 Mutexes and Condition Variables....................... 457
6.22.6 Blocking in Guile Modeol 461
6.22.7 FUtUTES ... 462
6.22.8 Parallel forms i 463
6.23 Configuration, Features and Runtime Options 465
6.23.1 Configuration, Build and Installation 465
6.23.2 Feature Tracking......... ... i, 467
6.23.2.1 Feature Manipulation.............................. 467
6.23.2.2 Common Feature Symbols......................... 467
6.23.3 Runtime Options........ ..., 469
6.23.3.1 Examples of option useccooiiiiiii... 469
6.24 Support for Other Languages................... i, 470
6.24.1 Using Other Languages..............cooiiiiiiiiii.. 470
6.24.2 Emacs LiSp....c.vuuuiii 471
6.24.2.1 Nl 471
6.24.2.2 Dynamic Binding............o 473
6.24.2.3 Other Elisp Features............................... 473
6.24.3 ECMASCrIPt .« oo 473
6.25 Support for Internationalization 474
6.25.1 Internationalization with Guile 474
6.25.2 Text Collation...........coviiiiiiiiiiiiiiiian.. 475
6.25.3 Character Case Mappingooeveviiiieennie .. 476
6.25.4 Number Input and Output 477
6.25.5 Accessing Locale Information........................... 477
6.25.6 Gettext SUpport. 481
6.26 Debugging Infrastructure............ il 483
6.26.1 Evaluation and the Scheme Stack....................... 483
6.26.1.1 Stack Capture..........ccooiiiiiiiiiii i, 483
6.26.1.2 Stacks..... ..o 484
6.26.1.3 Frames......... ..o 485
6.26.2 Source Properties ... 486
6.26.3 Programmatic Error Handling 487
6.26.3.1 Catching Exceptions..............coiiiiiiiiii... 487
6.26.3.2 Pre-Unwind Debugging 488
6.26.3.3 call-with-error-handling............................ 489
6.26.3.4 Stack Overflow 490
6.26.3.5 Debug options............coiiiiiiiiiiiiii 492
6.26.4 TraDs .o oottt 493
6.26.4.1 VM HOOKS ..ot 494
6.26.4.2 Trap Interface.........., 495
6.26.4.3 Low-Level Traps.......ccooviiiiiiiiiiiiiiii ... 496
6.26.4.4 Tracing Trapsooueiiiiiiiiiiiiiiiennn. 498

6.26.4.5 Trap States. ..o 499

6.26.4.6 High-Level Traps..........cooiiiiiiiiiiii .. 500

6.26.5 GDB Supportooiii 501
6.27 Code Coverage Reportscooviiiiiiii ... 502
7 Guile Modules 505
Tl SLIB . 505
7.1.1 SLIB installation i 505
T.1.2 JACAL ..o 506
7.2 POSIX System Calls and Networking.............. 506
7.2.1 POSIX Interface Conventionsccovviee.n. 506
7.2.2 Ports and File Descriptors..............cooiiiiiii., 507
723 File System ... 515
7.2.4 User Informationoiiiiiiiiiiineaa... 523
725 TIMe . . 525
7.2.6 Runtime Environment 528
T.2.7 ProCeSSeS.....couiin e 530
T.2.8 Signals......ooiiii i 537
7.2.9 Terminals and Ptys......... ... o i i 540
72010 PipeS. oot 541
7211 Networking.........coooiiii . 543
7.2.11.1 Network Address Conversion....................... 543
7.2.11.2 Network Databases................ ... L. 544
7.2.11.3 Network Socket Address..............ccoiiiiii... 551
7.2.11.4 Network Sockets and Communication.............. 553
7.2.11.5 Network Socket Examples 558
7.2.12 System Identification o oL 559
7213 Locales. ... 560
7.2.14 Encryption...........coiiiiiiiii i 560
7.3 HTTP, the Web, and All That............. 561
7.3.1 Typesand the Web............. oo i, 561
7.3.2 Universal Resource Identifiers..................., 563
7.3.3 The Hyper-Text Transfer Protocol 566
7.3.4 HTTP Headers........coouuiiiinniiiiiiiaaaan.. 568
7.3.4.1 HTTP Header Typesccovviiiieiiiiiiiiiiia... 569
7.3.4.2 General Headers..............ooiiiiiiiiiiiin... 569
7.3.4.3 Entity Headerso 571
7.3.4.4 Request Headers...................oiiiiiiiinnan. .. 572
7.3.4.5 Response Headers, 575

7.3.5 Transfer Codingsc.ooiviiiiiiiiiiiiiiiiinn, 576
7.3.6 HTTP Requests.........cooiiiiiiiiiii.. 577
7.3.6.1 An Important Note on Character Sets............... 577
7.3.6.2 Request APL.... i 77

7.3.7 HTTP Responsesoueuiiiiiiiiiiiiiiiiiiaaanaan.. 579
7.3.8 Web Clientt 581
7.3.9 Web Server..... ..o 584

7.3.10 Web Examples ... 586

xii

7.3.10.1 Hello, World!o i 587
7.3.10.2 Inspecting the Request, o87
7.3.10.3 Higher-Level Interfaces 588
7.3.10.4 Conclusiono 589
7.4 The (ice-9 getopt-long) Module............................... 590
7.4.1 A Short getopt-long Example............................ 590
7.4.2 How to Write an Option Specification.................... 591
7.4.3 Expected Command Line Format........................ 592
7.4.4 Reference Documentation for getopt-long 593
7.4.5 Reference Documentation for option-ref................ 594
7.5 SRFI Support Modules. ...t 594
7.5.1 About SRFI Usagecoooiiiiiiiiiiiiiii .. 595
7.5.2 SRFI-0-cond-expandcoiiiiiiiiiiian.. 595
7.5.3 SRFI-1- List library. ..., 597
7.5.3.1 COonstructors.oueuee et 597
7.5.3.2 Predicates...... ..o 597
7.5.3.3 SeleCctors.t e 598
7.5.3.4 Length, Append, Concatenate, etc................... 599
7.5.3.5 Fold, Unfold & Map ...t 600
7.5.3.6 Filtering and Partitioning........................... 604
7.5.3.7 Searching.......... ... i 604
7.5.3.8 Deleting........oooiiiiiiiiii 606
7.5.3.9 Association Lists i 606
7.5.3.10 Set Operations on Lists.............o .. 607
7.5.4 SRFI-2-and-let*....... i 610
7.5.5 SRFI-4 - Homogeneous numeric vector datatypes......... 611
7.5.5.1 SRFI-4 - Overview........c.oouiiiiiiiiiiii ... 611
7.5.5.2 SRFI-4- APIL... ... 612
7.5.5.3 SRFI-4 - Relation to bytevectors.................... 618
7.5.5.4 SRFI-4 - Guile extensions..................ooou... 619
7.5.6 SRFI-6 - Basic String Ports....................... . .. 620
7.5.7 SRFI-8-receive. ... 621
7.5.8 SRFI-9 - define-record-type ...t 621
7.5.9 SRFI-10 - Hash-Comma Reader Extension............... 621
7.5.10 SRFI-11-1let-valuescooviiiiiiiii i, 622
7.5.11 SRFI-13 - String Library, 623
7.5.12 SRFI-14 - Character-set Library 623
7.5.13 SRFI-16 - case-lambdao L, 623
7.5.14 SRFI-17 - Generalized set!........ 623
7.5.15 SRFI-18 - Multithreading support 623
7.5.15.1 SRFI-18 Threadscovvviiiiiiiii ... 624
7.5.15.2 SRFI-18 MUtexes.......uviiiieiiiii e, 625
7.5.15.3 SRFI-18 Condition variables....................... 626
7.5.15.4 SRFI-1I8 Time........ccoiiiiiiiiiii .. 626
7.5.15.5 SRFI-18 Exceptionsooiiiieiiiiienann... 627
7.5.16 SRFI-19 - Time/Date Libraryo.. .. 628

7.5.16.1 SRFI-19 Introduction..............ooviiinio... 628

7.5.16.2 SRFI-19 Time..... ..ot
7.5.16.3 SRFI-19Dateoviiiii i
7.5.16.4 SRFI-19 Time/Date conversions
7.5.16.5 SRFI-19 Date to stringcooiiiia..
7.5.16.6 SRFI-19 Stringtodate
7.5.17 SRFI-23 - Error Reporting.....................oooiit.
7.5.18 SRFI-26 - specializing parameters.......................
7.5.19 SRFI-27 - Sources of Random Bits......................
7.5.19.1 The Default Random Source.......................
7.5.19.2 Random Sources.............ccooiiiiiiiiiiiiii..
7.5.19.3 Obtaining random number generator procedures ...
7.5.20 SRFI-28 - Basic Format Strings.........................
7.5.21 SRFI-30 - Nested Multi-line Comments.................
7.5.22 SRFI-31 - A special form ‘rec’ for recursive evaluation. . .
7.5.23 SRFI-34 - Exception handling for programs.............
7.5.24 SRFI-35 - Conditions..........covieiiiiiin ..
7.5.25 SRFIL-37 -argsfold...........cooooiiiiiiiii it
7.5.26 SRFI-38 - External Representation for
Data With Shared Structure
7.5.27 SRFI-39 - Parametersoooiiiiiiiiin....
7.5.28 SRFI-41 - Streams.ovuuteiii i
7.5.28.1 SRFI-41 Stream Fundamentals.....................
7.5.28.2 SRFI-41 Stream Primitives
7.5.28.3 SRFI-41 Stream Library,
7.5.29 SRFI-42 - Eager Comprehensions.......................
7.5.30 SRFI-43 - Vector Library................oooooiiiit.
7.5.30.1 SRFI-43 Constructorscooviiiieiino...
7.5.30.2 SRFI-43 Predicates..............ccoooiiiiiiiia..
7.5.30.3 SRFI-43 Selectorsccooiiiiiiiiiiiii...
7.5.30.4 SRFI-43 Iteration............cooviiiiiiiienannn..
7.5.30.5 SRFI-43 Searching................c..ooiiiiiia..
7.5.30.6 SRFI-43 Mutators..........ccoooiiiiiiiiiiia...
7.5.30.7 SRFI-43 Conversionccooviiiiiiiean..
7.5.31 SRFI-45 - Primitives for
Expressing Iterative Lazy Algorithms.........................
7.5.32 SRFI-46 Basic syntax-rules Extensions..................
7.5.33 SRFI-55 - Requiring Features...........................
7.5.34 SRFI-60 - Integers as Bits ...t
7.5.35 SRFI-61 - A more general cond clause
7.5.36 SRFI-62 - S-expression comments.
7.5.37 SRFI-64 - A Scheme API for test suites.
7.5.38 SRFI-67 - Compare proceduresccovuuuee....
7.5.39 SRFI-69 - Basic hash tables
7.5.39.1 Creating hash tables............,
7.5.39.2 Accessing table items...........ol
7.5.39.3 Table properties.........ccooviiiiiiiiiiiiiii..,
7.5.39.4 Hash table algorithms

xiii

xiv

7.5.40 SRFI-71 - Extended let-syntax for multiple values....... 666
7.5.41 SRFI-87 =>incaseclauses...............ooviiiin .. 666
7.5.42 SRFI-88 Keyword Objects........ccoviiiiiiiii .. 666
7.5.43 SRFI-98 Accessing environment variables................ 667
7.5.44 SRFI-105 Curly-infix expressions........................ 667
7.5.45 SRFI-111 BOXES. . vvviiit i e 668
7.5.46 SRFI-119 Wisp: simpler indentation-sensitive Scheme. .. 668
T7.5.47 Transducersoouuuiiini e 669
7.5.47.1 SRFI-171 General Discussion 669
7.5.47.2 Applying Transducerscooiiiii. ... 670
7.5.47.3 Reducers.........c.oeiiiiiiiiiiiiiiiiiiiiaa.., 671
7.5.47.4 TransducCersooueuiiinniiiiiiiii e 672
7.5.47.5 Helper functions for writing transducers............ 674
7.6 RORS Support ... 675
7.6.1 Incompatibilities with the R6RS 675
7.6.2 RO6RS Standard Libraries.............cciiiiiiiiiia... 677
7.6.2.1 Library Usagecoouiiiiiiiiiiiiiiiiiiian 677
T7.6.2.2 TOIS DASE ..ttt 677
7.6.2.3 TOIS UNICOAEvvvii e 684
7.6.2.4 rnrs bytevectors i 686
7.6.25 rorslists... ... 686
7.6.2.6 TOIS SOrtING....coouuiiii 687
7.6.2.7 rnrscontrol...... ... 687
7.6.2.8 R6RS Records..........ccooiiiiiiiiiiii .. 688
7.6.2.9 rnrs records syntactic.......... ..., 689
7.6.2.10 rnrs records procedural ool 690
7.6.2.11 rnrs records inspection.................oooiiii 691
7.6.2.12 1rnrs eXCePtionS ..o v vttt 692
7.6.2.13 rnrs conditions ... 693
7.6.2.14 T/O Conditions............ovuiuiuiiiiiniinininen... 695
7.6.2.15 Transcodersouiuieeeen i 697
7.6.2.16 TNIS 10 POTES. . v vvtttt ettt 700
7.6.2.17 RO6RS File Ports.............ooo i, 703
7.6.2.18 ranrsiosimple........ .o 705
7.6.2.19 rarsfiles... ..o 706
7.6.2.20 TIIS PrOGLaIS . . .v vt e vttt et et aaeean 706
7.6.2.21 rnrs arithmetic fixnums........... 706
7.6.2.22 rnrs arithmetic flonums.......... 709
7.6.2.23 rnrs arithmetic bitwise........... oL 711
7.6.2.24 1nrs Syntax-Case 713
7.6.2.25 rnrs hashtables......... il 714
7.6.2.26 TITS @NUIMS . . .t vvvet ettt ettt eeeaanna 716
T.6.2.27 TIITS .ttt eV
7.6.2.28 rnrseval..... ... 717
7.6.2.29 rnrs mutable-pairs........... . v
7.6.2.30 rnrs mutable-strings......... ... ool 718

7.6.2.31 OIS IOrS. oot 718

7.7 RTRS SUPPOIt ..ottt 718
7.7.1 Incompatibilities with the RTRS 718
7.7.2 R7RS Standard Libraries..............ccoiiiiiiiia.. 719

7.8 Pattern Matching 720

7.9 Readline Support....... ..o 725
7.9.1 Loading Readline Supportccviiiiiiiia. .. 725
7.9.2 Readline Options..........ooiiiiiiii .. 726
7.9.3 Readline Functions i i 726

7.9.3.1 Readline Port.......... .. . i 727
7.9.3.2 Completion..........cooiiiiiiiiiiiiiiii i 727

7.10 Pretty Printing...... ..o i 728

7.11 Formatted Output ... 730

7.12 File Tree Walk e 741

T13 QUEUES . - ettt ettt e 746

T L4 SETEAIMNS . . oottt et 747

7.15 Buffered Input ... 749

716 EXpeCt. ..o e 750

7.17 sxml-match: Pattern Matching of SXML.................... 752
SYIBAX « ¢ vttt ettt e 753
Matching XML Elements.............ooiiiiiiiiiiiiii . 754
Ellipses in Patterns............. i 754
Ellipses in Quasiquote’d Output, 755
Matching Nodesetso e 755
Matching the “Rest” of a Nodeset 755
Matching the Unmatched Attributes............ 755
Default Values in Attribute Patterns............................ 756
Guards in Patterns........ ..o 756
Catamorphisms ... 756
Named-Catamorphisms. ... 757
sxml-match-let and sxml-match-let* 757

7.18 The Scheme shell (scsh) ...t 758

7.19 Curried Definitions. ... 758

T.20 Statprof. 759

721 SXMEL 763
7.21.1 SXML OVErvIieWttt e 763
7.21.2 Reading and Writing XML 763
7.21.3 SSAX: A Functional XML Parsing Toolkit.............. 765

7.21.3.1 Historyo 765
7.21.3.2 Implementation................. 766
T.21.3.3 USAZE . oottt 768
7.21.4 Transforming SXML......o, 769
72141 OVEIVIEW . .ottt et e 769
72142 USAZE « oot ettt e e e 769
7.21.5 SXML Tree Fold oo 770
T21.5. 1 OVEIVIEW . .ottt et e 770
T.21.5.2 USAZE .ottt e 770

7.21.6 SXPatho 771

XV

xVi

T.21.6. 1 OVEIVIEW . .ttt ettt e e eeie e 771
7.21.6.2 Basic Converters and Applicators.................. 773
7.21.6.3 Converter Combinators............................ 775
7.21.7 (sxml ssax input-parse) ..., 7
T21.7 1 OVErVIEW ..ottt e e
T21.7.2 USAZE .o vttt e
7.21.8 (sxml apply-templates) ... 778
T21.8. 1 OVEIVIEW . .ot ettt et 778
T.21.8.2 USAZE « ottt ettt 778

7.22 Texinfo Processing 778
7.22.1 (£exinfo) ...t 778
72211 OVEIVIEW . .ot ettt e e e 778
T.22.1.2 USAZE « ottt 779
7.22.2 (texinfo docbook) 779
72221 OVEIVIEW . .ottt e 780
T7.22.2.2 USAZE . oottt 780
7.22.3 (texinfo html) o i 780
7.22.3.1 OVEIVIEW . .ot i ittt e e 781
T7.22.3.2 USAZE « oottt 781
7.22.4 (texinfo indexing) i 781
72241 OVEIVIEW ..t e ittt 781
T.22.4.2 USAZE . oottt 781
7.22.5 (texinfo string-utils)............. 781
T7.22.5. 1 OVEIVIEW . .ottt et e 781
T7.22.5.2 USAZE « vt 782
7.22.6 (texinfo plain-text)......... il 784
7.22.6.1 OVEIVIEW . .ottt et e 784
T7.22.6.2 USAZE « oottt 784
7.22.7 (texinfo serialize)........ i 785
722701 OVEIVIEW .\ttt e e e e 785
T.22.7.2 USAZE . oottt 785
7.22.8 (texinfo reflection)........... ... o il 785
T7.22.8.1 OVEIVIEW . .ottt ettt 785
T7.22.8.2 USAZE « e 785

8 GOOPS. 789
8.1 Copyright NOticeovv e 789
8.2 Class Definitiono e 789
8.3 Instance Creation and Slot Access...............ocoiiii... 790
8.4 Slot OPtionsttt 791
8.5 Ilustrating Slot Description i, 794
8.6 Methods and Generic Functions 796
8.6.1 ACCESSOTS. oottt e 798
8.6.2 Extending Primitives.......... L 798
8.6.3 Merging Generics.couiuiiiiiiiiiiiiiiinie.. 798

8.6.4 Next-methodo, 799

8.6.5 Generic Function and Method Examples................. 800
8.6.6 Handling Invocation Errors...................... 803
8.7 Inmheritance......... ... i 803
8.7.1 Class Precedence List..............o i, 804
8.7.2 Sorting Methods.......... ..o i 805
8.8 Introspection.......... ... e 806
B.8.1 ClaSSES . oottt 806
8.8.2 Instances...... ..o 807
8.8.3 Slots .o v i 808
8.8.4 Generic Functions i 809
8.8.5 Accessing Slotsoviii 810
8.9 Error Handling......... ... i 812
8.10 GOOPS Object Miscellanycoviiiiiiiiiieiie... 812
8.11 The Metaobject Protocol............. ... i i 813
8.11.1 Metaobjects and the Metaobject Protocol............... 813
8.11.2 Metaclasses ... 815
8.11.3 MOP Specification 816
8.11.4 Instance Creation Protocol 816
8.11.5 Class Definition Protocol 817
8.11.6 Customizing Class Definition 820
8.11.7 Method Definition............. 822
8.11.8 Method Definition Internals 822
8.11.9 Generic Function Internals.............................. 823
8.11.10 Generic Function Invocation........................ ... 824
8.12 Redefining a Class.coviiiiiiiii i 825
8.12.1 Redefinable Classes..........ooiiiiiiiii ... 825
8.12.2 Default Class Redefinition Behavior..................... 825
8.12.3 Customizing Class Redefinition......................... 826
8.13 Changing the Class of an Instance........................... 827
Guile Implementation 829
9.1 A Brief History of Guile............ 829
9.1.1 The Emacs Thesis. 829
9.1.2 Early Days.......cooiiiiii e 829
9.1.3 A Scheme of Many Maintainers.......................... 830
9.1.4 A Timeline of Selected Guile Releases.................... 831
9.1.5 Status, or: Your Help Needed............................ 832
9.2 Data Representation i 834
9.2.1 A Simple Representation 834
9.2.2 Faster Integerscoooiiiiiiiiiiii i 835
9.2.3 Cheaper Pairs....... ..o 836
9.2.4 Conservative Garbage Collection......................... 837
9.2.5 The SCM Typein Guile...........coooiiiiiiiiii .. 838
9.2.5.1 Relationship Between SCM and scm_t_bits.......... 839
9.2.5.2 Immediate Objects ...t ... 839

9.2.5.3 Non-Immediate Objects................ 840

Xvii

xviil

9.2.5.4 Allocating Heap Objects................coiiiin.. 841
9.2.5.5 Heap Object Type Information 841
9.2.5.6 Accessing Heap Object Fields....................... 842
9.3 A Virtual Machine for Guile............... 843
9.3.1 Why a VM .. 843
9.3.2 VM CoOnCepts « oottt et e 844
9.3.3 Stack Layout....... ... 845
9.3.4 Variables and the VM i i 846
9.3.5 Compiled Procedures are VM Programs.................. 847
9.3.6 Object File Format........... 849
9.3.7 Instruction Setooiiiiiiiiii 851
9.3.7.1 Call and Return Instructions........................ 852
9.3.7.2 Function Prologue Instructions...................... 853
9.3.7.3 Shuffling Instructions, 855
9.3.7.4 Trampoline Instructions 855
9.3.7.5 Non-Local Control Flow Instructions................ 856
9.3.7.6 Instrumentation Instructions........................ 857
9.3.7.7 Intrinsic Call Instructions........................... 858
9.3.7.8 Constant Instructions............ 862
9.3.7.9 Memory Access Instructions 864
9.3.7.10 Atomic Memory Access Instructions 865
9.3.7.11 Tagging and Untagging Instructions................ 865
9.3.7.12 Integer Arithmetic Instructions.................... 865
9.3.7.13 Floating-Point Arithmetic Instructions............. 866
9.3.7.14 Comparison Instructions........................... 866
9.3.7.15 Branch Instructions................ 869
9.3.7.16 Raw Memory Access Instructions.................. 870
9.3.8 Just-In-Time Native Code, 871
9.4 Compiling to the Virtual Machine 872
9.4.1 Compiler TOWerttt e 872
9.4.2 The Scheme Compiler i . 874
9.4.3 Tree-IL. ... 876
9.4.4 Continuation-Passing Style 879
9.4.4.1 An Introduction to CPS............................ 880
9442 CPSinGuile........cooiiiiiiiii . 881
9.4.43 Building CPS.... ... i 885
9.4.4.4 CPS SOUD « vttt 886
9.4.4.5 Compiling CPS.... i 889
9.4.5 Bytecode...... ..o 890
9.4.6 Writing New High-Level Languages...................... 892
9.4.7 Extending the Compilero i 892

Appendix A GNU Free Documentation License .. 893

Concept Index 901

Xix

Procedure Index 907
Variable Index 951
TypelIndex............ 955

RSBRS Index 957

Preface

This manual describes how to use Guile, GNU’s Ubiquitous Intelligent Language for Ex-
tensions. It relates particularly to Guile version 3.0.10.

Contributors to this Manual

Like Guile itself, the Guile reference manual is a living entity, cared for by many people
over a long period of time. As such, it is hard to identify individuals of whom to say “yes,
this single person wrote the manual.”

Still, among the many contributions, some caretakers stand out. First among them is
Neil Jerram, who has worked on this document for over ten years. Neil’s attention both to
detail and to the big picture have made a real difference in the understanding of a generation
of Guile hackers.

Next we should note Marius Vollmer’s effect on this document. Marius maintained Guile
during a period in which Guile’s API was clarified—put to the fire, so to speak—and he
had the good sense to effect the same change on the manual.

Martin Grabmueller made substantial contributions throughout the manual in prepara-
tion for the Guile 1.6 release, including filling out a lot of the documentation of Scheme
data types, control mechanisms and procedures. In addition, he wrote the documentation
for Guile’s SRFI modules and modules associated with the Guile REPL.

Ludovic Courtes and Andy Wingo, who co-maintain Guile since 2010, along with Mark
Weaver, have also made their dent in the manual, writing documentation for new modules
and subsystems that arrived with Guile 2.0. Ludovic, Andy, and Mark are also responsible
for ensuring that the existing text retains its relevance as Guile evolves. See Section 2.6
[Reporting Bugs|, page 12, for more information on reporting problems in this manual.

The content for the first versions of this manual incorporated and was inspired by docu-
ments from Aubrey Jaffer, author of the SCM system on which Guile was based, and from
Tom Lord, Guile’s first maintainer. Although most of this text has been rewritten, all of it
was important, and some of the structure remains.

The manual for the first versions of Guile were largely written, edited, and compiled by
Mark Galassi and Jim Blandy. In particular, Jim wrote the original tutorial on Guile’s data
representation and the C API for accessing Guile objects.

Significant portions were also contributed by Thien-Thi Nguyen, Kevin Ryde, Mikael
Djurfeldt, Christian Lynbech, Julian Graham, Gary Houston, Tim Pierce, and a few dozen
more. You, reader, are most welcome to join their esteemed ranks. Visit Guile’s web site
at http://www.gnu.org/software/guile/ to find out how to get involved.

The Guile License

Guile is Free Software. Guile is copyrighted, not public domain, and there are restrictions
on its distribution or redistribution, but these restrictions are designed to permit everything
a cooperating person would want to do.

e The Guile library (libguile) and supporting files are published under the terms of the
GNU Lesser General Public License version 3 or later. See the files COPYING.LESSER
and COPYING.

http://www.gnu.org/software/guile/

2 Guile Reference Manual

e The Guile readline module is published under the terms of the GNU General Public
License version 3 or later. See the file COPYING.

e The manual you're now reading is published under the terms of the GNU Free Docu-
mentation License (see Appendix A [GNU Free Documentation License], page 893).

C code linking to the Guile library is subject to terms of that library. Basically such
code may be published on any terms, provided users can re-link against a new or modified
version of Guile.

C code linking to the Guile readline module is subject to the terms of that module.
Basically such code must be published on Free terms.

Scheme level code written to be run by Guile (but not derived from Guile itself) is not
restricted in any way, and may be published on any terms. We encourage authors to publish
on Free terms.

You must be aware there is no warranty whatsoever for Guile. This is described in full
in the licenses.

1 Introduction

Guile is an implementation of the Scheme programming language. Scheme (http://
schemers.org/) is an elegant and conceptually simple dialect of Lisp, originated by Guy
Steele and Gerald Sussman, and since evolved by the series of reports known as RnRS (the
Revised™ Reports on Scheme).

There are many Scheme implementations, with different characteristics and with com-
munities and academic activities around them, and the language develops as a result of the
interplay between these. Guile’s particular characteristics are that

e it is easy to combine with other code written in C
e it has a historical and continuing connection with the GNU Project
e it emphasizes interactive and incremental programming

e it actually supports several languages, not just Scheme.

The next few sections explain what we mean by these points. The sections after that cover
how you can obtain and install Guile, and the typographical conventions that we use in this
manual.

1.1 Guile and Scheme

Guile implements Scheme as described in the Revised® Report on the Algorithmic Language
Scheme (usually known as R5RS), providing clean and general data and control structures.
Guile goes beyond the rather austere language presented in R5RS, extending it with a
module system, full access to POSIX system calls, networking support, multiple threads,
dynamic linking, a foreign function call interface, powerful string processing, and many
other features needed for programming in the real world.

In 2007, the Scheme community agreed upon and published R6RS, a significant install-
ment in the RnRS series. R6RS expands the core Scheme language, and standardises many
non-core functions that implementations—including Guile—have previously done in differ-
ent ways. Over time, Guile has been updated to incorporate almost all of the features
of R6RS, and to adjust some existing features to conform to the R6RS specification. See
Section 7.6 [R6RS Support], page 675, for full details.

In parallel to official standardization efforts, the SRFI process (http://srfi.schemers.
org/) standardises interfaces for many practical needs, such as multithreaded programming
and multidimensional arrays. Guile supports many SRFIs, as documented in detail in
Section 7.5 [SRFI Support], page 594.

The process that led to the R6RS standard brought a split in the Scheme community to
the surface. The implementors that wrote R6RS considered that it was impossible to write
useful, portable programs in R5RS, and that only an ambitious standard could solve this
problem. However, part of the Scheme world saw the R6RS effort as too broad, and as having
included some components that would never be adopted by more minimalistic Scheme
implementations. This second group succeeded in taking control of the official Scheme
standardization track and in 2013 released a more limited R7RS, essentially consisting of
R5RS, plus a module system. Guile supports R7RS also. See Section 7.7 [R7TRS Support],
page 718.

http://schemers.org/
http://schemers.org/
http://srfi.schemers.org/
http://srfi.schemers.org/

4 Guile Reference Manual

With R6RS and R7RS, the unified Scheme standardization process appears to have more
or less run its course. There will continue to be more code written in terms of both systems,
and modules defined using the SRFI process, and Guile will support both. However for
future directions, Guile takes inspiration from other related language communities: Racket,
Clojure, Concurrent ML, and so on.

In summary, Guile supports writing and running code written to the R5RS, R6RS, and
R7RS Scheme standards, and also supports a number of SRFI modules. However for most
users, until a need for cross-implementation portability has been identified, we recommend
using the parts of Guile that are useful in solving the problem at hand, regardless of whether
they proceed from a standard or whether they are Guile-specific.

1.2 Combining with C Code

Like a shell, Guile can run interactively—reading expressions from the user, evaluating
them, and displaying the results—or as a script interpreter, reading and executing Scheme
code from a file. Guile also provides an object library, libguile, that allows other applications
to easily incorporate a complete Scheme interpreter. An application can then use Guile as
an extension language, a clean and powerful configuration language, or as multi-purpose
“glue”, connecting primitives provided by the application. It is easy to call Scheme code
from C code and vice versa, giving the application designer full control of how and when to
invoke the interpreter. Applications can add new functions, data types, control structures,
and even syntax to Guile, creating a domain-specific language tailored to the task at hand,
but based on a robust language design.

This kind of combination is helped by four aspects of Guile’s design and history. First is
that Guile has always been targeted as an extension language. Hence its C API has always
been of great importance, and has been developed accordingly. Second and third are rather
technical points—that Guile uses conservative garbage collection, and that it implements
the Scheme concept of continuations by copying and reinstating the C stack—but whose
practical consequence is that most existing C code can be glued into Guile as is, without
needing modifications to cope with strange Scheme execution flows. Last is the module
system, which helps extensions to coexist without stepping on each others’ toes.

Guile’s module system allows one to break up a large program into manageable sections
with well-defined interfaces between them. Modules may contain a mixture of interpreted
and compiled code; Guile can use either static or dynamic linking to incorporate compiled
code. Modules also encourage developers to package up useful collections of routines for
general distribution; as of this writing, one can find Emacs interfaces, database access
routines, compilers, GUI toolkit interfaces, and HTTP client functions, among others.

1.3 Guile and the GNU Project

Guile was conceived by the GNU Project following the fantastic success of Emacs Lisp as an
extension language within Emacs. Just as Emacs Lisp allowed complete and unanticipated
applications to be written within the Emacs environment, the idea was that Guile should
do the same for other GNU Project applications. This remains true today.

The idea of extensibility is closely related to the GNU project’s primary goal, that of
promoting software freedom. Software freedom means that people receiving a software
package can modify or enhance it to their own desires, including in ways that may not have

Chapter 1: Introduction 5

occurred at all to the software’s original developers. For programs written in a compiled
language like C, this freedom covers modifying and rebuilding the C code; but if the program
also provides an extension language, that is usually a much friendlier and lower-barrier-of-
entry way for the user to start making their own changes.

Guile is now used by GNU project applications such as AutoGen, Lilypond, Denemo,
Mailutils, TeXmacs and Gnucash, and we hope that there will be many more in future.

1.4 Interactive Programming

Non-free software has no interest in its users being able to see how it works. They are
supposed to just accept it, or to report problems and hope that the source code owners will
choose to work on them.

Free software aims to work reliably just as much as non-free software does, but it should
also empower its users by making its workings available. This is useful for many reasons,
including education, auditing and enhancements, as well as for debugging problems.

The ideal free software system achieves this by making it easy for interested users to see
the source code for a feature that they are using, and to follow through that source code
step-by-step, as it runs. In Emacs, good examples of this are the source code hyperlinks in
the help system, and edebug. Then, for bonus points and maximising the ability for the
user to experiment quickly with code changes, the system should allow parts of the source
code to be modified and reloaded into the running program, to take immediate effect.

Guile is designed for this kind of interactive programming, and this distinguishes it
from many Scheme implementations that instead prioritise running a fixed Scheme program
as fast as possible—because there are tradeoffs between performance and the ability to
modify parts of an already running program. There are faster Schemes than Guile, but
Guile is a GNU project and so prioritises the GNU vision of programming freedom and
experimentation.

1.5 Supporting Multiple Languages

Since the 2.0 release, Guile’s architecture supports compiling any language to its core virtual
machine bytecode, and Scheme is just one of the supported languages. Other supported
languages are Emacs Lisp, ECMAScript (commonly known as Javascript) and Brainfuck,
and work is under discussion for Lua, Ruby and Python.

This means that users can program applications which use Guile in the language of their
choice, rather than having the tastes of the application’s author imposed on them.

1.6 Obtaining and Installing Guile

Guile can be obtained from the main GNU archive site ftp://ftp.gnu.org or any of its
mirrors. The file will be named guile-version.tar.gz. The current version is 3.0.10, so the
file you should grab is:

ftp://ftp.gnu.org/gnu/guile/guile-3.0.10.tar.gz
To unbundle Guile use the instruction

zcat guile-3.0.10.tar.gz | tar xvf -

ftp://ftp.gnu.org
ftp://ftp.gnu.org/gnu/guile/guile-3.0.10.tar.gz

6 Guile Reference Manual

which will create a directory called guile-3.0.10 with all the sources. You can look at the
file INSTALL for detailed instructions on how to build and install Guile, but you should be
able to just do

cd guile-3.0.10
./configure
make

make install

This will install the Guile executable guile, the Guile library libguile and various
associated header files and support libraries. It will also install the Guile reference manual.

Since this manual frequently refers to the Scheme “standard”, also known as R5RS, or
the “Revised® Report on the Algorithmic Language Scheme”, we have included the report in
the Guile distribution; see Section “Introduction” in Revised(5) Report on the Algorithmic
Language Scheme. This will also be installed in your info directory.

1.7 Organisation of this Manual

The rest of this manual is organised into the following chapters.

Chapter 2: Hello Guile!
A whirlwind tour shows how Guile can be used interactively and as a script
interpreter, how to link Guile into your own applications, and how to write
modules of interpreted and compiled code for use with Guile. Everything in-
troduced here is documented again and in full by the later parts of the manual.

Chapter 3: Hello Scheme!
For readers new to Scheme, this chapter provides an introduction to the ba-
sic ideas of the Scheme language. This material would apply to any Scheme
implementation and so does not make reference to anything Guile-specific.

Chapter 4: Programming in Scheme
Provides an overview of programming in Scheme with Guile. It covers how to
invoke the guile program from the command-line and how to write scripts in
Scheme. It also introduces the extensions that Guile offers beyond standard
Scheme.

Chapter 5: Programming in C
Provides an overview of how to use Guile in a C program. It discusses the
fundamental concepts that you need to understand to access the features of
Guile, such as dynamic types and the garbage collector. It explains in a tutorial
like manner how to define new data types and functions for the use by Scheme
programs.

Chapter 6: Guile API Reference
This part of the manual documents the Guile API in functionality-based groups
with the Scheme and C interfaces presented side by side.

Chapter 7: Guile Modules
Describes some important modules, distributed as part of the Guile distribution,
that extend the functionality provided by the Guile Scheme core.

Chapter 1: Introduction 7

Chapter 8: GOOPS
Describes GOOPS, an object oriented extension to Guile that provides classes,
multiple inheritance and generic functions.

1.8 Typographical Conventions

In examples and procedure descriptions and all other places where the evaluation of Scheme
expression is shown, we use some notation for denoting the output and evaluation results
of expressions.

The symbol ‘=’ is used to tell which value is returned by an evaluation:

+12)
= 3
Some procedures produce some output besides returning a value. This is denoted by the
symbol ‘ +”.
(begin (display 1) (newline) 'hooray)
41
= hooray
As you can see, this code prints ‘1’ (denoted by ‘ -’), and returns hooray (denoted by
(:>7).

2 Hello Guile!

This chapter presents a quick tour of all the ways that Guile can be used. There are
additional examples in the examples/ directory in the Guile source distribution. It also
explains how best to report any problems that you find.

The following examples assume that Guile has been installed in /usr/local/.

2.1 Running Guile Interactively

In its simplest form, Guile acts as an interactive interpreter for the Scheme programming
language, reading and evaluating Scheme expressions the user enters from the terminal.
Here is a sample interaction between Guile and a user; the user’s input appears after the $
and scheme@(guile-user)> prompts:

$ guile

scheme@(guile-user)> (+ 1 2 3) ; add some numbers
$1 =6

scheme@(guile-user)> (define (factorial n) ; define a function

(if (zero? n) 1 (x n (factorial (- n 1)))))
scheme@(guile-user)> (factorial 20)
$2 = 2432902008176640000
scheme@(guile-user)> (getpwnam "root") ; look in /etc/passwd
$3 = #("root" "x" 0 O "root" "/root" "/bin/bash")
scheme@(guile-user)> C-d

$

2.2 Running Guile Scripts

Like AWK, Perl, or any shell, Guile can interpret script files. A Guile script is simply a
file of Scheme code with some extra information at the beginning which tells the operating
system how to invoke Guile, and then tells Guile how to handle the Scheme code.

Here is a trivial Guile script. See Section 4.3 [Guile Scripting], page 41, for more details.
#!/usr/local/bin/guile -s
1#
(display "Hello, world!")
(newline)

2.3 Linking Guile into Programs

The Guile interpreter is available as an object library, to be linked into applications using
Scheme as a configuration or extension language.

Here is simple-guile.c, source code for a program that will produce a complete Guile
interpreter. In addition to all usual functions provided by Guile, it will also offer the function
my-hostname.

#include <stdlib.h>
#include <libguile.h>

10 Guile Reference Manual

static SCM
my_hostname (void)
{
char *s = getenv ("HOSTNAME");
if (s == NULL)
return SCM_BOOL_F;
else
return scm_from_locale_string (s);

static void
inner_main (void *data, int argc, char **xargv)

{
scm_c_define_gsubr ("my-hostname", 0, 0, O, my_hostname);
scm_shell (argc, argv);
}
int
main (int argc, char **argv)
{
scm_boot_guile (argc, argv, inner_main, 0);
return 0; /* never reached */
}

When Guile is correctly installed on your system, the above program can be compiled
and linked like this:
$ gcc -o simple-guile simple-guile.c \
"pkg-config --cflags --libs guile-3.0°
When it is run, it behaves just like the guile program except that you can also call the
new my-hostname function.
$./simple-guile
scheme@(guile-user)> (+ 1 2 3)
$1 =6
scheme@(guile-user)> (my-hostname)
"burns"

2.4 Writing Guile Extensions

You can link Guile into your program and make Scheme available to the users of your
program. You can also link your library into Guile and make its functionality available to
all users of Guile.

A library that is linked into Guile is called an extension, but it really just is an ordinary
object library.

The following example shows how to write a simple extension for Guile that makes the
jO function available to Scheme code

#include <math.h>
#include <libguile.h>

Chapter 2: Hello Guile! 11

SCM
jO_wrapper (SCM x)
{
return scm_from_double (jO (scm_to_double (x)));
}
void
init_bessel ()
{
scm_c_define_gsubr ("jO", 1, 0, 0, jO_wrapper);
}
This C source file needs to be compiled into a shared library. Here is how to do it on
GNU/Linux:

gcc “pkg-config --cflags guile-3.07 \
-shared -o libguile-bessel.so —-fPIC bessel.c
For creating shared libraries portably, we recommend the use of GNU Libtool (see Section
“Introduction” in GNU Libtool).

A shared library can be loaded into a running Guile process with the function load-
extension. The jO is then immediately available:
$ guile
scheme@(guile-user)> (load-extension "./libguile-bessel" "init_bessel")
scheme@(guile-user)> (jO 2)
$1 = 0.223890779141236
For more on how to install your extension, see Section 4.7 [Installing Site Packages],
page 5H7.

2.5 Using the Guile Module System

Guile has support for dividing a program into modules. By using modules, you can group
related code together and manage the composition of complete programs from largely in-
dependent parts.

For more details on the module system beyond this introductory material, See Sec-
tion 6.18 [Modules], page 414.

2.5.1 Using Modules

Guile comes with a lot of useful modules, for example for string processing or command
line parsing. Additionally, there exist many Guile modules written by other Guile hackers,
but which have to be installed manually.

Here is a sample interactive session that shows how to use the (ice-9 popen) module
which provides the means for communicating with other processes over pipes together with
the (ice-9 rdelim) module that provides the function read-line.

$ guile

scheme@(guile-user)> (use-modules (ice-9 popen))
scheme@(guile-user)> (use-modules (ice-9 rdelim))
scheme@(guile-user)> (define p (open-input-pipe "ls -1"))
scheme@(guile-user)> (read-line p)

$1 = "total 30"

scheme@(guile-user)> (read-line p)

$2 = "drwxr-sr-x 2 mgrabmue mgrabmue 1024 Mar 29 19:57 CVS"

12 Guile Reference Manual

2.5.2 Writing new Modules
You can create new modules using the syntactic form define-module. All definitions
following this form until the next define-module are placed into the new module.
One module is usually placed into one file, and that file is installed in a location where
Guile can automatically find it. The following session shows a simple example.
$ cat /usr/local/share/guile/site/foo/bar.scm

(define-module (foo bar)
#:export (frob))

(define (frob x) (* 2 x))

$ guile
scheme@(guile-user)> (use-modules (foo bar))
scheme@(guile-user)> (frob 12)
$1 =24
For more on how to install your module, see Section 4.7 [Installing Site Packages],
page 57.

2.5.3 Putting Extensions into Modules
In addition to Scheme code you can also put things that are defined in C into a module.

You do this by writing a small Scheme file that defines the module and call load-
extension directly in the body of the module.
$ cat /usr/local/share/guile/site/math/bessel.scm

(define-module (math bessel)
#:export (jO))

(load-extension "libguile-bessel" "init_bessel")

$ file /usr/local/lib/guile/3.0/extensions/libguile-bessel.so
. ELF 32-bit LSB shared object ...

$ guile

scheme@(guile-user)> (use-modules (math bessel))

scheme@(guile-user)> (jO 2)

$1 = 0.223890779141236

See Section 6.19.2 [Foreign Extensions|, page 434, for more information.

2.6 Reporting Bugs
Any problems with the installation should be reported to bug-guile@gnu.org.

If you find a bug in Guile, please report it to the Guile developers, so they can fix it.
They may also be able to suggest workarounds when it is not possible for you to apply the
bug-fix or install a new version of Guile yourself.

Before sending in bug reports, please check with the following list that you really have
found a bug.

e Whenever documentation and actual behavior differ, you have certainly found a bug,
either in the documentation or in the program.

e When Guile crashes, it is a bug.

mailto:bug-guile@gnu.org

Chapter 2: Hello Guile! 13

When Guile hangs or takes forever to complete a task, it is a bug.
When calculations produce wrong results, it is a bug.
When Guile signals an error for valid Scheme programs, it is a bug.

When Guile does not signal an error for invalid Scheme programs, it may be a bug,
unless this is explicitly documented.

When some part of the documentation is not clear and does not make sense to you
even after re-reading the section, it is a bug.

Before reporting the bug, check whether any programs you have loaded into Guile,

including your .guile file, set any variables that may affect the functioning of Guile. Also,
see whether the problem happens in a freshly started Guile without loading your .guile
file (start Guile with the -q switch to prevent loading the init file). If the problem does not
occur then, you must report the precise contents of any programs that you must load into
Guile in order to cause the problem to occur.

When you write a bug report, please make sure to include as much of the information

described below in the report. If you can’t figure out some of the items, it is not a problem,
but the more information we get, the more likely we can diagnose and fix the bug.

The version number of Guile. You can get this information from invoking ‘guile
--version’ at your shell, or calling (version) from within Guile.

Your machine type, as determined by the config.guess shell script. If you
have a Guile checkout, this file is located in build-aux; otherwise you can fetch
the latest version from http://git.savannah.gnu.org/gitweb/7p=config.
git;a=blob_plain;f=config.guess;hb=HEAD.

$ build-aux/config.guess

x86_64-unknown-linux-gnu

If you installed Guile from a binary package, the version of that package. On systems
that use RPM, use rpm -qa | grep guile. On systems that use DPKG, dpkg -1 |
grep guile.

If you built Guile yourself, the build configuration that you used:

$./config.status --config
'--enable-error-on-warning' '--disable-deprecated'...

A complete description of how to reproduce the bug.

If you have a Scheme program that produces the bug, please include it in the bug
report. If your program is too big to include, please try to reduce your code to a
minimal test case.

If you can reproduce your problem at the REPL, that is best. Give a transcript of the
expressions you typed at the REPL.

A description of the incorrect behavior. For example, "The Guile process gets a fatal
signal," or, "The resulting output is as follows, which I think is wrong."

If the manifestation of the bug is a Guile error message, it is important to report the
precise text of the error message, and a backtrace showing how the Scheme program
arrived at the error. This can be done using the ,backtrace command in Guile’s
debugger.

http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD
http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD

14 Guile Reference Manual

If your bug causes Guile to crash, additional information from a low-level debugger such
as GDB might be helpful. If you have built Guile yourself, you can run Guile under GDB
via the meta/gdb-uninstalled-guile script. Instead of invoking Guile as usual, invoke
the wrapper script, type run to start the process, then backtrace when the crash comes.
Include that backtrace in your report.

15

3 Hello Scheme!

In this chapter, we introduce the basic concepts that underpin the elegance and power of
the Scheme language.

Readers who already possess a background knowledge of Scheme may happily skip this
chapter. For the reader who is new to the language, however, the following discussions
on data, procedures, expressions and closure are designed to provide a minimum level of
Scheme understanding that is more or less assumed by the chapters that follow.

The style of this introductory material aims about halfway between the terse precision
of R5RS and the discursiveness of existing Scheme tutorials. For pointers to useful Scheme
resources on the web, please see Section 3.5 [Further Reading], page 34.

3.1 Data Types, Values and Variables

This section discusses the representation of data types and values, what it means for Scheme
to be a latently typed language, and the role of variables. We conclude by introducing the
Scheme syntaxes for defining a new variable, and for changing the value of an existing
variable.

3.1.1 Latent Typing

The term latent typing is used to describe a computer language, such as Scheme, for which
you cannot, in general, simply look at a program’s source code and determine what type
of data will be associated with a particular variable, or with the result of a particular
expression.

Sometimes, of course, you can tell from the code what the type of an expression will
be. If you have a line in your program that sets the variable x to the numeric value 1,
you can be certain that, immediately after that line has executed (and in the absence of
multiple threads), x has the numeric value 1. Or if you write a procedure that is designed
to concatenate two strings, it is likely that the rest of your application will always invoke
this procedure with two string parameters, and quite probable that the procedure would go
wrong in some way if it was ever invoked with parameters that were not both strings.

Nevertheless, the point is that there is nothing in Scheme which requires the procedure
parameters always to be strings, or x always to hold a numeric value, and there is no way
of declaring in your program that such constraints should always be obeyed. In the same
vein, there is no way to declare the expected type of a procedure’s return value.

Instead, the types of variables and expressions are only known — in general — at run time.
If you need to check at some point that a value has the expected type, Scheme provides run
time procedures that you can invoke to do so. But equally, it can be perfectly valid for two
separate invocations of the same procedure to specify arguments with different types, and
to return values with different types.

The next subsection explains what this means in practice, for the ways that Scheme
programs use data types, values and variables.

3.1.2 Values and Variables

Scheme provides many data types that you can use to represent your data. Primitive types
include characters, strings, numbers and procedures. Compound types, which allow a group

16 Guile Reference Manual

of primitive and compound values to be stored together, include lists, pairs, vectors and
multi-dimensional arrays. In addition, Guile allows applications to define their own data
types, with the same status as the built-in standard Scheme types.

As a Scheme program runs, values of all types pop in and out of existence. Sometimes
values are stored in variables, but more commonly they pass seamlessly from being the
result of one computation to being one of the parameters for the next.

Consider an example. A string value is created because the interpreter reads in a literal
string from your program’s source code. Then a numeric value is created as the result
of calculating the length of the string. A second numeric value is created by doubling the
calculated length. Finally the program creates a list with two elements — the doubled length
and the original string itself — and stores this list in a program variable.

All of the values involved here — in fact, all values in Scheme — carry their type with
them. In other words, every value “knows,” at runtime, what kind of value it is. A number,
a string, a list, whatever.

A variable, on the other hand, has no fixed type. A variable — x, say — is simply the
name of a location — a box — in which you can store any kind of Scheme value. So the same
variable in a program may hold a number at one moment, a list of procedures the next,
and later a pair of strings. The “type” of a variable — insofar as the idea is meaningful at
all — is simply the type of whatever value the variable happens to be storing at a particular
moment.

3.1.3 Defining and Setting Variables

To define a new variable, you use Scheme’s define syntax like this:
(define variable-name value)

This makes a new variable called variable-name and stores value in it as the variable’s
initial value. For example:

;; Make a variable “x' with initial numeric value 1.
(define x 1)

;; Make a variable “organization' with an initial string value.
(define organization "Free Software Foundation")

(In Scheme, a semicolon marks the beginning of a comment that continues until the end
of the line. So the lines beginning ;; are comments.)

Changing the value of an already existing variable is very similar, except that define is
replaced by the Scheme syntax set!, like this:

(set! variable-name new-value)

Remember that variables do not have fixed types, so new-value may have a completely
different type from whatever was previously stored in the location named by variable-name.
Both of the following examples are therefore correct.

;; Change the value of "x' to b.
(set! x 5)

;; Change the value of “organization' to the FSF's street number.
(set! organization 545)

Chapter 3: Hello Scheme! 17

In these examples, value and new-value are literal numeric or string values. In general,
however, value and new-value can be any Scheme expression. Even though we have not yet
covered the forms that Scheme expressions can take (see Section 3.3 [About Expressions],
page 20), you can probably guess what the following set! example does. . .

(set! x (+ x 1))

(Note: this is not a complete description of define and set!, because we need to
introduce some other aspects of Scheme before the missing pieces can be filled in. If,
however, you are already familiar with the structure of Scheme, you may like to read about
those missing pieces immediately by jumping ahead to the following references.

e Section 3.2.4 [Lambda Alternatives|, page 20, to read about an alternative form of the
define syntax that can be used when defining new procedures.

e Section 6.7.8 [Procedures with Setters], page 256, to read about an alternative form of
the set! syntax that helps with changing a single value in the depths of a compound
data structure.)

e See Section 6.10.3 [Internal Definitions|, page 294, to read about using define other
than at top level in a Scheme program, including a discussion of when it works to use
define rather than set! to change the value of an existing variable.

3.2 The Representation and Use of Procedures

This section introduces the basics of using and creating Scheme procedures. It discusses the
representation of procedures as just another kind of Scheme value, and shows how procedure
invocation expressions are constructed. We then explain how lambda is used to create new
procedures, and conclude by presenting the various shorthand forms of define that can be
used instead of writing an explicit 1ambda expression.

3.2.1 Procedures as Values

One of the great simplifications of Scheme is that a procedure is just another type of value,
and that procedure values can be passed around and stored in variables in exactly the same
way as, for example, strings and lists. When we talk about a built-in standard Scheme
procedure such as open-input-file, what we actually mean is that there is a pre-defined
top level variable called open-input-file, whose value is a procedure that implements
what R5HRS says that open-input-file should do.

Note that this is quite different from many dialects of Lisp — including Emacs Lisp —
in which a program can use the same name with two quite separate meanings: one meaning
identifies a Lisp function, while the other meaning identifies a Lisp variable, whose value
need have nothing to do with the function that is associated with the first meaning. In
these dialects, functions and variables are said to live in different namespaces.

In Scheme, on the other hand, all names belong to a single unified namespace, and the
variables that these names identify can hold any kind of Scheme value, including procedure
values.

One consequence of the “procedures as values” idea is that, if you don’t happen to like
the standard name for a Scheme procedure, you can change it.

For example, call-with-current-continuation is a very important standard Scheme
procedure, but it also has a very long name! So, many programmers use the following
definition to assign the same procedure value to the more convenient name call/cc.

18 Guile Reference Manual

(define call/cc call-with-current-continuation)

Let’s understand exactly how this works. The definition creates a new variable call/cc,
and then sets its value to the value of the variable call-with-current-continuation; the
latter value is a procedure that implements the behavior that R5RS specifies under the
name “call-with-current-continuation”. So call/cc ends up holding this value as well.

Now that call/cc holds the required procedure value, you could choose to use call-
with-current-continuation for a completely different purpose, or just change its value
so that you will get an error if you accidentally use call-with-current-continuation as
a procedure in your program rather than call/cc. For example:

(set! call-with-current-continuation "Not a procedure any more!")

Or you could just leave call-with-current-continuation as it was. It’s perfectly fine
for more than one variable to hold the same procedure value.

3.2.2 Simple Procedure Invocation
A procedure invocation in Scheme is written like this:
(procedure [argl [arg2 ...]1]1)

In this expression, procedure can be any Scheme expression whose value is a procedure.
Most commonly, however, procedure is simply the name of a variable whose value is a
procedure.

For example, string-append is a standard Scheme procedure whose behavior is to con-
catenate together all the arguments, which are expected to be strings, that it is given. So
the expression

(string-append "/home" "/" "andrew")
is a procedure invocation whose result is the string value "/home/andrew".

Similarly, string-length is a standard Scheme procedure that returns the length of a
single string argument, so

(string-length "abc")
is a procedure invocation whose result is the numeric value 3.

Each of the parameters in a procedure invocation can itself be any Scheme expression.
Since a procedure invocation is itself a type of expression, we can put these two examples
together to get

(string-length (string-append "/home" "/" "andrew"))
— a procedure invocation whose result is the numeric value 12.

(You may be wondering what happens if the two examples are combined the other way
round. If we do this, we can make a procedure invocation expression that is syntactically
correct:

(string-append "/home" (string-length "abc"))

but when this expression is executed, it will cause an error, because the result of (string-
length "abc") is a numeric value, and string-append is not designed to accept a numeric
value as one of its arguments.)

Chapter 3: Hello Scheme! 19

3.2.3 Creating and Using a New Procedure

Scheme has lots of standard procedures, and Guile provides all of these via predefined top
level variables. All of these standard procedures are documented in the later chapters of
this reference manual.

Before very long, though, you will want to create new procedures that encapsulate
aspects of your own applications’ functionality. To do this, you can use the famous lambda
syntax.

For example, the value of the following Scheme expression
(lambda (name address) body ...)

is a newly created procedure that takes two arguments: name and address. The behavior
of the new procedure is determined by the sequence of expressions and definitions in the
body of the procedure definition. (Typically, body would use the arguments in some way,
or else there wouldn’t be any point in giving them to the procedure.) When invoked, the
new procedure returns a value that is the value of the last expression in the body.

To make things more concrete, let’s suppose that the two arguments are both strings,
and that the purpose of this procedure is to form a combined string that includes these
arguments. Then the full lambda expression might look like this:

(lambda (name address)
(string-append "Name=" name ":Address=" address))

We noted in the previous subsection that the procedure part of a procedure invocation
expression can be any Scheme expression whose value is a procedure. But that’s exactly
what a lambda expression is! So we can use a lambda expression directly in a procedure
invocation, like this:

((lambda (name address)

(string-append "Name=" name ":Address=" address))
IIFSF“
"Cambridge")

This is a valid procedure invocation expression, and its result is the string:
"Name=FSF: Address=Cambridge"
It is more common, though, to store the procedure value in a variable —

(define make-combined-string
(lambda (name address)
(string-append "Name=" name ":Address=" address)))

— and then to use the variable name in the procedure invocation:
(make-combined-string "FSF" "Cambridge")
Which has exactly the same result.

It’s important to note that procedures created using lambda have exactly the same status
as the standard built in Scheme procedures, and can be invoked, passed around, and stored
in variables in exactly the same ways.

20 Guile Reference Manual

3.2.4 Lambda Alternatives

Since it is so common in Scheme programs to want to create a procedure and then store it
in a variable, there is an alternative form of the define syntax that allows you to do just
that.

A define expression of the form

(define (name [argl [arg2 ...1]1)
body ...)

is exactly equivalent to the longer form

(define name
(lambda ([arg?l [arg2 ...]11)
body ...))

So, for example, the definition of make-combined-string in the previous subsection
could equally be written:

(define (make-combined-string name address)
(string-append "Name=" name ":Address=" address))

This kind of procedure definition creates a procedure that requires exactly the expected
number of arguments. There are two further forms of the lambda expression, which create
a procedure that can accept a variable number of arguments:

(lambda (argl args) body ...)

(lambda args body ...)
The corresponding forms of the alternative define syntax are:

(define (name argl args) body ...)

(define (name . args) body ...)
For details on how these forms work, see See Section 6.7.1 [Lambdal, page 245.

Prior to Guile 2.0, Guile provided an extension to define syntax that allowed you to
nest the previous extension up to an arbitrary depth. These are no longer provided by
default, and instead have been moved to Section 7.19 [Curried Definitions], page 758.

(It could be argued that the alternative define forms are rather confusing, especially for
newcomers to the Scheme language, as they hide both the role of 1lambda and the fact that
procedures are values that are stored in variables in the same way as any other kind of value.
On the other hand, they are very convenient, and they are also a good example of another
of Scheme’s powerful features: the ability to specify arbitrary syntactic transformations at
run time, which can be applied to subsequently read input.)

3.3 Expressions and Evaluation

So far, we have met expressions that do things, such as the define expressions that create
and initialize new variables, and we have also talked about expressions that have values, for
example the value of the procedure invocation expression:

(string-append "/home" "/" "andrew")

Chapter 3: Hello Scheme! 21

but we haven’t yet been precise about what causes an expression like this procedure invo-
cation to be reduced to its “value”, or how the processing of such expressions relates to the
execution of a Scheme program as a whole.

This section clarifies what we mean by an expression’s value, by introducing the idea of
evaluation. It discusses the side effects that evaluation can have, explains how each of the
various types of Scheme expression is evaluated, and describes the behavior and use of the
Guile REPL as a mechanism for exploring evaluation. The section concludes with a very
brief summary of Scheme’s common syntactic expressions.

3.3.1 Evaluating Expressions and Executing Programs

In Scheme, the process of executing an expression is known as evaluation. Evaluation has
two kinds of result:

e the value of the evaluated expression
e the side effects of the evaluation, which consist of any effects of evaluating the expression
that are not represented by the value.

Of the expressions that we have met so far, define and set! expressions have side
effects — the creation or modification of a variable — but no value; lambda expressions
have values — the newly constructed procedures — but no side effects; and procedure
invocation expressions, in general, have either values, or side effects, or both.

It is tempting to try to define more intuitively what we mean by “value” and “side
effects”, and what the difference between them is. In general, though, this is extremely
difficult. It is also unnecessary; instead, we can quite happily define the behavior of a
Scheme program by specifying how Scheme executes a program as a whole, and then by
describing the value and side effects of evaluation for each type of expression individually.

So, some! definitions. . .
e A Scheme program consists of a sequence of expressions.

e A Scheme interpreter executes the program by evaluating these expressions in order,
one by one.

e An expression can be
e a piece of literal data, such as a number 2.3 or a string "Hello world!"
e a variable name
e a procedure invocation expression

e one of Scheme’s special syntactic expressions.

The following subsections describe how each of these types of expression is evaluated.

3.3.1.1 Evaluating Literal Data

When a literal data expression is evaluated, the value of the expression is simply the value
that the expression describes. The evaluation of a literal data expression has no side effects.

So, for example,

e the value of the expression "abc" is the string value "abc"

! These definitions are approximate. For the whole and detailed truth, see Section “Formal syntax and
semantics” in The Revised(5) Report on the Algorithmic Language Scheme.

22 Guile Reference Manual

e the value of the expression 3+41i is the complex number 3 + 4i

e the value of the expression #(1 2 3) is a three-element vector containing the numeric
values 1, 2 and 3.

For any data type which can be expressed literally like this, the syntax of the literal
data expression for that data type — in other words, what you need to write in your code
to indicate a literal value of that type — is known as the data type’s read syntax. This
manual specifies the read syntax for each such data type in the section that describes that
data type.

Some data types do not have a read syntax. Procedures, for example, cannot be expressed
as literal data; they must be created using a lambda expression (see Section 3.2.3 [Creating
a Procedure|, page 19) or implicitly using the shorthand form of define (see Section 3.2.4
[Lambda Alternatives|, page 20).

3.3.1.2 Evaluating a Variable Reference

When an expression that consists simply of a variable name is evaluated, the value of
the expression is the value of the named variable. The evaluation of a variable reference
expression has no side effects.

So, after
(define key "Paul Evans")
the value of the expression key is the string value "Paul Evans". If key is then modified by
(set! key 3.74)
the value of the expression key is the numeric value 3.74.

If there is no variable with the specified name, evaluation of the variable reference ex-
pression signals an error.

3.3.1.3 Evaluating a Procedure Invocation Expression

This is where evaluation starts getting interesting! As already noted, a procedure invocation
expression has the form

(procedure [argl [arg2 ...]1]1)
where procedure must be an expression whose value, when evaluated, is a procedure.
The evaluation of a procedure invocation expression like this proceeds by
e evaluating individually the expressions procedure, argl, arg2, and so on
e calling the procedure that is the value of the procedure expression with the list of values

obtained from the evaluations of argl, arg2 etc. as its parameters.

For a procedure defined in Scheme, “calling the procedure with the list of values as
its parameters” means binding the values to the procedure’s formal parameters and then
evaluating the sequence of expressions that make up the body of the procedure definition.
The value of the procedure invocation expression is the value of the last evaluated expression
in the procedure body. The side effects of calling the procedure are the combination of the
side effects of the sequence of evaluations of expressions in the procedure body.

For a built-in procedure, the value and side-effects of calling the procedure are best
described by that procedure’s documentation.

Chapter 3: Hello Scheme! 23

Note that the complete side effects of evaluating a procedure invocation expression con-
sist not only of the side effects of the procedure call, but also of any side effects of the
preceding evaluation of the expressions procedure, argl, arg2, and so on.

To illustrate this, let’s look again at the procedure invocation expression:
(string-length (string-append "/home" "/" "andrew"))

In the outermost expression, procedure is string-length and argl is (string-append
"/home“ u/n "andrew").

e Evaluation of string-length, which is a variable, gives a procedure value that imple-
ments the expected behavior for “string-length”.

e Evaluation of (string-append "/home" "/" "andrew"), which is another procedure
invocation expression, means evaluating each of

e string-append, which gives a procedure value that implements the expected be-
havior for “string-append”

e "/home", which gives the string value "/home"
e "/" which gives the string value "/"

e "andrew", which gives the string value "andrew"

and then invoking the procedure value with this list of string values as its arguments.
The resulting value is a single string value that is the concatenation of all the arguments,
namely "/home/andrew".

In the evaluation of the outermost expression, the interpreter can now invoke the pro-
cedure value obtained from procedure with the value obtained from argl as its arguments.
The resulting value is a numeric value that is the length of the argument string, which is
12.

3.3.1.4 Evaluating Special Syntactic Expressions

When a procedure invocation expression is evaluated, the procedure and all the argument
expressions must be evaluated before the procedure can be invoked. Special syntactic ex-
pressions are special because they are able to manipulate their arguments in an unevaluated
form, and can choose whether to evaluate any or all of the argument expressions.

Why is this needed? Consider a program fragment that asks the user whether or not to
delete a file, and then deletes the file if the user answers yes.

(if (string=7? (read-answer "Should I delete this file?")
"yes")
(delete-file file))

If the outermost (if ...) expression here was a procedure invocation expression, the
expression (delete-file file), whose side effect is to actually delete a file, would already
have been evaluated before the if procedure even got invoked! Clearly this is no use — the
whole point of an if expression is that the consequent expression is only evaluated if the
condition of the if expression is “true”.

Therefore if must be special syntax, not a procedure. Other special syntaxes that we
have already met are define, set! and lambda. define and set! are syntax because they
need to know the variable name that is given as the first argument in a define or set!
expression, not that variable’s value. lambda is syntax because it does not immediately

24 Guile Reference Manual

evaluate the expressions that define the procedure body; instead it creates a procedure
object that incorporates these expressions so that they can be evaluated in the future,
when that procedure is invoked.

The rules for evaluating each special syntactic expression are specified individually for
each special syntax. For a summary of standard special syntax, see See Section 3.3.4 [Syntax
Summary]|, page 25.

3.3.2 Tail calls

Scheme is “properly tail recursive”, meaning that tail calls or recursions from certain con-
texts do not consume stack space or other resources and can therefore be used on arbitrarily
large data or for an arbitrarily long calculation. Consider for example,

(define (foo n)
(display n)
(newline)
(foo (1+ n)))

(foo 1)
_|

1
2
3

foo prints numbers infinitely, starting from the given n. It’s implemented by printing n
then recursing to itself to print n + 1 and so on. This recursion is a tail call, it’s the last
thing done, and in Scheme such tail calls can be made without limit.

Or consider a case where a value is returned, a version of the SRFI-1 last function (see
Section 7.5.3.3 [SRFI-1 Selectors], page 598) returning the last element of a list,

(define (my-last lst)
(if (null? (cdr 1lst))
(car 1st)
(my-last (cdr 1st))))

(my-last '(1 2 3)) = 3

If the list has more than one element, my-last applies itself to the cdr. This recursion
is a tail call, there’s no code after it, and the return value is the return value from that call.
In Scheme this can be used on an arbitrarily long list argument.

A proper tail call is only available from certain contexts, namely the following special
form positions,

e and — last expression

e begin — last expression

e case — last expression in each clause

e cond — last expression in each clause, and the call to a => procedure is a tail call

e do — last result expression

Chapter 3: Hello Scheme! 25

e if — “true” and “false” leg expressions
e lambda — last expression in body
e let, let*, letrec, let-syntax, letrec-syntax — last expression in body

e or — last expression

The following core functions make tail calls,
e apply — tail call to given procedure

e call-with-current-continuation — tail call to the procedure receiving the new
continuation

e call-with-values — tail call to the values-receiving procedure

eval — tail call to evaluate the form

e string-any, string-every — tail call to predicate on the last character (if that point
is reached)

The above are just core functions and special forms. Tail calls in other modules are
described with the relevant documentation, for example SRFI-1 any and every (see Sec-
tion 7.5.3.7 [SRFI-1 Searching], page 604).

It will be noted there are a lot of places which could potentially be tail calls, for instance
the last call in a for-each, but only those explicitly described are guaranteed.

3.3.3 Using the Guile REPL

If you start Guile without specifying a particular program for it to execute, Guile enters its
standard Read Evaluate Print Loop — or REPL for short. In this mode, Guile repeatedly
reads in the next Scheme expression that the user types, evaluates it, and prints the resulting
value.

The REPL is a useful mechanism for exploring the evaluation behavior described in
the previous subsection. If you type string-append, for example, the REPL replies
#<primitive-procedure string-append>, illustrating the relationship between the vari-
able string-append and the procedure value stored in that variable.

In this manual, the notation = is used to mean “evaluates to”. Wherever you see an
example of the form

expression

=

result
feel free to try it out yourself by typing expression into the REPL and checking that it gives
the expected result.

3.3.4 Summary of Common Syntax

This subsection lists the most commonly used Scheme syntactic expressions, simply so that
you will recognize common special syntax when you see it. For a full description of each of
these syntaxes, follow the appropriate reference.

lambda (see Section 6.7.1 [Lambdal, page 245) is used to construct procedure objects.

define (see Section 6.10.1 [Top Level], page 291) is used to create a new variable and
set its initial value.

26 Guile Reference Manual

set! (see Section 6.10.1 [Top Level], page 291) is used to modify an existing variable’s
value.

let, let* and letrec (see Section 6.10.2 [Local Bindings], page 292) create an inner
lexical environment for the evaluation of a sequence of expressions, in which a specified
set of local variables is bound to the values of a corresponding set of expressions. For an
introduction to environments, see See Section 3.4 [About Closure], page 26.

begin (see Section 6.11.1 [begin], page 296) executes a sequence of expressions in order
and returns the value of the last expression. Note that this is not the same as a procedure
which returns its last argument, because the evaluation of a procedure invocation expression
does not guarantee to evaluate the arguments in order.

if and cond (see Section 6.11.2 [Conditionals], page 297) provide conditional evaluation
of argument expressions depending on whether one or more conditions evaluate to “true”
or “false”.

case (see Section 6.11.2 [Conditionals], page 297) provides conditional evaluation of
argument expressions depending on whether a variable has one of a specified group of
values.

and (see Section 6.11.3 [and or], page 299) executes a sequence of expressions in order
until either there are no expressions left, or one of them evaluates to “false”.

or (see Section 6.11.3 [and or], page 299) executes a sequence of expressions in order
until either there are no expressions left, or one of them evaluates to “true”.

3.4 The Concept of Closure

The concept of closure is the idea that a lambda expression “captures” the variable bindings
that are in lexical scope at the point where the lambda expression occurs. The procedure
created by the lambda expression can refer to and mutate the captured bindings, and the
values of those bindings persist between procedure calls.

This section explains and explores the various parts of this idea in more detail.

3.4.1 Names, Locations, Values and Environments

We said earlier that a variable name in a Scheme program is associated with a location in
which any kind of Scheme value may be stored. (Incidentally, the term “vcell” is often used
in Lisp and Scheme circles as an alternative to “location”.) Thus part of what we mean
when we talk about “creating a variable” is in fact establishing an association between a
name, or identifier, that is used by the Scheme program code, and the variable location to
which that name refers. Although the value that is stored in that location may change, the
location to which a given name refers is always the same.

We can illustrate this by breaking down the operation of the define syntax into three
parts: define

e creates a new location

e establishes an association between that location and the name specified as the first
argument of the define expression

e stores in that location the value obtained by evaluating the second argument of the
define expression.

Chapter 3: Hello Scheme! 27

A collection of associations between names and locations is called an environment. When
you create a top level variable in a program using define, the name-location association
for that variable is added to the “top level” environment. The “top level” environment also
includes name-location associations for all the procedures that are supplied by standard
Scheme.

It is also possible to create environments other than the top level one, and to create
variable bindings, or name-location associations, in those environments. This ability is a
key ingredient in the concept of closure; the next subsection shows how it is done.

3.4.2 Local Variables and Environments

We have seen how to create top level variables using the define syntax (see Section 3.1.3
[Definition], page 16). It is often useful to create variables that are more limited in their
scope, typically as part of a procedure body. In Scheme, this is done using the let syntax,
or one of its modified forms let* and letrec. These syntaxes are described in full later in
the manual (see Section 6.10.2 [Local Bindings|, page 292). Here our purpose is to illustrate
their use just enough that we can see how local variables work.

For example, the following code uses a local variable s to simplify the computation of
the area of a triangle given the lengths of its three sides.

(define a 5.3)
(define b 4.7)
(define c 2.8)

(define area
(let ((s (/ (+ abc) 2)))
(sqrt (x* s (- s a) (- sb) (-5 c))))

The effect of the 1let expression is to create a new environment and, within this environ-
ment, an association between the name s and a new location whose initial value is obtained
by evaluating (/ (+ a b ¢) 2). The expressions in the body of the let, namely (sqrt (* s
(-sa) (-sb) (-sc))), are then evaluated in the context of the new environment, and
the value of the last expression evaluated becomes the value of the whole let expression,
and therefore the value of the variable area.

3.4.3 Environment Chaining

In the example of the previous subsection, we glossed over an important point. The body
of the let expression in that example refers not only to the local variable s, but also to the
top level variables a, b, c and sqrt. (sqrt is the standard Scheme procedure for calculating
a square root.) If the body of the let expression is evaluated in the context of the local
let environment, how does the evaluation get at the values of these top level variables?

The answer is that the local environment created by a let expression automatically has
a reference to its containing environment — in this case the top level environment — and
that the Scheme interpreter automatically looks for a variable binding in the containing
environment if it doesn’t find one in the local environment. More generally, every environ-
ment except for the top level one has a reference to its containing environment, and the
interpreter keeps searching back up the chain of environments — from most local to top
level — until it either finds a variable binding for the required identifier or exhausts the
chain.

28 Guile Reference Manual

This description also determines what happens when there is more than one variable
binding with the same name. Suppose, continuing the example of the previous subsection,
that there was also a pre-existing top level variable s created by the expression:

(define s "Some beans, my lord!")

Then both the top level environment and the local let environment would contain
bindings for the name s. When evaluating code within the 1let body, the interpreter looks
first in the local let environment, and so finds the binding for s created by the let syntax.
Even though this environment has a reference to the top level environment, which also has
a binding for s, the interpreter doesn’t get as far as looking there. When evaluating code
outside the let body, the interpreter looks up variable names in the top level environment,
so the name s refers to the top level variable.

Within the let body, the binding for s in the local environment is said to shadow the
binding for s in the top level environment.

3.4.4 Lexical Scope

The rules that we have just been describing are the details of how Scheme implements
“lexical scoping”. This subsection takes a brief diversion to explain what lexical scope
means in general and to present an example of non-lexical scoping.

“Lexical scope” in general is the idea that

e an identifier at a particular place in a program always refers to the same variable loca-
tion — where “always” means “every time that the containing expression is executed”,
and that

e the variable location to which it refers can be determined by static examination of the
source code context in which that identifier appears, without having to consider the
flow of execution through the program as a whole.

In practice, lexical scoping is the norm for most programming languages, and probably
corresponds to what you would intuitively consider to be “normal”. You may even be
wondering how the situation could possibly — and usefully — be otherwise. To demonstrate
that another kind of scoping is possible, therefore, and to compare it against lexical scoping,
the following subsection presents an example of non-lexical scoping and examines in detail
how its behavior differs from the corresponding lexically scoped code.

3.4.4.1 An Example of Non-Lexical Scoping
To demonstrate that non-lexical scoping does exist and can be useful, we present the fol-
lowing example from Emacs Lisp, which is a “dynamically scoped” language.

(defvar currency-abbreviation "USD")

(defun currency-string (units hundredths)
(concat currency-abbreviation
(number-to-string units)

n n

(number-to-string hundredths)))

(defun french-currency-string (units hundredths)
(let ((currency-abbreviation "FRF"))

Chapter 3: Hello Scheme! 29

(currency-string units hundredths)))

The question to focus on here is: what does the identifier currency-abbreviation
refer to in the currency-string function? The answer, in Emacs Lisp, is that all variable
bindings go onto a single stack, and that currency-abbreviation refers to the topmost
binding from that stack which has the name “currency-abbreviation”. The binding that is
created by the defvar form, to the value "USD", is only relevant if none of the code that
calls currency-string rebinds the name “currency-abbreviation” in the meanwhile.

The second function french-currency-string works precisely by taking advantage of
this behavior. It creates a new binding for the name “currency-abbreviation” which over-
rides the one established by the defvar form.

;; Note! This is Emacs Lisp evaluation, not Scheme!
(french-currency-string 33 44)

=

"FRF33.44"

Now let’s look at the corresponding, lexically scoped Scheme code:

(define currency-abbreviation "USD")

(define (currency-string units hundredths)
(string-append currency-abbreviation
(number->string units)

n n

(number->string hundredths)))

(define (french-currency-string units hundredths)
(let ((currency-abbreviation "FRF"))
(currency-string units hundredths)))

According to the rules of lexical scoping, the currency-abbreviation in currency-
string refers to the variable location in the innermost environment at that point in the
code which has a binding for currency-abbreviation, which is the variable location in
the top level environment created by the preceding (define currency-abbreviation ...)
expression.

In Scheme, therefore, the french-currency-string procedure does not work as in-
tended. The variable binding that it creates for “currency-abbreviation” is purely local to
the code that forms the body of the let expression. Since this code doesn’t directly use
the name “currency-abbreviation” at all, the binding is pointless.

(french-currency-string 33 44)
=
"USD33.44"

This begs the question of how the Emacs Lisp behavior can be implemented in Scheme.
In general, this is a design question whose answer depends upon the problem that is be-
ing addressed. In this case, the best answer may be that currency-string should be
redesigned so that it can take an optional third argument. This third argument, if supplied,
is interpreted as a currency abbreviation that overrides the default.

30 Guile Reference Manual

It is possible to change french-currency-string so that it mostly works without chang-
ing currency-string, but the fix is inelegant, and susceptible to interrupts that could leave
the currency-abbreviation variable in the wrong state:

(define (french-currency-string units hundredths)
(set! currency-abbreviation "FRF")
(let ((result (currency-string units hundredths)))
(set! currency-abbreviation "USD")
result))

The key point here is that the code does not create any local binding for the identifier
currency-abbreviation, so all occurrences of this identifier refer to the top level variable.

3.4.5 Closure
Consider a let expression that doesn’t contain any lambdas:

(let ((s (/ (+ abc) 2)))
(sqrt (x s (- s a) (- sb) (-s c))))

When the Scheme interpreter evaluates this, it

e creates a new environment with a reference to the environment that was current when
it encountered the let

e creates a variable binding for s in the new environment, with value given by (/ (+ a b
c) 2)

e evaluates the expression in the body of the let in the context of the new local envi-
ronment, and remembers the value V

e forgets the local environment

e continues evaluating the expression that contained the let, using the value V as the
value of the let expression, in the context of the containing environment.

After the let expression has been evaluated, the local environment that was created is
simply forgotten, and there is no longer any way to access the binding that was created in
this environment. If the same code is evaluated again, it will follow the same steps again,
creating a second new local environment that has no connection with the first, and then
forgetting this one as well.

If the let body contains a lambda expression, however, the local environment is not
forgotten. Instead, it becomes associated with the procedure that is created by the lambda
expression, and is reinstated every time that that procedure is called. In detail, this works
as follows.

e When the Scheme interpreter evaluates a lambda expression, to create a procedure
object, it stores the current environment as part of the procedure definition.

e Then, whenever that procedure is called, the interpreter reinstates the environment
that is stored in the procedure definition and evaluates the procedure body within the
context of that environment.

The result is that the procedure body is always evaluated in the context of the environ-
ment that was current when the procedure was created.

This is what is meant by closure. The next few subsections present examples that explore
the usefulness of this concept.

Chapter 3: Hello Scheme! 31

3.4.6 Example 1: A Serial Number Generator

This example uses closure to create a procedure with a variable binding that is private to
the procedure, like a local variable, but whose value persists between procedure calls.

(define (make-serial-number-generator)
(let ((current-serial-number 0))
(lambda ()
(set! current-serial-number (+ current-serial-number 1))
current-serial-number)))

(define entry-sn-generator (make-serial-number-generator))

(entry-sn-generator)
=
1

(entry-sn-generator)
=
2

When make-serial-number-generator is called, it creates a local environment with a
binding for current-serial-number whose initial value is 0, then, within this environment,
creates a procedure. The local environment is stored within the created procedure object
and so persists for the lifetime of the created procedure.

Every time the created procedure is invoked, it increments the value of the current-
serial-number binding in the captured environment and then returns the current value.

Note that make-serial-number-generator can be called again to create a second serial
number generator that is independent of the first. Every new invocation of make-serial-
number-generator creates a new local 1et environment and returns a new procedure object
with an association to this environment.

3.4.7 Example 2: A Shared Persistent Variable

This example uses closure to create two procedures, get-balance and deposit, that both
refer to the same captured local environment so that they can both access the balance
variable binding inside that environment. The value of this variable binding persists between
calls to either procedure.

Note that the captured balance variable binding is private to these two procedures: it is
not directly accessible to any other code. It can only be accessed indirectly via get-balance
or deposit, as illustrated by the withdraw procedure.

(define get-balance #f)
(define deposit #f)

(let ((balance 0))
(set! get-balance
(lambda (O
balance))
(set! deposit

32 Guile Reference Manual

(lambda (amount)
(set! balance (+ balance amount))
balance)))

(define (withdraw amount)
(deposit (- amount)))

(get-balance)
=
0

(deposit 50)
=
50

(withdraw 75)
=
-25
An important detail here is that the get-balance and deposit variables must be set up
by defineing them at top level and then set!ing their values inside the let body. Using
define within the let body would not work: this would create variable bindings within
the local let environment that would not be accessible at top level.

3.4.8 Example 3: The Callback Closure Problem

A frequently used programming model for library code is to allow an application to register a
callback function for the library to call when some particular event occurs. It is often useful
for the application to make several such registrations using the same callback function, for
example if several similar library events can be handled using the same application code,
but the need then arises to distinguish the callback function calls that are associated with
one callback registration from those that are associated with different callback registrations.

In languages without the ability to create functions dynamically, this problem is usually
solved by passing a user_data parameter on the registration call, and including the value
of this parameter as one of the parameters on the callback function. Here is an example of
declarations using this solution in C:

typedef void (event_handler_t) (int event_type,
void *user_data);

void register_callback (int event_type,
event_handler_t x*handler,
void *user_data);

In Scheme, closure can be used to achieve the same functionality without requiring the
library code to store a user-data for each callback registration.

;3 In the library:

(define (register-callback event-type handler-proc)

>

Chapter 3: Hello Scheme! 33

;3 In the application:

(define (make-handler event-type user-data)
(lambda O

<code referencing event-type and user-data>

co))

(register-callback event-type
(make-handler event-type ...))

As far as the library is concerned, handler-proc is a procedure with no arguments, and
all the library has to do is call it when the appropriate event occurs. From the application’s
point of view, though, the handler procedure has used closure to capture an environment
that includes all the context that the handler code needs — event-type and user-data —
to handle the event correctly.

3.4.9 Example 4: Object Orientation

Closure is the capture of an environment, containing persistent variable bindings, within
the definition of a procedure or a set of related procedures. This is rather similar to the
idea in some object oriented languages of encapsulating a set of related data variables inside
an “object”, together with a set of “methods” that operate on the encapsulated data. The
following example shows how closure can be used to emulate the ideas of objects, methods
and encapsulation in Scheme.

(define (make-account)
(let ((balance 0))

(define (get-balance)
balance)

(define (deposit amount)
(set! balance (+ balance amount))
balance)

(define (withdraw amount)
(deposit (- amount)))

(lambda args
(apply

(case (car args)
((get-balance) get-balance)
((deposit) deposit)
((withdraw) withdraw)
(else (error "Invalid method!")))

(cdr args)))))

Each call to make-account creates and returns a new procedure, created by the expres-
sion in the example code that begins “(lambda args”.

(define my-account (make-account))

34 Guile Reference Manual

my-account
=
#<procedure args>

This procedure acts as an account object with methods get-balance, deposit and
withdraw. To apply one of the methods to the account, you call the procedure with a symbol
indicating the required method as the first parameter, followed by any other parameters
that are required by that method.

(my-account 'get-balance)
=
0

(my-account 'withdraw 5)
=
-5

(my-account 'deposit 396)
=
391

(my-account 'get-balance)
=
391

Note how, in this example, both the current balance and the helper procedures get-
balance, deposit and withdraw, used to implement the guts of the account object’s meth-
ods, are all stored in variable bindings within the private local environment captured by
the lambda expression that creates the account object procedure.

3.5 Further Reading

e The website http://www.schemers.org/ is a good starting point for all things Scheme.

e Dorai Sitaram’s online Scheme tutorial, Teach Yourself Scheme in Fixnum Days, at
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html. Includes a
nice explanation of continuations.

e The complete text of Structure and Interpretation of Computer Programs, the clas-
sic introduction to computer science and Scheme by Hal Abelson, Jerry Sussman
and Julie Sussman, is now available online at http://mitpress.mit.edu/sicp/sicp.
html. This site also provides teaching materials related to the book, and all the source
code used in the book, in a form suitable for loading and running.

http://www.schemers.org/
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html
http://mitpress.mit.edu/sicp/sicp.html
http://mitpress.mit.edu/sicp/sicp.html

35

4 Programming in Scheme

Guile’s core language is Scheme, and a lot can be achieved simply by using Guile to write
and run Scheme programs — as opposed to having to dive into C code. In this part of the
manual, we explain how to use Guile in this mode, and describe the tools that Guile provides
to help you with script writing, debugging, and packaging your programs for distribution.

For detailed reference information on the variables, functions, and so on that make up
Guile’s application programming interface (API), see Chapter 6 [API Reference], page 99.

4.1 Guile’s Implementation of Scheme

Guile’s core language is Scheme, which is specified and described in the series of reports
known as RnRS. RnRS is shorthand for the Revised"” Report on the Algorithmic Language
Scheme. Guile complies fully with R5RS (see Section “Introduction” in R5RS), and is
largely compliant with R6RS and R7RS.

Guile also has many extensions that go beyond these reports. Some of the areas where
Guile extends standard Scheme are:

e Guile’s interactive documentation system
e Guile’s support for POSIX-compliant network programming

e GOOPS — Guile’s framework for object oriented programming.

4.2 Invoking Guile

Many features of Guile depend on and can be changed by information that the user provides
either before or when Guile is started. Below is a description of what information to provide
and how to provide it.

4.2.1 Command-line Options

Here we describe Guile’s command-line processing in detail. Guile processes its arguments
from left to right, recognizing the switches described below. For examples, see Section 4.3.4
[Scripting Examples], page 44.

script arg. ..

-s script arg...
By default, Guile will read a file named on the command line as a script.
Any command-line arguments arg... following script become the script’s argu-
ments; the command-1ine function returns a list of strings of the form (script
arg...).
It is possible to name a file using a leading hyphen, for example, -myfile.scm.
In this case, the file name must be preceded by -s to tell Guile that a (script)
file is being named.

Scripts are read and evaluated as Scheme source code just as the load function
would. After loading script, Guile exits.

-C expr arg. ..
Evaluate expr as Scheme code, and then exit. Any command-line arguments
arg... following expr become command-line arguments; the command-1ine func-

36 Guile Reference Manual

tion returns a list of strings of the form (guile arg...), where guile is the path
of the Guile executable.

-— arg... Run interactively, prompting the user for expressions and evaluating them.
Any command-line arguments arg... following the -- become command-line
arguments for the interactive session; the command-line function returns a list
of strings of the form (guile arg...), where guile is the path of the Guile
executable.

-L directory
Add directory to the front of Guile’s module load path. The given directories
are searched in the order given on the command line and before any directories
in the GUILE_LOAD_PATH environment variable. Paths added here are not in
effect during execution of the user’s .guile file.

-C directory
Like -L, but adjusts the load path for compiled files.

-X extension
Add extension to the front of Guile’s load extension list (see Section 6.16.8
[Load Paths], page 397). The specified extensions are tried in the order given
on the command line, and before the default load extensions. Extensions added
here are not in effect during execution of the user’s .guile file.

-1 file Load Scheme source code from file, and continue processing the command line.

-e function
Make function the entry point of the script. After loading the script file (with
-s) or evaluating the expression (with -c), apply function to a list containing
the program name and the command-line arguments—the list provided by the
command-line function.

A -e switch can appear anywhere in the argument list, but Guile always invokes
the function as the last action it performs. This is weird, but because of the
way script invocation works under POSIX, the -s option must always come last
in the list.

The function is most often a simple symbol that names a function that is defined
in the script. It can also be of the form (@ module-name symbol), and in that
case, the symbol is looked up in the module named module-name.

As a shorthand you can use the form (symbol ...), that is, a list of only
symbols that doesn’t start with @. It is equivalent to (@ module-name main),
where module-name is (symbol ...) form. See Section 6.18.2 [Using Guile

Modules], page 415, and Section 4.3.4 [Scripting Examples], page 44.

-ds Treat a final -s option as if it occurred at this point in the command line; load
the script here.

This switch is necessary because, although the POSIX script invocation mech-
anism effectively requires the —-s option to appear last, the programmer may
well want to run the script before other actions requested on the command line.
For examples, see Section 4.3.4 [Scripting Examples|, page 44.

Chapter 4: Programming in Scheme 37

Read more command-line arguments, starting from the second line of the script
file. See Section 4.3.2 [The Meta Switch], page 42.

—--use-srfi=list

--r6rs

—--r7rs

--debug

--no-debug

-q

The option ——use-srfi expects a comma-separated list of numbers, each rep-
resenting a SRFI module to be loaded into the interpreter before evaluating
a script file or starting the REPL. Additionally, the feature identifier for the
loaded SRFTs is recognized by the procedure cond-expand when this option is
used.

Here is an example that loads the modules SRFI-8 (‘receive’) and SRFI-13
(’string library’) before the GUILE interpreter is started:

guile --use-srfi=8,13

Adapt Guile’s initial environment to better support R6RS. See Section 7.6.1
[R6RS Incompatibilities], page 675, for some caveats.

Adapt Guile’s initial environment to better support R7RS. See Section 7.7.1
[R7RS Incompatibilities], page 718, for some caveats.

Start with the debugging virtual machine (VM) engine. Using the debugging
VM will enable support for VM hooks, which are needed for tracing, break-
points, and accurate call counts when profiling. The debugging VM is slower
than the regular VM, though, by about ten percent. See Section 6.26.4.1 [VM
Hooks], page 494, for more information.

By default, the debugging VM engine is only used when entering an interactive
session. When executing a script with -s or -c, the normal, faster VM is used
by default.

Do not use the debugging VM engine, even when entering an interactive session.

Note that, despite the name, Guile running with —-no-debug does support the
usual debugging facilities, such as printing a detailed backtrace upon error. The
only difference with --debug is lack of support for VM hooks and the facilities
that build upon it (see above).

Do not load the initialization file, .guile. This option only has an effect when
running interactively; running scripts does not load the .guile file. See Sec-
tion 4.4.1 [Init File], page 48.

--listen[=p]

While this program runs, listen on a local port or a path for REPL clients. If p
starts with a number, it is assumed to be a local port on which to listen. If it
starts with a forward slash, it is assumed to be the file name of a UNIX domain
socket on which to listen.

If p is not given, the default is local port 37146. If you look at it upside down,
it almost spells “Guile”. If you have netcat installed, you should be able to nc
localhost 37146 and get a Guile prompt. Alternately you can fire up Emacs
and connect to the process; see Section 4.5 [Using Guile in Emacs], page 56, for
more details.

38 Guile Reference Manual

Note: Opening a port allows anyone who can connect to that port
to do anything Guile can do, as the user that the Guile process
is running as. Do not use --listen on multi-user machines. Of
course, if you do not pass ——listen to Guile, no port will be opened.

Guile protects against the HTTP inter-protocol ex-
ploitation attack (https://en.wikipedia.org/wiki/
Inter-protocol_exploitation), a scenario whereby an attacker
can, via an HTML page, cause a web browser to send data to
TCP servers listening on a loopback interface or private network.
Nevertheless, you are advised to use UNIX domain sockets, as in
--listen=/some/local/file, whenever possible.

That said, --1isten is great for interactive debugging and development.

--auto-compile
Compile source files automatically (default behavior).

--fresh-auto-compile
Treat the auto-compilation cache as invalid, forcing recompilation.

--no-auto-compile
Disable automatic source file compilation.

--language=lang
For the remainder of the command line arguments, assume that files mentioned
with -1 and expressions passed with -c are written in lang. lang must be
the name of one of the languages supported by the compiler (see Section 9.4.1
[Compiler Tower|, page 872). When run interactively, set the REPL’s language
to lang (see Section 4.4 [Using Guile Interactively]|, page 48).

The default language is scheme; other interesting values include elisp (for
Emacs Lisp), and ecmascript.

The example below shows the evaluation of expressions in Scheme, Emacs Lisp,
and ECMAScript:

guile -c "(apply + '(1 2))"
guile --language=elisp -c "(= (funcall (symbol-function '+) 1 2) 3)"
guile --language=ecmascript -c '(function (x) { return x * x; })(2);'

To load a file written in Scheme and one written in Emacs Lisp, and then start
a Scheme REPL, type:

guile -1 foo.scm --language=elisp -1 foo.el --language=scheme
-h, —-help
Display help on invoking Guile, and then exit.

-v, ——version
Display the current version of Guile, and then exit.

4.2.2 Environment Variables

The environment is a feature of the operating system; it consists of a collection of variables
with names and values. Each variable is called an environment variable (or, sometimes, a
“shell variable”); environment variable names are case-sensitive, and it is conventional to

https://en.wikipedia.org/wiki/Inter-protocol_exploitation
https://en.wikipedia.org/wiki/Inter-protocol_exploitation
https://en.wikipedia.org/wiki/Inter-protocol_exploitation

Chapter 4: Programming in Scheme 39

use upper-case letters only. The values are all text strings, even those that are written as
numerals. (Note that here we are referring to names and values that are defined in the
operating system shell from which Guile is invoked. This is not the same as a Scheme
environment that is defined within a running instance of Guile. For a description of Scheme
environments, see Section 3.4.1 [About Environments|, page 26.)

How to set environment variables before starting Guile depends on the operating system
and, especially, the shell that you are using. For example, here is how to tell Guile to provide
detailed warning messages about deprecated features by setting GUILE_WARN_DEPRECATED
using Bash:

$ export GUILE_WARN_DEPRECATED="detailed"
$ guile
Or, detailed warnings can be turned on for a single invocation using:
$ env GUILE_WARN_DEPRECATED="detailed" guile
If you wish to retrieve or change the value of the shell environment variables that affect
the run-time behavior of Guile from within a running instance of Guile, see Section 7.2.6
[Runtime Environment], page 528.
Here are the environment variables that affect the run-time behavior of Guile:

GUILE_AUTO_COMPILE
This is a flag that can be used to tell Guile whether or not to compile Scheme
source files automatically. Starting with Guile 2.0, Scheme source files will be
compiled automatically, by default.

If a compiled (. go) file corresponding to a .scm file is not found or is not newer
than the .scm file, the .scm file will be compiled on the fly, and the resulting
.go file stored away. An advisory note will be printed on the console.
Compiled files will be stored in the directory $XDG_CACHE_HOME/guile/ccache,
where XDG_CACHE_HOME defaults to the directory $HOME/ . cache. This directory
will be created if it does not already exist.

Note that this mechanism depends on the timestamp of the . go file being newer
than that of the .scm file; if the .scm or .go files are moved after installation,
care should be taken to preserve their original timestamps.
Set GUILE_AUTO_COMPILE to zero (0), to prevent Scheme files from being com-
piled automatically. Set this variable to “fresh” to tell Guile to compile Scheme
files whether they are newer than the compiled files or not.

See Section 6.16.6 [Compilation], page 393.

GUILE_HISTORY
This variable names the file that holds the Guile REPL command history. You
can specify a different history file by setting this environment variable. By
default, the history file is $HOME/ . guile_history.

GUILE_INSTALL_LOCALE
This is a flag that can be used to tell Guile whether or not to install the current
locale at startup, via a call to (setlocale LC_ALL "")!. See Section 7.2.13
[Locales], page 560, for more information on locales.

L The GUILE_INSTALL_LOCALE environment variable was ignored in Guile versions prior to 2.0.9.

40

Guile Reference Manual

You may explicitly indicate that you do not want to install the locale by setting
GUILE_INSTALL_LOCALE to 0, or explicitly enable it by setting the variable to
1.

Usually, installing the current locale is the right thing to do. It allows Guile
to correctly parse and print strings with non-ASCII characters. Therefore, this
option is on by default.

GUILE_LOAD_COMPILED_PATH

This variable may be used to augment the path that is searched for compiled
Scheme files (.go files) when loading. Its value should be a colon-separated list
of directories. If it contains the special path component ... (ellipsis), then the
default path is put in place of the ellipsis, otherwise the default path is placed
at the end. The result is stored in %load-compiled-path (see Section 6.16.8
[Load Paths], page 397).
Here is an example using the Bash shell that adds the current directory, ., and
the relative directory ../my-library to %load-compiled-path:

$ export GUILE_LOAD_COMPILED_PATH=".:../my-library"

$ guile -c '(display %load-compiled-path) (newline)'

(. ../my-library /usr/local/lib/guile/3.0/ccache)

GUILE_LOAD_PATH

This variable may be used to augment the path that is searched for Scheme
files when loading. Its value should be a colon-separated list of directories. If
it contains the special path component ... (ellipsis), then the default path is
put in place of the ellipsis, otherwise the default path is placed at the end. The
result is stored in %load-path (see Section 6.16.8 [Load Paths|, page 397).

Here is an example using the Bash shell that prepends the current directory to
%load-path, and adds the relative directory ../srfi to the end:

$ env GUILE_LOAD_PATH=".:...:../srfi" \
guile -c '(display %load-path) (newline)'
(. /usr/local/share/guile/3.0 \
/usr/local/share/guile/site/3.0 \
/usr/local/share/guile/site \
/usr/local/share/guile \

../srfi)

(Note: The line breaks, above, are for documentation purposes only, and not
required in the actual example.)

GUILE_EXTENSIONS_PATH

This variable may be used to augment the path that is searched for foreign
libraries via load-extension, dynamic-1link, load-foreign-library, or the
like. Its value should be a colon-separated (semicolon on Windows) list of
directories. See Section 6.19.1 [Foreign Libraries|, page 431.

GUILE_WARN_DEPRECATED

As Guile evolves, some features will be eliminated or replaced by newer features.
To help users migrate their code as this evolution occurs, Guile will issue warn-
ing messages about code that uses features that have been marked for eventual

Chapter 4: Programming in Scheme 41

HOME

elimination. GUILE_WARN_DEPRECATED can be set to “no” to tell Guile not to
display these warning messages, or set to “detailed” to tell Guile to display
more lengthy messages describing the warning. See Section 6.2 [Deprecation],
page 100.

Guile uses the environment variable HOME, the name of your home directory, to
locate various files, such as .guile or .guile_history.

GUILE_JIT_THRESHOLD

Guile has a just-in-time (JIT) code generator that makes running Guile code
fast. See Section 9.3.8 [Just-In-Time Native Code], page 871, for more. The
unit of code generation is the function. Each function has its own counter
that gets incremented when the function is called and at each loop iteration
in the function. When the counter exceeds the GUILE_JIT_THRESHOLD, the
function will get JIT-compiled. Set GUILE_JIT_THRESHOLD to -1 to disable JIT
compilation, or 0 to eagerly JIT-compile each function as it’s first seen.

GUILE_JIT_LOG

Set to 1, 2, or 3 to give increasing amounts of logging for JIT compilation
events. Used for debugging.

GUILE_JIT_STOP_AFTER

Though we have tested the JI'T compiler as well as we can, it’s possible that it
has bugs. If you suspect that Guile’s JIT compiler is causing your program to
fail, set GUILE_JIT_STOP_AFTER to a positive integer indicating the maximum
number of functions to JIT-compile. By bisecting over the value of GUILE_JIT_
STOP_AFTER, you can pinpoint the precise function that is being miscompiled.

4.3 Guile Scripting

Like AWK, Perl, or any shell, Guile can interpret script files. A Guile script is simply a
file of Scheme code with some extra information at the beginning which tells the operating
system how to invoke Guile, and then tells Guile how to handle the Scheme code.

4.3.1 The Top of a Script File

The first line of a Guile script must tell the operating system to use Guile to evaluate the
script, and then tell Guile how to go about doing that. Here is the simplest case:

e The first two characters of the file must be ‘#!°.

The operating system interprets this to mean that the rest of the line is the name of an
executable that can interpret the script. Guile, however, interprets these characters as
the beginning of a multi-line comment, terminated by the characters ‘!#’ on a line by
themselves. (This is an extension to the syntax described in R5RS, added to support
shell scripts.)

e Immediately after those two characters must come the full pathname to the Guile
interpreter. On most systems, this would be ‘/usr/local/bin/guile’.

e Then must come a space, followed by a command-line argument to pass to Guile; this
should be ‘-s’. This switch tells Guile to run a script, instead of soliciting the user
for input from the terminal. There are more elaborate things one can do here; see
Section 4.3.2 [The Meta Switch], page 42.

42 Guile Reference Manual

e Follow this with a newline.

e The second line of the script should contain only the characters ‘!'# — just like the top
of the file, but reversed. The operating system never reads this far, but Guile treats
this as the end of the comment begun on the first line by the ‘#!’ characters.

e If this source code file is not ASCII or ISO-8859-1 encoded, a coding declaration such
as coding: utf-8 should appear in a comment somewhere in the first five lines of the
file: see Section 6.16.9 [Character Encoding of Source Files], page 399.

e The rest of the file should be a Scheme program.

Guile reads the program, evaluating expressions in the order that they appear. Upon
reaching the end of the file, Guile exits.

4.3.2 The Meta Switch

Guile’s command-line switches allow the programmer to describe reasonably complicated
actions in scripts. Unfortunately, the POSIX script invocation mechanism only allows one
argument to appear on the ‘#!’ line after the path to the Guile executable, and imposes
arbitrary limits on that argument’s length. Suppose you wrote a script starting like this:

#!/usr/local/bin/guile -e main -s
#
(define (main args)
(map (lambda (arg) (display arg) (display " "))
(cdr args))
(newline))

The intended meaning is clear: load the file, and then call main on the command-line
arguments. However, the system will treat everything after the Guile path as a single
argument — the string "-e main -s" — which is not what we want.

As a workaround, the meta switch \ allows the Guile programmer to specify an arbitrary
number of options without patching the kernel. If the first argument to Guile is \, Guile
will open the script file whose name follows the \, parse arguments starting from the file’s
second line (according to rules described below), and substitute them for the \ switch.

Working in concert with the meta switch, Guile treats the characters ‘#!’ as the beginning
of a comment which extends through the next line containing only the characters ‘!#’. This
sort of comment may appear anywhere in a Guile program, but it is most useful at the top
of a file, meshing magically with the POSIX script invocation mechanism.

Thus, consider a script named /u/jimb/ekko which starts like this:

#!/usr/local/bin/guile \
-e main -s
T#
(define (main args)
(map (lambda (arg) (display arg) (display " "))
(cdr args))
(newline))
Suppose a user invokes this script as follows:

$ /u/jimb/ekko a b ¢

Chapter 4: Programming in Scheme 43

Here’s what happens:

e the operating system recognizes the ‘#!’ token at the top of the file, and rewrites the
command line to:

/usr/local/bin/guile \ /u/jimb/ekko a b c
This is the usual behavior, prescribed by POSIX.

e When Guile sees the first two arguments, \ /u/jimb/ekko, it opens /u/jimb/ekko,
parses the three arguments -e, main, and -s from it, and substitutes them for the \
switch. Thus, Guile’s command line now reads:

/usr/local/bin/guile -e main -s /u/jimb/ekko a b c
e Guile then processes these switches: it loads /u/jimb/ekko as a file of Scheme code

(treating the first three lines as a comment), and then performs the application (main
ll/u/j imb/ekkoll llall llbll IICII) .

When Guile sees the meta switch \, it parses command-line argument from the script
file according to the following rules:

e FEach space character terminates an argument. This means that two spaces in a row
introduce an argument "".

e The tab character is not permitted (unless you quote it with the backslash character,
as described below), to avoid confusion.

e The newline character terminates the sequence of arguments, and will also terminate
a final non-empty argument. (However, a newline following a space will not introduce
a final empty-string argument; it only terminates the argument list.)

e The backslash character is the escape character. It escapes backslash, space, tab, and
newline. The ANSI C escape sequences like \n and \t are also supported. These
produce argument constituents; the two-character combination \n doesn’t act like a
terminating newline. The escape sequence \NNN for exactly three octal digits reads as
the character whose ASCII code is NNN. As above, characters produced this way are
argument constituents. Backslash followed by other characters is not allowed.

4.3.3 Command Line Handling

The ability to accept and handle command line arguments is very important when writing
Guile scripts to solve particular problems, such as extracting information from text files
or interfacing with existing command line applications. This chapter describes how Guile
makes command line arguments available to a Guile script, and the utilities that Guile
provides to help with the processing of command line arguments.

When a Guile script is invoked, Guile makes the command line arguments accessible via
the procedure command-line, which returns the arguments as a list of strings.

For example, if the script
#! /usr/local/bin/guile -s
T#
(write (command-line))
(newline)
is saved in a file cmdline-test.scm and invoked using the command line ./cmdline-
test.scm bar.txt -o foo -frumple grob, the output is

("./cmdline-test.scm" "bar.txt" "-o" "foo" "-frumple" "grob")

44 Guile Reference Manual

If the script invocation includes a —e option, specifying a procedure to call after loading
the script, Guile will call that procedure with (command-line) as its argument. So a script
that uses —e doesn’t need to refer explicitly to command-1line in its code. For example, the
script above would have identical behavior if it was written instead like this:

#! /usr/local/bin/guile \
-e main -s
#
(define (main args)
(write args)
(newline))

(Note the use of the meta switch \ so that the script invocation can include more than
one Guile option: See Section 4.3.2 [The Meta Switch], page 42.)

These scripts use the #! POSIX convention so that they can be executed using their own
file names directly, as in the example command line ./cmdline-test.scm bar.txt -o foo
—-frumple grob. But they can also be executed by typing out the implied Guile command
line in full, as in:

$ guile -s ./cmdline-test.scm bar.txt -o foo -frumple grob
or
$ guile -e main -s ./cmdline-test2.scm bar.txt -o foo -frumple grob

Even when a script is invoked using this longer form, the arguments that the script
receives are the same as if it had been invoked using the short form. Guile ensures that the
(command-line) or —e arguments are independent of how the script is invoked, by stripping
off the arguments that Guile itself processes.

A script is free to parse and handle its command line arguments in any way that it
chooses. Where the set of possible options and arguments is complex, however, it can get
tricky to extract all the options, check the validity of given arguments, and so on. This task
can be greatly simplified by taking advantage of the module (ice-9 getopt-long), which
is distributed with Guile, See Section 7.4 [getopt-long], page 590.

4.3.4 Scripting Examples

To start with, here are some examples of invoking Guile directly:

guile-——abc
Run Guile interactively; (command-1line) will return
("/usr/local/bin/guile" "a" "b" "c").

guile -s /u/jimb/ex2 a b c
Load the file /u/jimb/ex2; (command-1line) will return
("/u/jimb/ex2" gt np" HCII).

guile -c '(write %load-path) (newline)'
Write the value of the variable %,1load-path, print a newline, and exit.

guile -e main -s /u/jimb/ex4 foo
Load the file /u/jimb/ex4, and then call the function main, passing it the list
("/u/jimb/ex4" "foo").

Chapter 4: Programming in Scheme 45

guile -e '(ex4)' -s /u/jimb/ex4.scm foo
Load the file /u/jimb/ex4.scm, and then call the function main from the mod-
ule '(ex4)’, passing it the list ("/u/jimb/ex4" "foo").

guile -1 first -ds -1 last -s script
Load the files first, script, and last, in that order. The -ds switch says

when to process the —s switch. For a more motivated example, see the scripts
below.

Here is a very simple Guile script:
#!/usr/local/bin/guile -s
14
(display "Hello, world!")
(newline)

The first line marks the file as a Guile script. When the user invokes it, the system runs
/usr/local/bin/guile to interpret the script, passing -s, the script’s filename, and any
arguments given to the script as command-line arguments. When Guile sees -s script, it
loads script. Thus, running this program produces the output:

Hello, world!
Here is a script which prints the factorial of its argument:
#!/usr/local/bin/guile -s
14
(define (fact n)
(if (zero? n) 1

(* n (fact (- n 1)))))

(display (fact (string->number (cadr (command-line)))))
(newline)

In action:

$./fact 5
120
$

However, suppose we want to use the definition of fact in this file from another script.
We can’t simply load the script file, and then use fact’s definition, because the script will
try to compute and display a factorial when we load it. To avoid this problem, we might
write the script this way:

#!/usr/local/bin/guile \
-e main -s
1#
(define (fact n)
(if (zero? n) 1
(* n (fact (- n 1)))))

(define (main args)
(display (fact (string->number (cadr args))))
(newline))

46 Guile Reference Manual

This version packages the actions the script should perform in a function, main. This
allows us to load the file purely for its definitions, without any extraneous computation
taking place. Then we used the meta switch \ and the entry point switch -e to tell Guile
to call main after loading the script.

$./fact 50
30414093201713378043612608166064768844377641568960512000000000000

Suppose that we now want to write a script which computes the choose function: given
a set of m distinct objects, (choose n m) is the number of distinct subsets containing n
objects each. It’s easy to write choose given fact, so we might write the script this way:

#!/usr/local/bin/guile \
-1 fact -e main -s
1#
(define (choose n m)
(/ (fact m) (* (fact (- m n)) (fact n))))

(define (main args)
(let ((n (string->number (cadr args)))
(m (string->number (caddr args))))
(display (choose n m))
(newline)))

The command-line arguments here tell Guile to first load the file fact, and then run the
script, with main as the entry point. In other words, the choose script can use definitions
made in the fact script. Here are some sample runs:

$./choose 0 4
1
$./choose 1 4
4
$./choose 2 4
6
$./choose 3 4
4
$./choose 4 4
1

$./choose 50 100
100891344545564193334812497256

To call a specific procedure from a given module, we can use the special form (@ (module)
procedure):

#!/usr/local/bin/guile \

-1 fact -e (@ (fac) main) -s

1#

(define-module (fac)
#:export (main))

(define (choose n m)
(/ (fact m) (x (fact (- m n)) (fact n))))

Chapter 4: Programming in Scheme 47

(define (main args)
(let ((n (string->number (cadr args)))
(m (string->number (caddr args))))
(display (choose n m))
(newline)))

We can use @@ to invoke non-exported procedures. For exported procedures, we can
simplify this call with the shorthand (module):
#!/usr/local/bin/guile \
-1 fact -e (fac) -s
14
(define-module (fac)
#:export (main))

(define (choose n m)
(/ (fact m) (x (fact (- m n)) (fact n))))

(define (main args)
(let ((n (string->number (cadr args)))
(m (string->number (caddr args))))
(display (choose n m))
(newline)))

For maximum portability, we can instead use the shell to execute guile with specified
command line arguments. Here we need to take care to quote the command arguments
correctly:

#!/usr/bin/env sh
exec guile -1 fact -e '(@ (fac) main)' -s "$0" "$a@"
#
(define-module (fac)
#:export (main))

(define (choose n m)
(/ (fact m) (x (fact (- m n)) (fact n))))

(define (main args)
(let ((n (string->number (cadr args)))
(m (string->number (caddr args))))
(display (choose n m))
(newline)))

Finally, seasoned scripters are probably missing a mention of subprocesses. In Bash, for
example, most shell scripts run other programs like sed or the like to do the actual work.

In Guile it’s often possible get everything done within Guile itself, so do give that a
try first. But if you just need to run a program and wait for it to finish, use systemx. If
you need to run a sub-program and capture its output, or give it input, use open-pipe.

See Section 7.2.7 [Processes|, page 530, and See Section 7.2.10 [Pipes|, page 541, for more
information.

48 Guile Reference Manual

4.4 Using Guile Interactively

When you start up Guile by typing just guile, without a -c argument or the name of a
script to execute, you get an interactive interpreter where you can enter Scheme expressions,
and Guile will evaluate them and print the results for you. Here are some simple examples.

scheme@(guile-user)> (+ 3 4 5)

$1 = 12

scheme@(guile-user)> (display "Hello world!\n")

Hello world!

scheme@(guile-user)> (values 'a 'b)

$2 = a

$3 =D
This mode of use is called a REPL, which is short for “Read-Eval-Print Loop”, because the
Guile interpreter first reads the expression that you have typed, then evaluates it, and then
prints the result.

The prompt shows you what language and module you are in. In this case, the current
language is scheme, and the current module is (guile-user). See Section 6.24 [Other
Languages|, page 470, for more information on Guile’s support for languages other than
Scheme.

4.4.1 The Init File, “/.guile

When run interactively, Guile will load a local initialization file from ~/.guile. This file
should contain Scheme expressions for evaluation.

This facility lets the user customize their interactive Guile environment, pulling in extra
modules or parameterizing the REPL implementation.

To run Guile without loading the init file, use the -q command-line option.

4.4.2 Readline

To make it easier for you to repeat and vary previously entered expressions, or to edit
the expression that you’re typing in, Guile can use the GNU Readline library. This is not
enabled by default because of licensing reasons, but all you need to activate Readline is the
following pair of lines.

scheme@(guile-user)> (use-modules (ice-9 readline))
scheme@(guile-user)> (activate-readline)

It’s a good idea to put these two lines (without the scheme®@(guile-user)> prompts)
in your .guile file. See Section 4.4.1 [Init File], page 48, for more on .guile.

4.4.3 Value History

Just as Readline helps you to reuse a previous input line, value history allows you to use
the result of a previous evaluation in a new expression. When value history is enabled, each
evaluation result is automatically assigned to the next in the sequence of variables $1, $2,
.... You can then use these variables in subsequent expressions.

scheme@(guile-user)> (iota 10)
$1 = (0123456789
scheme@(guile-user)> (apply * (cdr $1))

Chapter 4: Programming in Scheme 49

$2 = 362880

scheme@(guile-user)> (sqrt $2)

$3 = 602.3952191045344
scheme@(guile-user)> (cons $2 $1)
$4 = (362880 01 23456789

Value history is enabled by default, because Guile’s REPL imports the (ice-9 history)
module. Value history may be turned off or on within the repl, using the options interface:

scheme@(guile-user)> ,option value-history #f
scheme@(guile-user)> 'foo

foo

scheme@(guile-user)> ,option value-history #t
scheme@(guile-user)> 'bar

$5 = bar

Note that previously recorded values are still accessible, even if value history is off. In
rare cases, these references to past computations can cause Guile to use too much memory.
One may clear these values, possibly enabling garbage collection, via the clear-value-
history! procedure, described below.

The programmatic interface to value history is in a module:

(use-modules (ice-9 history))

value-history-enabled? [Scheme Procedure]
Return true if value history is enabled, or false otherwise.

enable-value-history! [Scheme Procedure]
Turn on value history, if it was off.

disable-value-history! [Scheme Procedure]
Turn off value history, if it was on.

clear-value-history! [Scheme Procedure]
Clear the value history. If the stored values are not captured by some other data
structure or closure, they may then be reclaimed by the garbage collector.

4.4.4 REPL Commands

The REPL exists to read expressions, evaluate them, and then print their results. But
sometimes one wants to tell the REPL to evaluate an expression in a different way, or to
do something else altogether. A user can affect the way the REPL works with a REPL
command.

The previous section had an example of a command, in the form of ,option.
scheme@(guile-user)> ,option value-history #t

Commands are distinguished from expressions by their initial comma (‘,”). Since a comma
cannot begin an expression in most languages, it is an effective indicator to the REPL that
the following text forms a command, not an expression.

REPL commands are convenient because they are always there. Even if the current
module doesn’t have a binding for pretty-print, one can always ,pretty-print.

50 Guile Reference Manual

The following sections document the various commands, grouped together by function-
ality. Many of the commands have abbreviations; see the online help (,help) for more
information.

4.4.4.1 Help Commands

When Guile starts interactively, it notifies the user that help can be had by typing ‘,help’.
Indeed, help is a command, and a particularly useful one, as it allows the user to discover
the rest of the commands.

help [all | group | [-c] command] [REPL Command]
Show help.

With one argument, tries to look up the argument as a group name, giving help on
that group if successful. Otherwise tries to look up the argument as a command,
giving help on the command.

If there is a command whose name is also a group name, use the ‘-c¢ command’ form
to give help on the command instead of the group.

Without any argument, a list of help commands and command groups are displayed.

show [topic] [REPL Command|
Gives information about Guile.

With one argument, tries to show a particular piece of information; currently sup-
ported topics are ‘warranty’ (or ‘w’), ‘copying’ (or ‘c’), and ‘version’ (or ‘v’).

Without any argument, a list of topics is displayed.

apropos regexp [REPL Command|
Find bindings/modules/packages.

describe obj [REPL Command]
Show description/documentation.

4.4.4.2 Module Commands

module [module] [REPL Command]
Change modules / Show current module.

import module . .. [REPL Command]|
Import modules / List those imported.

load file [REPL Command]
Load a file in the current module.

reload [module] [REPL Command|]
Reload the given module, or the current module if none was given.

binding [REPL Command]|
List current bindings.

Chapter 4: Programming in Scheme 51

in module expression [REPL Command]

in module command arg . . . [REPL Command]|
Evaluate an expression, or alternatively, execute another meta-command in the con-
text of a module. For example, ‘,in (foo bar) ,binding’ will show the bindings in
the module (foo bar).

4.4.4.3 Language Commands

language language [REPL Command]
Change languages.

4.4.4.4 Compile Commands

compile exp [REPL Command]
Generate compiled code.

compile-file file [REPL Command|
Compile a file.

expand exp [REPL Command]

Expand any macros in a form.

optimize exp [REPL Command|
Run the optimizer on a piece of code and print the result.

disassemble exp [REPL Command]|
Disassemble a compiled procedure.

disassemble-file file [REPL Command]
Disassemble a file.

4.4.4.5 Profile Commands

time exp [REPL Command]
Time execution.

profile exp [#:hz hz=100] [#:count-calls? count-calls?=#] [REPL Command]
[#:display-style display-style=list]
Profile execution of an expression. This command compiled exp and then runs it
within the statprof profiler, passing all keyword options to the statprof procedure.
For more on statprof and on the the options available to this command, See Sec-
tion 7.20 [Statprof], page 759.

trace exp [#:width w| [#:max-indent i [REPL Command]
Trace execution.
By default, the trace will limit its width to the width of your terminal, or width if
specified. Nested procedure invocations will be printed farther to the right, though if
the width of the indentation passes the max-indent, the indentation is abbreviated.

These REPL commands can also be called as regular functions in scheme code on in-
cluding the (ice-9 time) module.

52 Guile Reference Manual

4.4.4.6 Debug Commands

These debugging commands are only available within a recursive REPL; they do not work
at the top level.

backtrace [count] [#:width w| [#:full? {| [REPL Command]
Print a backtrace.

Print a backtrace of all stack frames, or innermost count frames. If count is negative,
the last count frames will be shown.

up [count] [REPL Command]
Select a calling stack frame.

Select and print stack frames that called this one. An argument says how many
frames up to go.

down [count] [REPL Command]
Select a called stack frame.

Select and print stack frames called by this one. An argument says how many frames
down to go.

frame [idx] [REPL Command]
Show a frame.

Show the selected frame. With an argument, select a frame by index, then show it.

locals [REPL Command]
Show local variables.

Show locally-bound variables in the selected frame.

error-message [REPL Command]
error [REPL Command|
Show error message.

Display the message associated with the error that started the current debugging
REPL.

registers [REPL Command]
Show the VM registers associated with the current frame.

See Section 9.3.3 [Stack Layout], page 845, for more information on VM stack frames.

width [cols] [REPL Command]
Sets the number of display columns in the output of ,backtrace and ,locals to cols.
If cols is not given, the width of the terminal is used.

The next 3 commands work at any REPL.

break proc [REPL Command|
Set a breakpoint at proc.

break-at-source file line [REPL Command]
Set a breakpoint at the given source location.

Chapter 4: Programming in Scheme 53

tracepoint proc [REPL Command|
Set a tracepoint on the given procedure. This will cause all calls to the procedure to
print out a tracing message. See Section 6.26.4.4 [Tracing Traps|, page 498, for more
information.

The rest of the commands in this subsection all apply only when the stack is continuable
— in other words when it makes sense for the program that the stack comes from to continue
running. Usually this means that the program stopped because of a trap or a breakpoint.

step [REPL Command]
Tell the debugged program to step to the next source location.

next [REPL Command|
Tell the debugged program to step to the next source location in the same frame.
(See Section 6.26.4 [Traps|, page 493, for the details of how this works.)

finish [REPL Command]
Tell the program being debugged to continue running until the completion of the
current stack frame, and at that time to print the result and reenter the REPL.

4.4.4.7 Inspect Commands

inspect exp [REPL Command]|
Inspect the result(s) of evaluating exp.

pretty-print exp [REPL Command]|
Pretty-print the result(s) of evaluating exp.

4.4.4.8 System Commands

gc [REPL Command|
Garbage collection.

statistics [REPL Command]|
Display statistics.

option [name] [exp] [REPL Command]
With no arguments, lists all options. With one argument, shows the current value
of the name option. With two arguments, sets the name option to the result of
evaluating the Scheme expression exp.

quit [REPL Command|
Quit this session.

Current REPL options include:

compile-options
The options used when compiling expressions entered at the REPL. See Sec-
tion 6.16.6 [Compilation], page 393, for more on compilation options.

interp Whether to interpret or compile expressions given at the REPL, if such a choice
is available. Off by default (indicating compilation).

54 Guile Reference Manual

prompt A customized REPL prompt. #f by default, indicating the default prompt.

print A procedure of two arguments used to print the result of evaluating each ex-
pression. The arguments are the current REPL and the value to print. By
default, #f, to use the default procedure.

value-history
Whether value history is on or not. See Section 4.4.3 [Value History|, page 48.

on-error What to do when an error happens. By default, debug, meaning to enter
the debugger. Other values include backtrace, to show a backtrace without
entering the debugger, or report, to simply show a short error printout.

Default values for REPL options may be set using repl-default-option-set! from
(system repl common):

repl-default-option-set! key value [Scheme Procedure]
Set the default value of a REPL option. This function is particularly useful in a user’s
init file. See Section 4.4.1 [Init File], page 48.

4.4.5 Error Handling

When code being evaluated from the REPL hits an error, Guile enters a new prompt,
allowing you to inspect the context of the error.
scheme@(guile-user)> (map string-append '("a" "b") '("c" #\d))
ERROR: In procedure string-append:
ERROR: Wrong type (expecting string): #\d
Entering a new prompt. Type ~,bt' for a backtrace or “,q' to continue.
scheme@(guile-user) [1]>

The new prompt runs inside the old one, in the dynamic context of the error. It is a
recursive REPL, augmented with a reified representation of the stack, ready for debugging.

,backtrace (abbreviated ,bt) displays the Scheme call stack at the point where the
error occurred:

scheme@(guile-user) [1]> ,Dbt
1 (map #<procedure string-append _> ("a" "b") ("c" #\d))
0 (string-append "b" #\d)
In the above example, the backtrace doesn’t have much source information, as map and
string-append are both primitives. But in the general case, the space on the left of the
backtrace indicates the line and column in which a given procedure calls another.

You can exit a recursive REPL in the same way that you exit any REPL: via ‘(quit)’,
‘,quit’ (abbreviated ¢,q’), or C-d, among other options.

4.4.6 Interactive Debugging

A recursive debugging REPL exposes a number of other meta-commands that inspect the
state of the computation at the time of the error. These commands allow you to

e display the Scheme call stack at the point where the error occurred;

e move up and down the call stack, to see in detail the expression being evaluated, or
the procedure being applied, in each frame; and

Chapter 4: Programming in Scheme 55

e examine the values of variables and expressions in the context of each frame.

See Section 4.4.4.6 [Debug Commands|, page 52, for documentation of the individual com-
mands. This section aims to give more of a walkthrough of a typical debugging session.

First, we're going to need a good error. Let’s try to macroexpand the expression
(unquote foo), outside of a quasiquote form, and see how the macroexpander reports
this error.

scheme@(guile-user)> (macroexpand '(unquote foo))

ERROR: In procedure macroexpand:

ERROR: unquote: expression not valid outside of quasiquote in (unquote foo)
Entering a new prompt. Type ~,bt' for a backtrace or “,q' to continue.
scheme@(guile-user) [1]>

The backtrace command, which can also be invoked as bt, displays the call stack (aka
backtrace) at the point where the debugger was entered:

scheme@(guile-user) [1]> ,Dbt
In ice-9/psyntax.scm:
1130:21 3 (chi-top (unquote foo) () ((top)) e (eval) (hygiene #))
1071:30 2 (syntax-type (unquote foo) () ((top)) #f #f (# #) #f)
1368:28 1 (chi-macro #<procedure de9360 at ice-9/psyntax.scm...> ...)
In unknown file:
0 (scm-error syntax-error macroexpand ""a: “a in “a" # #f)

A call stack consists of a sequence of stack frames, with each frame describing one
procedure which is waiting to do something with the values returned by another. Here we
see that there are four frames on the stack.

Note that macroexpand is not on the stack — it must have made a tail call to chi-top,
as indeed we would find if we searched ice-9/psyntax.scm for its definition.

When you enter the debugger, the innermost frame is selected, which means that the
commands for getting information about the “current” frame, or for evaluating expressions
in the context of the current frame, will do so by default with respect to the innermost
frame. To select a different frame, so that these operations will apply to it instead, use the
up, down and frame commands like this:

scheme@(guile-user) [1]> ,up
In ice-9/psyntax.scm:

1368:28 1 (chi-macro #<procedure de9360 at ice-9/psyntax.scm...> ...)
scheme@(guile-user) [1]> ,frame 3
In ice-9/psyntax.scm:

1130:21 3 (chi-top (unquote foo) () ((top)) e (eval) (hygiene #))
scheme@(guile-user) [1]> ,down
In ice-9/psyntax.scm:

1071:30 2 (syntax-type (unquote foo) () ((top)) #f #f (# #) #f)

Perhaps we’re interested in what’s going on in frame 2, so we take a look at its local
variables:

scheme@(guile-user) [1]> ,locals
Local variables:
$1 = e = (unquote foo)

56 Guile Reference Manual

$2=r = 0O

$3 = w = ((top))

$4 = s = #f

$5 = rib = #£f

$6 = mod = (hygiene guile-user)
$7 = for-car? = #f

$8 = first = unquote

$9 = ftype = macro

$10 = fval = #<procedure de9360 at ice-9/psyntax.scm:2817:2 (x)>
$11 = fe = unquote

$12 = fw = ((top))

$13 = fs = #f

$14 = fmod = (hygiene guile-user)

All of the values are accessible by their value-history names ($n):

scheme@(guile-user) [1]> $10
$15 = #<procedure de9360 at ice-9/psyntax.scm:2817:2 (x)>

We can even invoke the procedure at the REPL directly:

scheme@(guile-user) [1]> ($10 'not-going-to-work)

ERROR: In procedure macroexpand:

ERROR: source expression failed to match any pattern in not-going-to-work
Entering a new prompt. Type ~,bt' for a backtrace or “,q' to continue.

Well at this point we’ve caused an error within an error. Let’s just quit back to the top
level:

scheme@(guile-user) [2]> ,q
scheme@(guile-user) [1]> ,q
scheme@(guile-user)>

Finally, as a word to the wise: hackers close their REPL prompts with C-d.

4.5 Using Guile in Emacs

Any text editor can edit Scheme, but some are better than others. Emacs is the best, of
course, and not just because it is a fine text editor. Emacs has good support for Scheme
out of the box, with sensible indentation rules, parenthesis-matching, syntax highlighting,
and even a set of keybindings for structural editing, allowing navigation, cut-and-paste, and
transposition operations that work on balanced S-expressions.

As good as it is, though, two things will vastly improve your experience with Emacs and
Guile.

The first is Taylor Campbell’s Paredit (http://www.emacswiki.org/emacs/ParEdit).
You should not code in any dialect of Lisp without Paredit. (They say that unopinionated
writing is boring—hence this tone—but it’s the truth, regardless.) Paredit is the bee’s
knees.

The second is José Antonio Ortega Ruiz’s Geiser (http://www.nongnu.org/geiser/).
Geiser complements Emacs’ scheme-mode with tight integration to running Guile processes
via a comint-mode REPL buffer.

http://www.emacswiki.org/emacs/ParEdit
http://www.nongnu.org/geiser/

Chapter 4: Programming in Scheme 57

Of course there are keybindings to switch to the REPL, and a good REPL environment,
but Geiser goes beyond that, providing;:

e Form evaluation in the context of the current file’s module.
e Macro expansion.
e File/module loading and/or compilation.

e Namespace-aware identifier completion (including local bindings, names visible in the
current module, and module names).

e Autodoc: the echo area shows information about the signature of the procedure/macro
around point automatically.

e Jump to definition of identifier at point.

e Access to documentation (including docstrings when the implementation provides it).
e Listings of identifiers exported by a given module.

e Listings of callers/callees of procedures.

e Rudimentary support for debugging and error navigation.

e Support for multiple, simultaneous REPLs.

See Geiser’s web page at http://www.nongnu.org/geiser/, for more information.

4.6 Using Guile Tools

Guile also comes with a growing number of command-line utilities: a compiler, a disassem-
bler, some module inspectors, and in the future, a system to install Guile packages from
the internet. These tools may be invoked using the guild program.

$ guild compile -o foo.go foo.scm
wrote “foo.go'

This program used to be called guile-tools up to Guile version 2.0.1, and for backward
compatibility it still may be called as such. However we changed the name to guild, not
only because it is pleasantly shorter and easier to read, but also because this tool will serve
to bind Guile wizards together, by allowing hackers to share code with each other using a
CPAN:-like system.

See Section 6.16.6 [Compilation], page 393, for more on guild compile.
A complete list of guild scripts can be had by invoking guild list, or simply guild.

4.7 Installing Site Packages

At some point, you will probably want to share your code with other people. To do so
effectively, it is important to follow a set of common conventions, to make it easy for the
user to install and use your package.

The first thing to do is to install your Scheme files where Guile can find them. When
Guile goes to find a Scheme file, it will search a load path to find the file: first in Guile’s own
path, then in paths for site packages. A site package is any Scheme code that is installed
and not part of Guile itself. See Section 6.16.8 [Load Paths], page 397, for more on load
paths.

There are several site paths, for historical reasons, but the one that should generally
be used can be obtained by invoking the %site-dir procedure. See Section 6.23.1 [Build

http://www.nongnu.org/geiser/

58 Guile Reference Manual

Config], page 465. If Guile 3.0 is installed on your system in /usr/, then (}site-dir) will
be /usr/share/guile/site/3.0. Scheme files should be installed there.

If you do not install compiled .go files, Guile will compile your modules and programs
when they are first used, and cache them in the user’s home directory. See Section 6.16.6
[Compilation], page 393, for more on auto-compilation. However, it is better to compile the
files before they are installed, and to just copy the files to a place that Guile can find them.

As with Scheme files, Guile searches a path to find compiled .go files, the %load-
compiled-path. By default, this path has two entries: a path for Guile’s files, and a path
for site packages. You should install your .go files into the latter directory, whose value
is returned by invoking the %site-ccache-dir procedure. As in the previous example, if
Guile 3.0 is installed on your system in /usr/, then (Y%site-ccache-dir) site packages will
be /usr/lib/guile/3.0/site-ccache.

Note that a .go file will only be loaded in preference to a .scm file if it is newer. For
that reason, you should install your Scheme files first, and your compiled files second. See
Section 6.16.8 [Load Paths], page 397, for more on the loading process.

Finally, although this section is only about Scheme, sometimes you need to install
C extensions too. Shared libraries should be installed in the extensions dir. This
value can be had from the build config (see Section 6.23.1 [Build Config], page 465).
Again, if Guile 3.0 is installed on your system in /usr/, then the extensions dir will be
/usr/1lib/guile/3.0/extensions.

4.8 Distributing Guile Code

There’s a tool that doesn’t come bundled with Guile and yet can be very useful in your day
to day experience with it. This tool is Hall (https://gitlab.com/a-sassmannshausen/
guile-hall).

Hall helps you create, manage, and package your Guile projects through a simple
command-line interface. When you start a new project, Hall creates a folder containing a
scaffold of your new project. It contains a directory for your tests, for your libraries, for
your scripts and for your documentation. This means you immediately know where to put
the files you are hacking on.

In addition, the scaffold will include your basic “Autotools” setup, so you don’t have
to take care of that yourself (see Section “The GNU Build System” in Autoconf: Creating
Automatic Configuration Scripts, for more information on the GNU “Autotools”). Having
Autotools set up with your project means you can immediately start hacking on your project
without worrying about whether your code will work on other people’s computers. Hall can
also generate package definitions for the GNU Guix package manager, making it easy for
Guix users to install it.

https://gitlab.com/a-sassmannshausen/guile-hall
https://gitlab.com/a-sassmannshausen/guile-hall

99

5 Programming in C

This part of the manual explains the general concepts that you need to understand when
interfacing to Guile from C. You will learn about how the latent typing of Scheme is em-
bedded into the static typing of C, how the garbage collection of Guile is made available to
C code, and how continuations influence the control flow in a C program.

This knowledge should make it straightforward to add new functions to Guile that can
be called from Scheme. Adding new data types is also possible and is done by defining
foreign objects.

The Section 5.7 [Programming Overview|, page 83, section of this part contains general
musings and guidelines about programming with Guile. It explores different ways to design
a program around Guile, or how to embed Guile into existing programs.

For a pedagogical yet detailed explanation of how the data representation of Guile is
implemented, See Section 9.2 [Data Representation], page 834. You don’t need to know the
details given there to use Guile from C, but they are useful when you want to modify Guile
itself or when you are just curious about how it is all done.

For detailed reference information on the variables, functions etc. that make up Guile’s
application programming interface (API), See Chapter 6 [API Reference], page 99.

5.1 Parallel Installations

Guile provides strong API and ABI stability guarantees during stable series, so that if a
user writes a program against Guile version 2.2.3, it will be compatible with some future
version 2.2.7. We say in this case that 2.2 is the effective version, composed of the major
and minor versions, in this case 2 and 2.

Users may install multiple effective versions of Guile, with each version’s headers, li-
braries, and Scheme files under their own directories. This provides the necessary stability
guarantee for users, while also allowing Guile developers to evolve the language and its
implementation.

However, parallel installability does have a down-side, in that users need to know which
version of Guile to ask for, when they build against Guile. Guile solves this problem by
installing a file to be read by the pkg-config utility, a tool to query installed packages
by name. Guile encodes the version into its pkg-config name, so that users can ask for
guile-2.2 or guile-3.0, as appropriate.

For effective version 3.0, for example, you would invoke pkg-config --cflags --1ibs
guile-3.0 to get the compilation and linking flags necessary to link to version 3.0 of Guile.
You would typically run pkg-config during the configuration phase of your program and
use the obtained information in the Makefile.

Guile’s pkg-config file, guile-3.0.pc, defines additional useful variables:

sitedir The default directory where Guile looks for Scheme source and compiled files
(see Section 4.7 [Installing Site Packages], page 57). Run pkg-config guile-
3.0 --variable=sitedir to see its value. See Section 5.8.2 [Autoconf Macros],
page 94, for more on how to use it from Autoconf.

60 Guile Reference Manual

extensiondir
The default directory where Guile looks for extensions—i.e., shared libraries
providing additional features (see Section 6.19.2 [Foreign Extensions], page 434).
Run pkg-config guile-3.0 --variable=extensiondir to see its value.

guile
guild The absolute file name of the guile and guild commands'. Run pkg-config
guile-3.0 --variable=guile or —-variable=guild to see their value.

These variables allow users to deal with program name transformations that
may be specified when configuring Guile with --program-transform-name,
--program-suffix, or —-program-prefix (see Section “Transformation Op-
tions” in GNU Autoconf Manual).

See the pkg-config man page, for more information, or its web site, http://pkg-config.
freedesktop.org/. See Section 5.8 [Autoconf Support], page 94, for more on checking for
Guile from within a configure.ac file.

5.2 Linking Programs With Guile

This section covers the mechanics of linking your program with Guile on a typical POSIX
system.

The header file <libguile.h> provides declarations for all of Guile’s functions and con-
stants. You should #include it at the head of any C source file that uses identifiers described
in this manual. Once you’ve compiled your source files, you need to link them against the
Guile object code library, 1libguile.

As noted in the previous section, <libguile.h> is not in the default search path for
headers. The following command lines give respectively the C compilation and link flags
needed to build programs using Guile 3.0:

pkg-config guile-3.0 --cflags
pkg-config guile-3.0 --libs

5.2.1 Guile Initialization Functions

To initialize Guile, you can use one of several functions. The first, scm_with_guile, is the
most portable way to initialize Guile. It will initialize Guile when necessary and then call
a function that you can specify. Multiple threads can call scm_with_guile concurrently
and it can also be called more than once in a given thread. The global state of Guile will
survive from one call of scm_with_guile to the next. Your function is called from within
scm_with_guile since the garbage collector of Guile needs to know where the stack of each
thread is.

A second function, scm_init_guile, initializes Guile for the current thread. When it
returns, you can use the Guile API in the current thread. This function employs some
non-portable magic to learn about stack bounds and might thus not be available on all
platforms.

One common way to use Guile is to write a set of C functions which perform some useful
task, make them callable from Scheme, and then link the program with Guile. This yields

! The guile and guild variables defined starting from Guile version 2.0.12.

http://pkg-config.freedesktop.org/
http://pkg-config.freedesktop.org/

Chapter 5: Programming in C 61

a Scheme interpreter just like guile, but augmented with extra functions for some specific
application — a special-purpose scripting language

In this situation, the application should probably process its command-line arguments
in the same manner as the stock Guile interpreter. To make that straightforward, Guile
provides the scm_boot_guile and scm_shell function.

For more about these functions, see Section 6.4 [Initialization]|, page 101.

5.2.2 A Sample Guile Main Program

Here is simple-guile.c, source code for a main and an inner_main function that will
produce a complete Guile interpreter.

/* simple-guile.c --- Start Guile from C. */
#include <libguile.h>

static void
inner_main (void *closure, int argc, char *xargv)
{

/* preparation */

scm_shell (argc, argv);

/* after exit */

}

int

main (int argc, char x*argv)

{
scm_boot_guile (argc, argv, inner_main, 0);
return 0; /* never reached, see inner_main */

¥

The main function calls scm_boot_guile to initialize Guile, passing it inner_main.
Once scm_boot_guile is ready, it invokes inner_main, which calls scm_shell to process
the command-line arguments in the usual way.

5.2.3 Building the Example with Make

Here is a Makefile which you can use to compile the example program. It uses pkg-config
to learn about the necessary compiler and linker flags.

Use GCC, if you have it installed.
CC=gcc

Tell the C compiler where to find <libguile.h>
CFLAGS="pkg-config --cflags guile-3.0°

Tell the linker what libraries to use and where to find them.
LIBS="pkg-config —-libs guile-3.0°

simple-guile: simple-guile.o

62 Guile Reference Manual

${CC} simple-guile.o ${LIBS} -o simple-guile

simple-guile.o: simple-guile.c
${CC} -c ${CFLAGS} simple-guile.c

5.2.4 Building the Example with Autoconf

If you are using the GNU Autoconf package to make your application more portable, Au-
toconf will settle many of the details in the Makefile automatically, making it much simpler
and more portable; we recommend using Autoconf with Guile. Here is a configure.ac file
for simple-guile that uses the standard PKG_CHECK_MODULES macro to check for Guile.
Autoconf will process this file into a configure script. We recommend invoking Autoconf
via the autoreconf utility.

AC_INIT(simple-guile.c)

Find a C compiler.
AC_PROG_CC

Check for Guile
PKG_CHECK_MODULES ([GUILE], [guile-3.0])

Generate a Makefile, based on the results.
AC_OUTPUT (Makefile)

Run autoreconf -vif to generate configure.

Here is a Makefile.in template, from which the configure script produces a Makefile
customized for the host system:

The configure script fills in these values.
CC=eCCe

CFLAGS=QGUILE_CFLAGS@

LIBS=QGUILE_LIBSQ

simple-guile: simple-guile.o
${CC} simple-guile.o ${LIBS} -o simple-guile
simple-guile.o: simple-guile.c
${CC} -c ${CFLAGS} simple-guile.c
The developer should use Autoconf to generate the configure script from the
configure.ac template, and distribute configure with the application. Here’s how a
user might go about building the application:

$ 1s

Makefile.in configurex* configure.ac simple-guile.c
$./configure

checking for gcc... ccache gcc

checking whether the C compiler works... yes

checking for C compiler default output file name... a.out

checking for suffix of executables...
checking whether we are cross compiling... no

Chapter 5: Programming in C 63

checking for suffix of object files... o

checking whether we are using the GNU C compiler... yes

checking whether ccache gcc accepts -g... yes

checking for ccache gcc option to accept ISO C89... none needed

checking for pkg-config... /usr/bin/pkg-config

checking pkg-config is at least version 0.9.0... yes

checking for GUILE... yes

configure: creating ./config.status

config.status: creating Makefile

$ make

[...]

$./simple-guile

guile> (+ 1 2 3)

6

guile> (getpwnam "jimb")

#("jimb" "83Z7d75W2tyJQ" 4008 10 "Jim Blandy" "/u/jimb"
"/usr/local/bin/bash")

guile> (exit)

$

5.3 Linking Guile with Libraries

The previous section has briefly explained how to write programs that make use of an
embedded Guile interpreter. But sometimes, all you want to do is make new primitive
procedures and data types available to the Scheme programmer. Writing a new version of
guile is inconvenient in this case and it would in fact make the life of the users of your
new features needlessly hard.

For example, suppose that there is a program guile-db that is a version of Guile with
additional features for accessing a database. People who want to write Scheme programs
that use these features would have to use guile-db instead of the usual guile program.
Now suppose that there is also a program guile-gtk that extends Guile with access to
the popular Gtk+ toolkit for graphical user interfaces. People who want to write GUIs
in Scheme would have to use guile-gtk. Now, what happens when you want to write a
Scheme application that uses a GUI to let the user access a database? You would have to
write a third program that incorporates both the database stuff and the GUI stuff. This
might not be easy (because guile-gtk might be a quite obscure program, say) and taking
this example further makes it easy to see that this approach can not work in practice.

It would have been much better if both the database features and the GUI feature had
been provided as libraries that can just be linked with guile. Guile makes it easy to do just
this, and we encourage you to make your extensions to Guile available as libraries whenever
possible.

You write the new primitive procedures and data types in the normal fashion, and link
them into a shared library instead of into a stand-alone program. The shared library can
then be loaded dynamically by Guile.

64 Guile Reference Manual

5.3.1 A Sample Guile Extension

This section explains how to make the Bessel functions of the C library available to Scheme.
First we need to write the appropriate glue code to convert the arguments and return values
of the functions from Scheme to C and back. Additionally, we need a function that will add
them to the set of Guile primitives. Because this is just an example, we will only implement
this for the jO function.

Consider the following file bessel.c.

#include <math.h>
#include <libguile.h>

SCM
jO_wrapper (SCM x)
{
return scm_from_double (jO (scm_to_double (x)));
}
void
init_bessel ()
{
scm_c_define_gsubr ("jOo", 1, O, 0, jO_wrapper);
}
This C source file needs to be compiled into a shared library. Here is how to do it on
GNU/Linux:

gcc “pkg-config --cflags guile-3.0" \
-shared -o libguile-bessel.so —-fPIC bessel.c
For creating shared libraries portably, we recommend the use of GNU Libtool (see Section
“Introduction” in GNU Libtool).

A shared library can be loaded into a running Guile process with the function load-
extension. In addition to the name of the library to load, this function also expects the
name of a function from that library that will be called to initialize it. For our example,
we are going to call the function init_bessel which will make jO_wrapper available to
Scheme programs with the name jO. Note that we do not specify a filename extension such
as .so when invoking load-extension. The right extension for the host platform will be
provided automatically.

(load-extension "libguile-bessel" "init_bessel")
(30 2)
= 0.223890779141236
For this to work, load-extension must be able to find 1ibguile-bessel, of course. It
will look in the places that are usual for your operating system, and it will additionally look
into the directories listed in the LTDL_LIBRARY_PATH environment variable.

To see how these Guile extensions via shared libraries relate to the module system, See
Section 2.5.3 [Putting Extensions into Modules|, page 12.

5.4 General concepts for using libguile

When you want to embed the Guile Scheme interpreter into your program or library, you
need to link it against the 1ibguile library (see Section 5.2 [Linking Programs With Guile],
page 60). Once you have done this, your C code has access to a number of data types and

Chapter 5: Programming in C 65

functions that can be used to invoke the interpreter, or make new functions that you have
written in C available to be called from Scheme code, among other things.

Scheme is different from C in a number of significant ways, and Guile tries to make the
advantages of Scheme available to C as well. Thus, in addition to a Scheme interpreter,
libguile also offers dynamic types, garbage collection, continuations, arithmetic on arbitrary
sized numbers, and other things.

The two fundamental concepts are dynamic types and garbage collection. You need to
understand how libguile offers them to C programs in order to use the rest of libguile. Also,
the more general control flow of Scheme caused by continuations needs to be dealt with.

Running asynchronous signal handlers and multi-threading is known to C code already,
but there are of course a few additional rules when using them together with libguile.

5.4.1 Dynamic Types

Scheme is a dynamically-typed language; this means that the system cannot, in general,
determine the type of a given expression at compile time. Types only become apparent at
run time. Variables do not have fixed types; a variable may hold a pair at one point, an
integer at the next, and a thousand-element vector later. Instead, values, not variables,
have fixed types.

In order to implement standard Scheme functions like pair? and string? and provide
garbage collection, the representation of every value must contain enough information to
accurately determine its type at run time. Often, Scheme systems also use this information
to determine whether a program has attempted to apply an operation to an inappropriately
typed value (such as taking the car of a string).

Because variables, pairs, and vectors may hold values of any type, Scheme implementa-
tions use a uniform representation for values — a single type large enough to hold either a
complete value or a pointer to a complete value, along with the necessary typing informa-
tion.

In Guile, this uniform representation of all Scheme values is the C type SCM. This is
an opaque type and its size is typically equivalent to that of a pointer to void. Thus, SCM
values can be passed around efficiently and they take up reasonably little storage on their
own.

The most important rule is: You never access a SCM value directly; you only pass it to
functions or macros defined in libguile.

As an obvious example, although a SCM variable can contain integers, you can of course
not compute the sum of two SCM values by adding them with the C + operator. You must
use the libguile function scm_sum.

Less obvious and therefore more important to keep in mind is that you also cannot
directly test SCM values for trueness. In Scheme, the value #f is considered false and of
course a SCM variable can represent that value. But there is no guarantee that the SCM
representation of #f looks false to C code as well. You need to use scm_is_true or scm_
is_false to test a SCM value for trueness or falseness, respectively.

You also can not directly compare two SCM values to find out whether they are identical
(that is, whether they are eq? in Scheme terms). You need to use scm_is_eq for this.

The one exception is that you can directly assign a SCM value to a SCM variable by using
the C = operator.

66 Guile Reference Manual

The following (contrived) example shows how to do it right. It implements a function of
two arguments (a and flag) that returns a+1 if flag is true, else it returns a unchanged.

SCM
my_incrementing_function (SCM a, SCM flag)
{

SCM result;

if (scm_is_true (flag))

result = scm_sum (a, scm_from_int (1));
else

result = a;

return result;

}

Often, you need to convert between SCM values and appropriate C values. For example,
we needed to convert the integer 1 to its SCM representation in order to add it to a. Libguile
provides many function to do these conversions, both from C to SCM and from SCM to C.

The conversion functions follow a common naming pattern: those that make a SCM value
from a C value have names of the form scm_from_type (...) and those that convert a SCM
value to a C value use the form scm_to_type (...).

However, it is best to avoid converting values when you can. When you must combine
C values and SCM values in a computation, it is often better to convert the C values to SCM
values and do the computation by using libguile functions than to the other way around
(converting SCM to C and doing the computation some other way).

As a simple example, consider this version of my_incrementing_function from above:
SCM
my_other_incrementing_function (SCM a, SCM flag)
{

int result;

if (scm_is_true (flag))

result = scm_to_int (a) + 1;
else

result = scm_to_int (a);

return scm_from_int (result);

}

This version is much less general than the original one: it will only work for values A that
can fit into a int. The original function will work for all values that Guile can represent
and that scm_sum can understand, including integers bigger than long long, floating point
numbers, complex numbers, and new numerical types that have been added to Guile by
third-party libraries.

Also, computing with SCM is not necessarily inefficient. Small integers will be encoded
directly in the SCM value, for example, and do not need any additional memory on the heap.
See Section 9.2 [Data Representation], page 834, to find out the details.

Chapter 5: Programming in C 67

Some special SCM values are available to C code without needing to convert them from
C values:

Scheme value C representation

#£ SCM_BOOL_F
#t SCM_BOOL_T
O SCM_EOL

In addition to SCM, Guile also defines the related type scm_t_bits. This is an unsigned
integral type of sufficient size to hold all information that is directly contained in a SCM
value. The scm_t_bits type is used internally by Guile to do all the bit twiddling explained
in Section 9.2 [Data Representation], page 834, but you will encounter it occasionally in
low-level user code as well.

5.4.2 Garbage Collection

As explained above, the SCM type can represent all Scheme values. Some values fit entirely
into a SCM value (such as small integers), but other values require additional storage in the
heap (such as strings and vectors). This additional storage is managed automatically by
Guile. You don’t need to explicitly deallocate it when a SCM value is no longer used.

Two things must be guaranteed so that Guile is able to manage the storage automatically:
it must know about all blocks of memory that have ever been allocated for Scheme values,
and it must know about all Scheme values that are still being used. Given this knowledge,
Guile can periodically free all blocks that have been allocated but are not used by any active
Scheme values. This activity is called garbage collection.

Guile’s garbage collector will automatically discover references to SCM objects that origi-
nate in global variables, static data sections, function arguments or local variables on the C
and Scheme stacks, and values in machine registers. Other references to SCM objects, such
as those in other random data structures in the C heap that contain fields of type SCM, can
be made visible to the garbage collector by calling the functions scm_gc_protect_object
or scm_permanent_object. Collectively, these values form the “root set” of garbage col-
lection; any value on the heap that is referenced directly or indirectly by a member of the
root set is preserved, and all other objects are eligible for reclamation.

In Guile, garbage collection has two logical phases: the mark phase, in which the collector
discovers the set of all live objects, and the sweep phase, in which the collector reclaims the
resources associated with dead objects. The mark phase pauses the program and traces all
SCM object references, starting with the root set. The sweep phase actually runs concurrently
with the main program, incrementally reclaiming memory as needed by allocation.

In the mark phase, the garbage collector traces the Scheme stack and heap precisely.
Because the Scheme stack and heap are managed by Guile, Guile can know precisely where
in those data structures it might find references to other heap objects. This is not the case,
unfortunately, for pointers on the C stack and static data segment. Instead of requiring
the user to inform Guile about all variables in C that might point to heap objects, Guile
traces the C stack and static data segment conservatively. That is to say, Guile just treats
every word on the C stack and every C global variable as a potential reference in to the

68 Guile Reference Manual

Scheme heap?. Any value that looks like a pointer to a GC-managed object is treated as
such, whether it actually is a reference or not. Thus, scanning the C stack and static data
segment is guaranteed to find all actual references, but it might also find words that only
accidentally look like references. These “false positives” might keep SCM objects alive that
would otherwise be considered dead. While this might waste memory, keeping an object
around longer than it strictly needs to is harmless. This is why this technique is called
“conservative garbage collection”. In practice, the wasted memory seems to be no problem,
as the static C root set is almost always finite and small, given that the Scheme stack is
separate from the C stack.

The stack of every thread is scanned in this way and the registers of the CPU and all
other memory locations where local variables or function parameters might show up are
included in this scan as well.

The consequence of the conservative scanning is that you can just declare local variables
and function parameters of type SCM and be sure that the garbage collector will not free
the corresponding objects.

However, a local variable or function parameter is only protected as long as it is really
on the stack (or in some register). As an optimization, the C compiler might reuse its
location for some other value and the SCM object would no longer be protected. Normally,
this leads to exactly the right behavior: the compiler will only overwrite a reference when it
is no longer needed and thus the object becomes unprotected precisely when the reference
disappears, just as wanted.

There are situations, however, where a SCM object needs to be around longer than its
reference from a local variable or function parameter. This happens, for example, when
you retrieve some pointer from a foreign object and work with that pointer directly. The
reference to the SCM foreign object might be dead after the pointer has been retrieved, but
the pointer itself (and the memory pointed to) is still in use and thus the foreign object
must be protected. The compiler does not know about this connection and might overwrite
the SCM reference too early.

To get around this problem, you can use scm_remember_upto_here_1 and its cousins.
It will keep the compiler from overwriting the reference. See Section 5.5.4 [Foreign Object
Memory Management|, page 77.

5.4.3 Control Flow

Scheme has a more general view of program flow than C, both locally and non-locally.

Controlling the local flow of control involves things like gotos, loops, calling functions
and returning from them. Non-local control flow refers to situations where the program
jumps across one or more levels of function activations without using the normal call or
return operations.

The primitive means of C for local control flow is the goto statement, together with if.
Loops done with for, while or do could in principle be rewritten with just goto and if. In
Scheme, the primitive means for local control flow is the function call (together with if).

2 Note that Guile does not scan the C heap for references, so a reference to a SCM object from a memory
segment allocated with malloc will have to use some other means to keep the SCM object alive. See
Section 6.17.1 [Garbage Collection Functions], page 408.

Chapter 5: Programming in C 69

Thus, the repetition of some computation in a loop is ultimately implemented by a function
that calls itself, that is, by recursion.

This approach is theoretically very powerful since it is easier to reason formally about
recursion than about gotos. In C, using recursion exclusively would not be practical, though,
since it would eat up the stack very quickly. In Scheme, however, it is practical: function
calls that appear in a tail position do not use any additional stack space (see Section 3.3.2
[Tail Calls], page 24).

A function call is in a tail position when it is the last thing the calling function does.
The value returned by the called function is immediately returned from the calling function.
In the following example, the call to bar-1 is in a tail position, while the call to bar-2 is
not. (The call to 1- in foo-2 is in a tail position, though.)

(define (foo-1 x)
(bar-1 (1- x)))

(define (foo-2 x)
(1- (bar-2 x)))

Thus, when you take care to recurse only in tail positions, the recursion will only use
constant stack space and will be as good as a loop constructed from gotos.

Scheme offers a few syntactic abstractions (do and named let) that make writing loops
slightly easier.

But only Scheme functions can call other functions in a tail position: C functions can
not. This matters when you have, say, two functions that call each other recursively to
form a common loop. The following (unrealistic) example shows how one might go about
determining whether a non-negative integer n is even or odd.

(define (my-even? n)
(cond ((zero? n) #t)
(else (my-odd? (1- mn)))))

(define (my-odd? n)
(cond ((zero? n) #f)
(else (my-even? (1- n)))))

Because the calls to my-even? and my-odd? are in tail positions, these two procedures
can be applied to arbitrary large integers without overflowing the stack. (They will still
take a lot of time, of course.)

However, when one or both of the two procedures would be rewritten in C, it could no
longer call its companion in a tail position (since C does not have this concept). You might
need to take this consideration into account when deciding which parts of your program to
write in Scheme and which in C.

In addition to calling functions and returning from them, a Scheme program can also
exit non-locally from a function so that the control flow returns directly to an outer level.
This means that some functions might not return at all.

Even more, it is not only possible to jump to some outer level of control, a Scheme
program can also jump back into the middle of a function that has already exited. This
might cause some functions to return more than once.

70 Guile Reference Manual

In general, these non-local jumps are done by invoking continuations that have previ-
ously been captured using call-with-current-continuation. Guile also offers a slightly
restricted set of functions, catch and throw, that can only be used for non-local exits.
This restriction makes them more efficient. Error reporting (with the function error) is
implemented by invoking throw, for example. The functions catch and throw belong to
the topic of exceptions.

Since Scheme functions can call C functions and vice versa, C code can experience the
more general control flow of Scheme as well. It is possible that a C function will not return
at all, or will return more than once. While C does offer setjmp and longjmp for non-local
exits, it is still an unusual thing for C code. In contrast, non-local exits are very common
in Scheme, mostly to report errors.

You need to be prepared for the non-local jumps in the control flow whenever you use a
function from libguile: it is best to assume that any libguile function might signal an
error or run a pending signal handler (which in turn can do arbitrary things).

It is often necessary to take cleanup actions when the control leaves a function non-
locally. Also, when the control returns non-locally, some setup actions might be called for.
For example, the Scheme function with-output-to-port needs to modify the global state so
that current-output-port returns the port passed to with-output-to-port. The global
output port needs to be reset to its previous value when with-output-to-port returns
normally or when it is exited non-locally. Likewise, the port needs to be set again when
control enters non-locally.

Scheme code can use the dynamic-wind function to arrange for the setting and reset-
ting of the global state. C code can use the corresponding scm_internal_dynamic_wind
function, or a scm_dynwind_begin/scm_dynwind_end pair together with suitable 'dynwind
actions’ (see Section 6.11.10 [Dynamic Wind], page 318).

Instead of coping with non-local control flow, you can also prevent it by erecting a
continuation barrier, See Section 6.11.14 [Continuation Barriers|, page 329. The function
scm_c_with_continuation_barrier, for example, is guaranteed to return exactly once.

5.4.4 Asynchronous Signals

You can not call libguile functions from handlers for POSIX signals, but you can register
Scheme handlers for POSIX signals such as SIGINT. These handlers do not run during the
actual signal delivery. Instead, they are run when the program (more precisely, the thread
that the handler has been registered for) reaches the next safe point.

The libguile functions themselves have many such safe points. Consequently, you must
be prepared for arbitrary actions anytime you call a libguile function. For example, even
scm_cons can contain a safe point and when a signal handler is pending for your thread,
calling scm_cons will run this handler and anything might happen, including a non-local
exit although scm_cons would not ordinarily do such a thing on its own.

If you do not want to allow the running of asynchronous signal handlers, you can
block them temporarily with scm_dynwind_block_asyncs, for example. See Section 6.22.3
[Asyncs], page 454.

Since signal handling in Guile relies on safe points, you need to make sure that your
functions do offer enough of them. Normally, calling libguile functions in the normal course
of action is all that is needed. But when a thread might spent a long time in a code section

Chapter 5: Programming in C 71

that calls no libguile function, it is good to include explicit safe points. This can allow the
user to interrupt your code with C-c, for example.

You can do this with the macro SCM_TICK. This macro is syntactically a statement.
That is, you could use it like this:

while (1)
{
SCM_TICK;
do_some_work ();

}

Frequent execution of a safe point is even more important in multi threaded programs,
See Section 5.4.5 [Multi-Threading], page 71.

5.4.5 Multi-Threading

Guile can be used in multi-threaded programs just as well as in single-threaded ones.

Each thread that wants to use functions from libguile must put itself into guile mode and
must then follow a few rules. If it doesn’t want to honor these rules in certain situations,
a thread can temporarily leave guile mode (but can no longer use libguile functions during
that time, of course).

Threads enter guile mode by calling scm_with_guile, scm_boot_guile, or scm_init_
guile. As explained in the reference documentation for these functions, Guile will then
learn about the stack bounds of the thread and can protect the SCM values that are stored
in local variables. When a thread puts itself into guile mode for the first time, it gets a
Scheme representation and is listed by all-threads, for example.

Threads in guile mode can block (e.g., do blocking I/O) without causing any problems?;
temporarily leaving guile mode with scm_without_guile before blocking slightly improves
GC performance, though. For some common blocking operations, Guile provides conve-
nience functions. For example, if you want to lock a pthread mutex while in guile mode,
you might want to use scm_pthread_mutex_lock which is just like pthread_mutex_lock
except that it leaves guile mode while blocking.

All libguile functions are (intended to be) robust in the face of multiple threads using
them concurrently. This means that there is no risk of the internal data structures of libguile
becoming corrupted in such a way that the process crashes.

A program might still produce nonsensical results, though. Taking hashtables as an
example, Guile guarantees that you can use them from multiple threads concurrently and
a hashtable will always remain a valid hashtable and Guile will not crash when you access
it. It does not guarantee, however, that inserting into it concurrently from two threads will
give useful results: only one insertion might actually happen, none might happen, or the
table might in general be modified in a totally arbitrary manner. (It will still be a valid
hashtable, but not the one that you might have expected.) Guile might also signal an error
when it detects a harmful race condition.

Thus, you need to put in additional synchronizations when multiple threads want to use
a single hashtable, or any other mutable Scheme object.

3 In Guile 1.8, a thread blocking in guile mode would prevent garbage collection to occur. Thus, threads
had to leave guile mode whenever they could block. This is no longer needed with Guile 2.x.

72 Guile Reference Manual

When writing C code for use with libguile, you should try to make it robust as well. An
example that converts a list into a vector will help to illustrate. Here is a correct version:

SCM

my_list_to_vector (SCM list)

{
SCM vector = scm_make_vector (scm_length (list), SCM_UNDEFINED);
size_t len, i;

len = scm_c_vector_length (vector);
i = 0;
while (i < len && scm_is_pair (list))
{
scm_c_vector_set_x (vector, i, scm_car (list));
list = scm_cdr (1list);
i++;
}
return vector;

}

The first thing to note is that storing into a SCM location concurrently from multiple
threads is guaranteed to be robust: you don’t know which value wins but it will in any case
be a valid SCM value.

But there is no guarantee that the list referenced by list is not modified in another
thread while the loop iterates over it. Thus, while copying its elements into the vector, the
list might get longer or shorter. For this reason, the loop must check both that it doesn’t
overrun the vector and that it doesn’t overrun the list. Otherwise, scm_c_vector_set_x
would raise an error if the index is out of range, and scm_car and scm_cdr would raise an
error if the value is not a pair.

It is safe to use scm_car and scm_cdr on the local variable list once it is known that
the variable contains a pair. The contents of the pair might change spontaneously, but it
will always stay a valid pair (and a local variable will of course not spontaneously point to
a different Scheme object).

Likewise, a vector such as the one returned by scm_make_vector is guaranteed to always
stay the same length so that it is safe to only use scm_c_vector_length once and store the
result. (In the example, vector is safe anyway since it is a fresh object that no other thread
can possibly know about until it is returned from my_list_to_vector.)

Of course the behavior of my_list_to_vector is suboptimal when list does indeed get
asynchronously lengthened or shortened in another thread. But it is robust: it will always
return a valid vector. That vector might be shorter than expected, or its last elements
might be unspecified, but it is a valid vector and if a program wants to rule out these cases,
it must avoid modifying the list asynchronously.

Here is another version that is also correct:

SCM
my_pedantic_list_to_vector (SCM list)
{

Chapter 5: Programming in C 73

SCM vector = scm_make_vector (scm_length (list), SCM_UNDEFINED) ;
size_t len, 1i;

len = scm_c_vector_length (vector);
i = 0;
while (i < len)
{
scm_c_vector_set_x (vector, i, scm_car (list));
list = scm_cdr (list);
it++;

}

return vector;

b

This version relies on the error-checking behavior of scm_car and scm_cdr. When the
list is shortened (that is, when list holds a non-pair), scm_car will throw an error. This
might be preferable to just returning a half-initialized vector.

The API for accessing vectors and arrays of various kinds from C takes a slightly different
approach to thread-robustness. In order to get at the raw memory that stores the elements
of an array, you need to reserve that array as long as you need the raw memory. During
the time an array is reserved, its elements can still spontaneously change their values, but
the memory itself and other things like the size of the array are guaranteed to stay fixed.
Any operation that would change these parameters of an array that is currently reserved
will signal an error. In order to avoid these errors, a program should of course put suitable
synchronization mechanisms in place. As you can see, Guile itself is again only concerned
about robustness, not about correctness: without proper synchronization, your program
will likely not be correct, but the worst consequence is an error message.

Real thread-safety often requires that a critical section of code is executed in a certain
restricted manner. A common requirement is that the code section is not entered a second
time when it is already being executed. Locking a mutex while in that section ensures that
no other thread will start executing it, blocking asyncs ensures that no asynchronous code
enters the section again from the current thread, and the error checking of Guile mutexes
guarantees that an error is signaled when the current thread accidentally reenters the critical
section via recursive function calls.

Guile provides two mechanisms to support critical sections as outlined above. You
can either use the macros SCM_CRITICAL_SECTION_START and SCM_CRITICAL_SECTION_END
for very simple sections; or use a dynwind context together with a call to scm_dynwind_
critical_section.

The macros only work reliably for critical sections that are guaranteed to not cause a
non-local exit. They also do not detect an accidental reentry by the current thread. Thus,
you should probably only use them to delimit critical sections that do not contain calls to
libguile functions or to other external functions that might do complicated things.

The function scm_dynwind_critical_section, on the other hand, will correctly deal
with non-local exits because it requires a dynwind context. Also, by using a separate mutex
for each critical section, it can detect accidental reentries.

74 Guile Reference Manual

5.5 Defining New Foreign Object Types

The foreign object type facility is Guile’s mechanism for importing object and types from
C or other languages into Guile’s system. If you have a C struct foo type, for example,
you can define a corresponding Guile foreign object type that allows Scheme code to handle
struct foo * objects.

To define a new foreign object type, the programmer provides Guile with some essential
information about the type — what its name is, how many fields it has, and its finalizer
(if any) — and Guile allocates a fresh type for it. Foreign objects can be accessed from
Scheme or from C.

5.5.1 Defining Foreign Object Types

To create a new foreign object type from C, call scm_make_foreign_object_type. It
returns a value of type SCM which identifies the new type.

Here is how one might declare a new type representing eight-bit gray-scale images:

#include <libguile.h>

struct image {
int width, height;
char *pixels;

/* The name of this image */
SCM name;

/* A function to call when this image is
modified, e.g., to update the screen,
or SCM_BOOL_F if no action necessary */

SCM update_func;

s

static SCM image_type;

void

init_image_type (void)

{
SCM name, slots;
scm_t_struct_finalize finalizer;

name = scm_from_utf8_symbol ("image");
slots = scm_list_1 (scm_from_utf8_symbol ("data"));
finalizer = NULL;

image_type =
scm_make_foreign_object_type (name, slots, finalizer);

Chapter 5: Programming in C 75

The result is an initialized image_type value that identifies the new foreign object type.
The next section describes how to create foreign objects and how to access their slots.

5.5.2 Creating Foreign Objects

Foreign objects contain zero or more “slots” of data. A slot can hold a pointer, an integer
that fits into a size_t or ssize_t, or a SCM value.

All objects of a given foreign type have the same number of slots. In the example from
the previous section, the image type has one slot, because the slots list passed to scm_make_
foreign_object_type is of length one. (The actual names given to slots are unimportant
for most users of the C interface, but can be used on the Scheme side to introspect on the
foreign object.)

To construct a foreign object and initialize its first slot, call scm_make_foreign_object_
1 (type, first_slot_value). There are similarly named constructors for initializing 0, 1,
2, or 3 slots, or initializing n slots via an array. See Section 6.20 [Foreign Objects], page 445,
for full details. Any fields that are not explicitly initialized are set to 0.

To get or set the value of a slot by index, you can use the scm_foreign_object_ref and
scm_foreign_object_set_x functions. These functions take and return values as void *
pointers; there are corresponding convenience procedures like _signed_ref, _unsigned_
set_x and so on for dealing with slots as signed or unsigned integers.

Foreign objects fields that are pointers can be tricky to manage. If possible, it is best
that all memory that is referenced by a foreign object be managed by the garbage collector.
That way, the GC can automatically ensure that memory is accessible when it is needed, and
freed when it becomes inaccessible. If this is not the case for your program — for example, if
you are exposing an object to Scheme that was allocated by some other, Guile-unaware part
of your program — then you will probably need to implement a finalizer. See Section 5.5.4
[Foreign Object Memory Management|, page 77, for more.

Continuing the example from the previous section, if the global variable image_type
contains the type returned by scm_make_foreign_object_type, here is how we could con-
struct a foreign object whose “data” field contains a pointer to a freshly allocated struct
image:

SCM
make_image (SCM name, SCM s_width, SCM s_height)
{

struct image *image;

int width = scm_to_int (s_width);

int height = scm_to_int (s_height);

/* Allocate the “struct image'. Because we
use scm_gc_malloc, this memory block will
be automatically reclaimed when it becomes
inaccessible, and its members will be traced
by the garbage collector. */

image = (struct image *)
scm_gc_malloc (sizeof (struct image), "image");

76 Guile Reference Manual

image->width = width;
image->height = height;

/* Allocating the pixels with
scm_gc_malloc_pointerless means that the
pixels data is collectable by GC, but
that GC shouldn't spend time tracing its
contents for nested pointers because there
aren't any. */
image->pixels =
scm_gc_malloc_pointerless (width * height, "image pixels");

image->name = name;
image->update_func = SCM_BOOL_F;

/* Now wrap the struct image* in a new foreign
object, and return that object. */
return scm_make_foreign_object_1 (image_type, image);

3

We use scm_gc_malloc_pointerless for the pixel buffer to tell the garbage collector
not to scan it for pointers. Calls to scm_gc_malloc, scm_make_foreign_object_1, and
scm_gc_malloc_pointerless raise an exception in out-of-memory conditions; the garbage
collector is able to reclaim previously allocated memory if that happens.

5.5.3 Type Checking of Foreign Objects

Functions that operate on foreign objects should check that the passed SCM value indeed is
of the correct type before accessing its data. They can do this with scm_assert_foreign_
object_type.

For example, here is a simple function that operates on an image object, and checks the
type of its argument.

SCM
clear_image (SCM image_obj)
{

int area;

struct image *image;

scm_assert_foreign_object_type (image_type, image_obj) ;

image = scm_foreign_object_ref (image_obj, 0);
area = image->width * image->height;
memset (image->pixels, 0, area);

/* Invoke the image's update function. */
if (scm_is_true (image->update_func))
scm_call_0 (image->update_func);

Chapter 5: Programming in C 7

return SCM_UNSPECIFIED;
}

5.5.4 Foreign Object Memory Management

Once a foreign object has been released to the tender mercies of the Scheme system, it
must be prepared to survive garbage collection. In the example above, all the memory
associated with the foreign object is managed by the garbage collector because we used the
scm_gc_ allocation functions. Thus, no special care must be taken: the garbage collector
automatically scans them and reclaims any unused memory.

However, when data associated with a foreign object is managed in some other way—
e.g., malloc’d memory or file descriptors—it is possible to specify a finalizer function to
release those resources when the foreign object is reclaimed.

As discussed in see Section 5.4.2 [Garbage Collection], page 67, Guile’s garbage collector
will reclaim inaccessible memory as needed. This reclamation process runs concurrently with
the main program. When Guile analyzes the heap and determines that an object’s memory
can be reclaimed, that memory is put on a “free list” of objects that can be reclaimed.
Usually that’s the end of it—the object is available for immediate re-use. However some
objects can have “finalizers” associated with them—functions that are called on reclaimable
objects to effect any external cleanup actions.

Finalizers are tricky business and it is best to avoid them. They can be invoked at
unexpected times, or not at all—for example, they are not invoked on process exit. They
don’t help the garbage collector do its job; in fact, they are a hindrance. Furthermore, they
perturb the garbage collector’s internal accounting. The GC decides to scan the heap when
it thinks that it is necessary, after some amount of allocation. Finalizable objects almost
always represent an amount of allocation that is invisible to the garbage collector. The
effect can be that the actual resource usage of a system with finalizable objects is higher
than what the GC thinks it should be.

All those caveats aside, some foreign object types will need finalizers. For example, if
we had a foreign object type that wrapped file descriptors—and we aren’t suggesting this,
as Guile already has ports —then you might define the type like this:

static SCM file_type;

static void
finalize_file (SCM file)

{
int fd = scm_foreign_object_signed_ref (file, 0);
if (£d >= 0)
{
scm_foreign_object_signed_set_x (file, 0, -1);
close (fd);
X
3

static void
init_file_type (void)
{

78 Guile Reference Manual

SCM name, slots;
scm_t_struct_finalize finalizer;

name = scm_from_utf8_symbol ("file");
slots = scm_list_1 (scm_from_utf8_symbol ("fd"));
finalizer = finalize_file;

image_type =
scm_make_foreign_object_type (name, slots, finalizer);

}
static SCM
make_file (int £d)
{

return scm_make_foreign_object_1 (file_type, (void *) fd);
b

Note that the finalizer may be invoked in ways and at times you might not expect. In a
Guile built without threading support, finalizers are invoked via “asyncs”, which interleaves
them with running Scheme code; see Section 6.22.3 [Asyncs]|, page 454. If the user’s Guile is
built with support for threads, the finalizer will probably be called by a dedicated finalization
thread, unless the user invokes scm_run_finalizers () explicitly.

In either case, finalizers run concurrently with the main program, and so they need
to be async-safe and thread-safe. If for some reason this is impossible, perhaps because
you are embedding Guile in some application that is not itself thread-safe, you have a few
options. One is to use guardians instead of finalizers, and arrange to pump the guardians
for finalizable objects. See Section 6.17.4 [Guardians|, page 413, for more information.
The other option is to disable automatic finalization entirely, and arrange to call scm_run_
finalizers () at appropriate points. See Section 6.20 [Foreign Objects], page 445, for
more on these interfaces.

Finalizers are allowed to allocate memory, access GC-managed memory, and in general
can do anything any Guile user code can do. This was not the case in Guile 1.8, where
finalizers were much more restricted. In particular, in Guile 2.0, finalizers can resuscitate
objects. We do not recommend that users avail themselves of this possibility, however, as a
resuscitated object can re-expose other finalizable objects that have been already finalized
back to Scheme. These objects will not be finalized again, but they could cause use-after-
free problems to code that handles objects of that particular foreign object type. To guard
against this possibility, robust finalization routines should clear state from the foreign object,
as in the above free_file example.

One final caveat. Foreign object finalizers are associated with the lifetime of a foreign
object, not of its fields. If you access a field of a finalizable foreign object, and do not
arrange to keep a reference on the foreign object itself, it could be that the outer foreign
object gets finalized while you are working with its field.

For example, consider a procedure to read some data from a file, from our example
above.

SCM

Chapter 5: Programming in C

read_bytes (SCM file, SCM n)

{
int fd;
SCM buf;
size_t len, pos;
scm_assert_foreign_object_type (file_type, file);
fd = scm_foreign _object_signed_ref (file, 0);
if (£d < 0)
scm_wrong_type_arg_msg ("read-bytes", SCM_ARG1,
file, "open file");
len = scm_to_size_t (n);
SCM buf = scm_c_make_bytevector (scm_to_size_t (n));
pos = O;
while (pos < lemn)
{
char *bytes = SCM_BYTEVECTOR_CONTENTS (buf);
ssize_t count = read (fd, bytes + pos, len - pos);
if (count < 0)
scm_syserror ("read-bytes");
if (count == 0)
break;
pos += count;
}
scm_remember_upto_here_1 (file);
return scm_values (scm_list_2 (buf, scm_from_size_t (pos)));
}

79

After the prelude, only the £d value is used and the C compiler has no reason to keep
the file object around. If scm_c_make_bytevector results in a garbage collection, file
might not be on the stack or anywhere else and could be finalized, leaving read to read
a closed (or, in a multi-threaded program, possibly re-used) file descriptor. The use of
scm_remember_upto_here_1 prevents this, by creating a reference to file after all data

accesses. See Section 6.17.1 [Garbage Collection Functions|, page 408.

scm_remember_upto_here_1 is only needed on finalizable objects, because garbage col-
lection of other values is invisible to the program — it happens when needed, and is not
observable. But if you can, save yourself the headache and build your program in such a

way that it doesn’t need finalization.

80 Guile Reference Manual

5.5.5 Foreign Objects and Scheme

It is also possible to create foreign objects and object types from Scheme, and to access
fields of foreign objects from Scheme. For example, the file example from the last section
could be equivalently expressed as:

(define-module (my-file)
#:use-module (system foreign-object)
#:use-module ((oop goops) #:select (make))
#:export (make-file))

(define (finalize-file file)
(let ((fd (struct-ref file 0)))
(unless (< fd 0)
(struct-set! file 0 -1)
(close-fdes £d))))

(define <file>
(make-foreign-object-type '<file> '(£fd)
#:finalizer finalize-file))

(define (make-file fd)
(make <file> #:fd fd))

Here we see that the result of make-foreign-object-type, which is the equivalent
of scm_make_foreign_object_type, is a struct vtable. See Section 6.6.18.1 [Vtables],
page 225, for more information. To instantiate the foreign object, which is really a Guile
struct, we use make. (We could have used make-struct/no-tail, but as an implementa-
tion detail, finalizers are attached in the initialize method called by make). To access
the fields, we use struct-ref and struct-set!. See Section 6.6.18.2 [Structure Basics],
page 225.

There is a convenience syntax, define-foreign-object-type, that defines a type along
with a constructor, and getters for the fields. An appropriate invocation of define-
foreign-object-type for the file object type could look like this:

(use-modules (system foreign-object))

(define-foreign-object-type <file>
make-file
(£d)
#:finalizer finalize-file)
This defines the <file> type with one field, a make-file constructor, and a getter for
the f£d field, bound to fd.
Foreign object types are not only vtables but are actually GOOPS classes, as hinted at
above. See Chapter 8 [GOOPS], page 789, for more on Guile’s object-oriented programming
system. Thus one can define print and equality methods using GOOPS:

(use-modules (oop goops))

(define-method (write (file <file>) port)

Chapter 5: Programming in C 81

;; Assuming existence of the “fd' getter
(format port "#<<file> ~a>" (fd file)))

(define-method (equal? (a <file>) (b <file>))
(eqv? (fd a) (fd b)))

One can even sub-class foreign types.

(define-class <named-file> (<file>)
(name #:init-keyword #:name #:init-value #f #:accessor name))

The question arises of how to construct these values, given that make-file returns a
plain old <file> object. It turns out that you can use the GOOPS construction interface,
where every field of the foreign object has an associated initialization keyword argument.

(define* (my-open-file name #:optional (flags O_RDONLY))
(make <named-file> #:fd (open-fdes name flags) #:name name))

(define-method (write (file <named-file>) port)
(format port "#<<file> “s “a>" (name file) (fd file)))

See Section 6.20 [Foreign Objects|, page 445, for full documentation on the Scheme
interface to foreign objects. See Chapter 8 [GOOPS], page 789, for more on GOOPS.

As a final note, you might wonder how this system supports encapsulation of sensitive
values. First, we have to recognize that some facilities are essentially unsafe and have global
scope. For example, in C, the integrity and confidentiality of a part of a program is at the
mercy of every other part of that program — because any part of the program can read and
write anything in its address space. At the same time, principled access to structured data
is organized in C on lexical boundaries; if you don’t expose accessors for your object, you
trust other parts of the program not to work around that barrier.

The situation is not dissimilar in Scheme. Although Scheme’s unsafe constructs are
fewer in number than in C, they do exist. The (system foreign) module can be used to
violate confidentiality and integrity, and shouldn’t be exposed to untrusted code. Although
struct-ref and struct-set! are less unsafe, they still have a cross-cutting capability of
drilling through abstractions. Performing a struct-set! on a foreign object slot could
cause unsafe foreign code to crash. Ultimately, structures in Scheme are capabilities for
abstraction, and not abstractions themselves.

That leaves us with the lexical capabilities, like constructors and accessors. Here is
where encapsulation lies: the practical degree to which the innards of your foreign objects
are exposed is the degree to which their accessors are lexically available in user code. If you
want to allow users to reference fields of your foreign object, provide them with a getter.
Otherwise you should assume that the only access to your object may come from your code,
which has the relevant authority, or via code with access to cross-cutting struct-ref and
such, which also has the cross-cutting authority.

5.6 Function Snarfing

When writing C code for use with Guile, you typically define a set of C functions, and then
make some of them visible to the Scheme world by calling scm_c_define_gsubr or related
functions. If you have many functions to publish, it can sometimes be annoying to keep the
list of calls to scm_c_define_gsubr in sync with the list of function definitions.

82 Guile Reference Manual

Guile provides the guile-snarf program to manage this problem. Using this tool, you
can keep all the information needed to define the function alongside the function definition
itself; guile-snarf will extract this information from your source code, and automatically
generate a file of calls to scm_c_define_gsubr which you can #include into an initialization
function.

The snarfing mechanism works for many kind of initialization actions, not just for col-
lecting calls to scm_c_define_gsubr. For a full list of what can be done, See Section 6.5
[Snarfing Macros|, page 102.

The guile-snarf program is invoked like this:

guile-snarf [-o outfile] [cpp-args ...]

This command will extract initialization actions to outfile. When no outfile has been
specified or when outfile is -, standard output will be used. The C preprocessor is called
with cpp-args (which usually include an input file) and the output is filtered to extract the
initialization actions.

If there are errors during processing, outfile is deleted and the program exits with non-
zero status.

During snarfing, the pre-processor macro SCM_MAGIC_SNARFER is defined. You could use
this to avoid including snarfer output files that don’t yet exist by writing code like this:

#ifndef SCM_MAGIC_SNARFER
#include "foo.x"
#endif
Here is how you might define the Scheme function clear-image, implemented by the C
function clear_image:

#include <libguile.h>

SCM_DEFINE (clear_image, "clear-image", 1, 0, O,
(SCM image),
"Clear the image.")
{
/* C code to clear the image in image... */

}

void

init_image_type O

{

#include "image-type.x"

}

The SCM_DEFINE declaration says that the C function clear_image implements a Scheme
function called clear-image, which takes one required argument (of type SCM and named
image), no optional arguments, and no rest argument. The string "Clear the image."
provides a short help text for the function, it is called a docstring.

SCM_DEFINE macro also defines a static array of characters initialized to the Scheme
name of the function. In this case, s_clear_image is set to the C string, "clear-image".
You might want to use this symbol when generating error messages.

Chapter 5: Programming in C 83

Assuming the text above lives in a file named image-type.c, you will need to execute
the following command to prepare this file for compilation:

guile-snarf -o image-type.x image-type.c

This scans image-type.c for SCM_DEFINE declarations, and writes to image-type.x the
output:

scm_c_define_gsubr ("clear-image", 1, 0, 0, (SCM (*)()) clear_image);

When compiled normally, SCM_DEFINE is a macro which expands to the function header
for clear_image.

Note that the output file name matches the #include from the input file. Also, you still
need to provide all the same information you would if you were using scm_c_define_gsubr
yourself, but you can place the information near the function definition itself, so it is less
likely to become incorrect or out-of-date.

If you have many files that guile-snarf must process, you should consider using a
fragment like the following in your Makefile:

snarfcppopts = $(DEFS) $(INCLUDES) $(CPPFLAGS) $(CFLAGS)
.SUFFIXES: .x

.C.X:

guile-snarf -o $@ $< $(snarfcppopts)

This tells make to run guile-snarf to produce each needed .x file from the correspond-
ing .c file.

The program guile-snarf passes its command-line arguments directly to the C prepro-
cessor, which it uses to extract the information it needs from the source code. this means
you can pass normal compilation flags to guile-snarf to define preprocessor symbols, add
header file directories, and so on.

5.7 An Overview of Guile Programming

Guile is designed as an extension language interpreter that is straightforward to integrate
with applications written in C (and C++). The big win here for the application developer
is that Guile integration, as the Guile web page says, “lowers your project’s hacktivation
energy.” Lowering the hacktivation energy means that you, as the application developer,
and your users, reap the benefits that flow from being able to extend the application in a
high level extension language rather than in plain old C.

In abstract terms, it’s difficult to explain what this really means and what the integration
process involves, so instead let’s begin by jumping straight into an example of how you might
integrate Guile into an existing program, and what you could expect to gain by so doing.
With that example under our belts, we’ll then return to a more general analysis of the
arguments involved and the range of programming options available.

5.7.1 How One Might Extend Dia Using Guile

Dia is a free software program for drawing schematic diagrams like flow charts and floor
plans (http://www.gnome.org/projects/dia/). This section conducts the thought ex-
periment of adding Guile to Dia. In so doing, it aims to illustrate several of the steps and
considerations involved in adding Guile to applications in general.

http://www.gnome.org/projects/dia/

84 Guile Reference Manual

5.7.1.1 Deciding Why You Want to Add Guile

First off, you should understand why you want to add Guile to Dia at all, and that means
forming a picture of what Dia does and how it does it. So, what are the constituents of the
Dia application?
e Most importantly, the application domain objects — in other words, the concepts that
differentiate Dia from another application such as a word processor or spreadsheet:
shapes, templates, connectors, pages, plus the properties of all these things.

e The code that manages the graphical face of the application, including the layout and
display of the objects above.

e The code that handles input events, which indicate that the application user is wanting
to do something.

(In other words, a textbook example of the model - view - controller paradigm.)

Next question: how will Dia benefit once the Guile integration is complete? Several
(positive!) answers are possible here, and the choice is obviously up to the application
developers. Still, one answer is that the main benefit will be the ability to manipulate Dia’s
application domain objects from Scheme.

Suppose that Dia made a set of procedures available in Scheme, representing the most
basic operations on objects such as shapes, connectors, and so on. Using Scheme, the
application user could then write code that builds upon these basic operations to create
more complex procedures. For example, given basic procedures to enumerate the objects
on a page, to determine whether an object is a square, and to change the fill pattern of a
single shape, the user can write a Scheme procedure to change the fill pattern of all squares
on the current page:

(define (change-squares'-fill-pattern new-pattern)
(for-each-shape current-page
(lambda (shape)
(if (square? shape)
(change-fill-pattern shape new-pattern)))))

5.7.1.2 Four Steps Required to Add Guile

Assuming this objective, four steps are needed to achieve it.

First, you need a way of representing your application-specific objects — such as shape
in the previous example — when they are passed into the Scheme world. Unless your
objects are so simple that they map naturally into builtin Scheme data types like numbers
and strings, you will probably want to use Guile’s foreign object interface to create a new
Scheme data type for your objects.

Second, you need to write code for the basic operations like for-each-shape and
square? such that they access and manipulate your existing data structures correctly, and
then make these operations available as primitives on the Scheme level.

Third, you need to provide some mechanism within the Dia application that a user can
hook into to cause arbitrary Scheme code to be evaluated.

Finally, you need to restructure your top-level application C code a little so that it
initializes the Guile interpreter correctly and declares your foreign objects and primitives
to the Scheme world.

Chapter 5: Programming in C 85

The following subsections expand on these four points in turn.

5.7.1.3 How to Represent Dia Data in Scheme

For all but the most trivial applications, you will probably want to allow some representation
of your domain objects to exist on the Scheme level. This is where foreign objects come in,
and with them issues of lifetime management and garbage collection.

To get more concrete about this, let’s look again at the example we gave earlier of how
application users can use Guile to build higher-level functions from the primitives that Dia
itself provides.

(define (change-squares'-fill-pattern new-pattern)
(for-each-shape current-page
(lambda (shape)
(if (square? shape)
(change-fill-pattern shape new-pattern)))))

Consider what is stored here in the variable shape. For each shape on the current page,
the for-each-shape primitive calls (1ambda (shape) ...) with an argument representing
that shape. Question is: how is that argument represented on the Scheme level? The issues
are as follows.

e Whatever the representation, it has to be decodable again by the C code for the square?
and change-fill-pattern primitives. In other words, a primitive like square? has
somehow to be able to turn the value that it receives back into something that points
to the underlying C structure describing a shape.

e The representation must also cope with Scheme code holding on to the value for later
use. What happens if the Scheme code stores shape in a global variable, but then that
shape is deleted (in a way that the Scheme code is not aware of), and later on some
other Scheme code uses that global variable again in a call to, say, square??

e The lifetime and memory allocation of objects that exist only in the Scheme world
is managed automatically by Guile’s garbage collector using one simple rule: when
there are no remaining references to an object, the object is considered dead and so
its memory is freed. But for objects that exist in both C and Scheme, the picture is
more complicated; in the case of Dia, where the shape argument passes transiently
in and out of the Scheme world, it would be quite wrong the delete the underlying
C shape just because the Scheme code has finished evaluation. How do we avoid this
happening?

One resolution of these issues is for the Scheme-level representation of a shape to be
a new, Scheme-specific C structure wrapped up as a foreign object. The foreign object is
what is passed into and out of Scheme code, and the Scheme-specific C structure inside the
foreign object points to Dia’s underlying C structure so that the code for primitives like
square? can get at it.

To cope with an underlying shape being deleted while Scheme code is still holding onto
a Scheme shape value, the underlying C structure should have a new field that points to the
Scheme-specific foreign object. When a shape is deleted, the relevant code chains through
to the Scheme-specific structure and sets its pointer back to the underlying structure to
NULL. Thus the foreign object value for the shape continues to exist, but any primitive

86 Guile Reference Manual

code that tries to use it will detect that the underlying shape has been deleted because the
underlying structure pointer is NULL.

So, to summarize the steps involved in this resolution of the problem (and assuming that
the underlying C structure for a shape is struct dia_shape):

e Define a new Scheme-specific structure that points to the underlying C structure:

struct dia_guile_shape

{
struct dia_shape * c_shape; /* NULL => deleted */
}
e Add a field to struct dia_shape that points to its struct dia_guile_shape if it has
one —
struct dia_shape
{
struct dia_guile_shape * guile_shape;
}
— so that C code can set guile_shape->c_shape to NULL when the underlying shape
is deleted.

e Wrap struct dia_guile_shape as a foreign object type.

e Whenever you need to represent a C shape onto the Scheme level, create a foreign
object instance for it, and pass that.

e In primitive code that receives a shape foreign object instance, check the c_shape field
when decoding it, to find out whether the underlying C shape is still there.

As far as memory management is concerned, the foreign object values and their Scheme-
specific structures are under the control of the garbage collector, whereas the underlying C
structures are explicitly managed in exactly the same way that Dia managed them before
we thought of adding Guile.

When the garbage collector decides to free a shape foreign object value, it calls the final-
izer function that was specified when defining the shape foreign object type. To maintain
the correctness of the guile_shape field in the underlying C structure, this function should
chain through to the underlying C structure (if it still exists) and set its guile_shape field
to NULL.

For full documentation on defining and using foreign object types, see Section 5.5 [Defin-
ing New Foreign Object Types], page 74.

5.7.1.4 Writing Guile Primitives for Dia

Once the details of object representation are decided, writing the primitive function code
that you need is usually straightforward.

A primitive is simply a C function whose arguments and return value are all of type
SCM, and whose body does whatever you want it to do. As an example, here is a possible
implementation of the square? primitive:

static SCM square_p (SCM shape)
{

Chapter 5: Programming in C 87

struct dia_guile_shape * guile_shape;

/* Check that arg is really a shape object. */
scm_assert_foreign_object_type (shape_type, shape);

/* Access Scheme-specific shape structure. */
guile_shape = scm_foreign_object_ref (shape, 0);

/* Find out if underlying shape exists and is a
square; return answer as a Scheme boolean. */
return scm_from_bool (guile_shape->c_shape &&
(guile_shape->c_shape->type == DIA_SQUARE));
3

Notice how easy it is to chain through from the SCM shape parameter that square_p
receives — which is a foreign object — to the Scheme-specific structure inside the foreign
object, and thence to the underlying C structure for the shape.

In this code, scm_assert_foreign_object_type, scm_foreign_object_ref, and scm_
from_bool are from the standard Guile API. We assume that shape_type was given to
us when we made the shape foreign object type, using scm_make_foreign_object_type.
The call to scm_assert_foreign_object_type ensures that shape is indeed a shape. This
is needed to guard against Scheme code using the square? procedure incorrectly, as in
(square? "hello"); Scheme’s latent typing means that usage errors like this must be
caught at run time.

Having written the C code for your primitives, you need to make them available as
Scheme procedures by calling the scm_c_define_gsubr function. scm_c_define_gsubr
(see Section 6.7.2 [Primitive Procedures|, page 246) takes arguments that specify the
Scheme-level name for the primitive and how many required, optional and rest arguments
it can accept. The square? primitive always requires exactly one argument, so the call to
make it available in Scheme reads like this:

scm_c_define_gsubr ("square?", 1, 0, O, square_p);

For where to put this call, see the subsection after next on the structure of Guile-enabled
code (see Section 5.7.1.6 [Dia Structure|, page 88).

5.7.1.5 Providing a Hook for the Evaluation of Scheme Code

To make the Guile integration useful, you have to design some kind of hook into your
application that application users can use to cause their Scheme code to be evaluated.

Technically, this is straightforward; you just have to decide on a mechanism that is
appropriate for your application. Think of Emacs, for example: when you type ESC :, you
get a prompt where you can type in any Elisp code, which Emacs will then evaluate. Or,
again like Emacs, you could provide a mechanism (such as an init file) to allow Scheme
code to be associated with a particular key sequence, and evaluate the code when that key
sequence is entered.

In either case, once you have the Scheme code that you want to evaluate, as a null
terminated string, you can tell Guile to evaluate it by calling the scm_c_eval_string
function.

88 Guile Reference Manual

5.7.1.6 Top-level Structure of Guile-enabled Dia
Let’s assume that the pre-Guile Dia code looks structurally like this:

e main ()
e do lots of initialization and setup stuff
e enter Gtk main loop
When you add Guile to a program, one (rather technical) requirement is that Guile’s

garbage collector needs to know where the bottom of the C stack is. The easiest way to
ensure this is to use scm_boot_guile like this:

e main ()
e do lots of initialization and setup stuff
e scm_boot_guile (argc, argv, inner_main, NULL)
e inner_main ()
e define all foreign object types
e export primitives to Scheme using scm_c_define_gsubr

e enter Gtk main loop

In other words, you move the guts of what was previously in your main function into a
new function called inner_main, and then add a scm_boot_guile call, with inner_main
as a parameter, to the end of main.

Assuming that you are using foreign objects and have written primitive code as described
in the preceding subsections, you also need to insert calls to declare your new foreign objects
and export the primitives to Scheme. These declarations must happen inside the dynamic
scope of the scm_boot_guile call, but also before any code is run that could possibly use
them — the beginning of inner_main is an ideal place for this.

5.7.1.7 Going Further with Dia and Guile

The steps described so far implement an initial Guile integration that already gives a lot of
additional power to Dia application users. But there are further steps that you could take,
and it’s interesting to consider a few of these.

In general, you could progressively move more of Dia’s source code from C into Scheme.
This might make the code more maintainable and extensible, and it could open the door to
new programming paradigms that are tricky to effect in C but straightforward in Scheme.

A specific example of this is that you could use the guile-gtk package, which provides
Scheme-level procedures for most of the Gtk+ library, to move the code that lays out and
displays Dia objects from C to Scheme.

As you follow this path, it naturally becomes less useful to maintain a distinction between
Dia’s original non-Guile-related source code, and its later code implementing foreign objects
and primitives for the Scheme world.

For example, suppose that the original source code had a dia_change_fill_pattern
function:
void dia_change_fill_pattern (struct dia_shape * shape,
struct dia_pattern * pattern)

{

Chapter 5: Programming in C 89

/* real pattern change work */

}

During initial Guile integration, you add a change_fill_pattern primitive for Scheme
purposes, which accesses the underlying structures from its foreign object values and uses
dia_change_fill_pattern to do the real work:

SCM change_fill_pattern (SCM shape, SCM pattern)
{

struct dia_shape * d_shape;

struct dia_pattern * d_pattern;

dia_change_fill_pattern (d_shape, d_pattern);

return SCM_UNSPECIFIED;
}

At this point, it makes sense to keep dia_change fill_pattern and change fill_
pattern separate, because dia_change_fill_pattern can also be called without going
through Scheme at all, say because the user clicks a button which causes a C-registered
Gtk+ callback to be called.

But, if the code for creating buttons and registering their callbacks is moved into Scheme
(using guile-gtk), it may become true that dia_change_fill_pattern can no longer be
called other than through Scheme. In which case, it makes sense to abolish it and move its
contents directly into change_fill_pattern, like this:

SCM change_fill_pattern (SCM shape, SCM pattern)
{

struct dia_shape * d_shape;

struct dia_pattern * d_pattern;

/* real pattern change work */

return SCM_UNSPECIFIED;
}

So further Guile integration progressively reduces the amount of functional C code that
you have to maintain over the long term.

A similar argument applies to data representation. In the discussion of foreign objects
earlier, issues arose because of the different memory management and lifetime models that
normally apply to data structures in C and in Scheme. However, with further Guile integra-
tion, you can resolve this issue in a more radical way by allowing all your data structures to
be under the control of the garbage collector, and kept alive by references from the Scheme
world. Instead of maintaining an array or linked list of shapes in C, you would instead
maintain a list in Scheme.

90 Guile Reference Manual

Rather like the coalescing of dia_change_fill_pattern and change_fill_pattern,
the practical upshot of such a change is that you would no longer have to keep the dia_
shape and dia_guile_shape structures separate, and so wouldn’t need to worry about the
pointers between them. Instead, you could change the foreign object definition to wrap the
dia_shape structure directly, and send dia_guile_shape off to the scrap yard. Cut out
the middle man!

Finally, we come to the holy grail of Guile’s free software / extension language approach.
Once you have a Scheme representation for interesting Dia data types like shapes, and a
handy bunch of primitives for manipulating them, it suddenly becomes clear that you have
a bundle of functionality that could have far-ranging use beyond Dia itself. In other words,
the data types and primitives could now become a library, and Dia becomes just one of
the many possible applications using that library — albeit, at this early stage, a rather
important one!

In this model, Guile becomes just the glue that binds everything together. Imagine an
application that usefully combined functionality from Dia, Gnumeric and GnuCash — it’s
tricky right now, because no such application yet exists; but it’ll happen some day . . .

5.7.2 Why Scheme is More Hackable Than C

Underlying Guile’s value proposition is the assumption that programming in a high level
language, specifically Guile’s implementation of Scheme, is necessarily better in some way
than programming in C. What do we mean by this claim, and how can we be so sure?

One class of advantages applies not only to Scheme, but more generally to any inter-
pretable, high level, scripting language, such as Emacs Lisp, Python, Ruby, or TEX’s macro
language. Common features of all such languages, when compared to C, are that:

e They lend themselves to rapid and experimental development cycles, owing usually to
a combination of their interpretability and the integrated development environment in
which they are used.

e They free developers from some of the low level bookkeeping tasks associated with C
programming, notably memory management.

e They provide high level features such as container objects and exception handling that
make common programming tasks easier.

In the case of Scheme, particular features that make programming easier — and more fun!
— are its powerful mechanisms for abstracting parts of programs (closures — see Section 3.4
[About Closure|, page 26) and for iteration (see Section 6.11.4 [while do], page 299).

The evidence in support of this argument is empirical: the huge amount of code that has
been written in extension languages for applications that support this mechanism. Most
notable are extensions written in Emacs Lisp for GNU Emacs, in TEX’s macro language
for TEX, and in Script-Fu for the Gimp, but there is increasingly now a significant code
eco-system for Guile-based applications as well, such as Lilypond and GnuCash. It is
close to inconceivable that similar amounts of functionality could have been added to these
applications just by writing new code in their base implementation languages.

5.7.3 Example: Using Guile for an Application Testbed

As an example of what this means in practice, imagine writing a testbed for an applica-
tion that is tested by submitting various requests (via a C interface) and validating the

Chapter 5: Programming in C 91

output received. Suppose further that the application keeps an idea of its current state,
and that the “correct” output for a given request may depend on the current application
state. A complete “white box”* test plan for this application would aim to submit all pos-
sible requests in each distinguishable state, and validate the output for all request/state
combinations.

To write all this test code in C would be very tedious. Suppose instead that the testbed
code adds a single new C function, to submit an arbitrary request and return the response,
and then uses Guile to export this function as a Scheme procedure. The rest of the testbed
can then be written in Scheme, and so benefits from all the advantages of programming in
Scheme that were described in the previous section.

(In this particular example, there is an additional benefit of writing most of the testbed
in Scheme. A common problem for white box testing is that mistakes and mistaken as-
sumptions in the application under test can easily be reproduced in the testbed code. It is
more difficult to copy mistakes like this when the testbed is written in a different language
from the application.)

5.7.4 A Choice of Programming Options

The preceding arguments and example point to a model of Guile programming that is
applicable in many cases. According to this model, Guile programming involves a balance
between C and Scheme programming, with the aim being to extract the greatest possible
Scheme level benefit from the least amount of C level work.

The C level work required in this model usually consists of packaging and exporting
functions and application objects such that they can be seen and manipulated on the Scheme
level. To help with this, Guile’s C language interface includes utility features that aim to
make this kind of integration very easy for the application developer.

This model, though, is really just one of a range of possible programming options. If
all of the functionality that you need is available from Scheme, you could choose instead
to write your whole application in Scheme (or one of the other high level languages that
Guile supports through translation), and simply use Guile as an interpreter for Scheme.
(In the future, we hope that Guile will also be able to compile Scheme code, so lessening
the performance gap between C and Scheme code.) Or, at the other end of the C—Scheme
scale, you could write the majority of your application in C, and only call out to Guile
occasionally for specific actions such as reading a configuration file or executing a user-
specified extension. The choices boil down to two basic questions:

e Which parts of the application do you write in C, and which in Scheme (or another
high level translated language)?

e How do you design the interface between the C and Scheme parts of your application?

These are of course design questions, and the right design for any given application
will always depend upon the particular requirements that you are trying to meet. In the
context of Guile, however, there are some generally applicable considerations that can help
you when designing your answers.

4 A white box test plan is one that incorporates knowledge of the internal design of the application under
test.

92 Guile Reference Manual

5.7.4.1 What Functionality is Already Available?

Suppose, for the sake of argument, that you would prefer to write your whole application
in Scheme. Then the API available to you consists of:

e standard Scheme
e plus the extensions to standard Scheme provided by Guile in its core distribution

e plus any additional functionality that you or others have packaged so that it can be
loaded as a Guile Scheme module.

A module in the last category can either be a pure Scheme module — in other words
a collection of utility procedures coded in Scheme — or a module that provides a Scheme
interface to an extension library coded in C — in other words a nice package where someone
else has done the work of wrapping up some useful C code for you. The set of available
modules is growing quickly and already includes such useful examples as (gtk gtk), which
makes Gtk+ drawing functions available in Scheme, and (database postgres), which pro-
vides SQL access to a Postgres database.

Given the growing collection of pre-existing modules, it is quite feasible that your appli-
cation could be implemented by combining a selection of these modules together with new
application code written in Scheme.

If this approach is not enough, because the functionality that your application needs is
not already available in this form, and it is impossible to write the new functionality in
Scheme, you will need to write some C code. If the required function is already available in
C (e.g. in a library), all you need is a little glue to connect it to the world of Guile. If not,
you need both to write the basic code and to plumb it into Guile.

In either case, two general considerations are important. Firstly, what is the interface
by which the functionality is presented to the Scheme world? Does the interface consist
only of function calls (for example, a simple drawing interface), or does it need to include
objects of some kind that can be passed between C and Scheme and manipulated by both
worlds. Secondly, how does the lifetime and memory management of objects in the C code
relate to the garbage collection governed approach of Scheme objects? In the case where
the basic C code is not already written, most of the difficulties of memory management can
be avoided by using Guile’s C interface features from the start.

For the full documentation on writing C code for Guile and connecting existing C code to
the Guile world, see Section 5.5 [Defining New Foreign Object Types|, page 74, Section 6.7.2
[Primitive Procedures|, page 246, and Section 6.19 [Foreign Function Interface], page 431.

5.7.4.2 Functional and Performance Constraints
5.7.4.3 Your Preferred Programming Style
5.7.4.4 What Controls Program Execution?
5.7.5 How About Application Users?

So far we have considered what Guile programming means for an application developer.
But what if you are instead using an existing Guile-based application, and want to know
what your options are for programming and extending this application?

Chapter 5: Programming in C 93

The answer to this question varies from one application to another, because the options
available depend inevitably on whether the application developer has provided any hooks
for you to hang your own code on and, if there are such hooks, what they allow you to do.?
For example. . .

e If the application permits you to load and execute any Guile code, the world is your
oyster. You can extend the application in any way that you choose.

e A more cautious application might allow you to load and execute Guile code, but only
in a safe environment, where the interface available is restricted by the application
from the standard Guile API.

e Or a really fearful application might not provide a hook to really execute user code
at all, but just use Scheme syntax as a convenient way for users to specify application
data or configuration options.

In the last two cases, what you can do is, by definition, restricted by the application,
and you should refer to the application’s own manual to find out your options.

The most well known example of the first case is Emacs, with its extension language
Emacs Lisp: as well as being a text editor, Emacs supports the loading and execution of
arbitrary Emacs Lisp code. The result of such openness has been dramatic: Emacs now
benefits from user-contributed Emacs Lisp libraries that extend the basic editing function
to do everything from reading news to psychoanalysis and playing adventure games. The
only limitation is that extensions are restricted to the functionality provided by Emacs’s
built-in set of primitive operations. For example, you can interact and display data by
manipulating the contents of an Emacs buffer, but you can’t pop-up and draw a window
with a layout that is totally different to the Emacs standard.

This situation with a Guile application that supports the loading of arbitrary user code
is similar, except perhaps even more so, because Guile also supports the loading of extension
libraries written in C. This last point enables user code to add new primitive operations to
Guile, and so to bypass the limitation present in Emacs Lisp.

At this point, the distinction between an application developer and an application user
becomes rather blurred. Instead of seeing yourself as a user extending an application, you
could equally well say that you are developing a new application of your own using some of
the primitive functionality provided by the original application. As such, all the discussions
of the preceding sections of this chapter are relevant to how you can proceed with developing
your extension.

5 Of course, in the world of free software, you always have the freedom to modify the application’s source
code to your own requirements. Here we are concerned with the extension options that the application
has provided for without your needing to modify its source code.

94 Guile Reference Manual

5.8 Autoconf Support

Autoconf, a part of the GNU build system, makes it easy for users to build your package.
This section documents Guile’s Autoconf support.

5.8.1 Autoconf Background

As explained in the GNU Autoconf Manual, any package needs configuration at build-time
(see Section “Introduction” in The GNU Autoconf Manual). If your package uses Guile
(or uses a package that in turn uses Guile), you probably need to know what specific Guile
features are available and details about them.

The way to do this is to write feature tests and arrange for their execution by the
configure script, typically by adding the tests to configure.ac, and running autoconf
to create configure. Users of your package then run configure in the normal way.

Macros are a way to make common feature tests easy to express. Autoconf provides a
wide range of macros (see Section “Existing Tests” in The GNU Autoconf Manual), and
Guile installation provides Guile-specific tests in the areas of: program detection, compila-
tion flags reporting, and Scheme module checks.

5.8.2 Autoconf Macros

As mentioned earlier in this chapter, Guile supports parallel installation, and uses pkg-
config to let the user choose which version of Guile they are interested in. pkg-config
has its own set of Autoconf macros that are probably installed on most every development
system. The most useful of these macros is PKG_CHECK_MODULES.

PKG_CHECK_MODULES ([GUILE], [guile-3.01)

This example looks for Guile and sets the GUILE_CFLAGS and GUILE_LIBS variables
accordingly, or prints an error and exits if Guile was not found.

Guile comes with additional Autoconf macros providing more information, installed as
prefix/share/aclocal/guile.m4. Their names all begin with GUILE_.

GUILE_PKG [VERSIONS] [Autoconf Macro]
This macro runs the pkg-config tool to find development files for an available version
of Guile.

By default, this macro will search for the latest stable version of Guile (e.g. 3.0),
falling back to the previous stable version (e.g. 2.2) if it is available. If no guile-
VERSION.pc file is found, an error is signaled. The found version is stored in
GUILE_EFFECTIVE_VERSION.

If GUILE_PROGS was already invoked, this macro ensures that the development files
have the same effective version as the Guile program.

GUILE_EFFECTIVE_VERSION is marked for substitution, as by AC_SUBST.

GUILE_FLAGS [Autoconf Macro]
This macro runs the pkg-config tool to find out how to compile and link pro-
grams against Guile. It sets four variables: GUILE_CFLAGS, GUILE_LDFLAGS,
GUILE_LIBS, and GUILE_LTLIBS.

GUILE_CFLAGS: flags to pass to a C or C++ compiler to build code that uses Guile
header files. This is almost always just one or more -I flags.

Chapter 5: Programming in C 95

GUILE_LDFLAGS: flags to pass to the compiler to link a program against Guile.
This includes -~1guile-VERSION for the Guile library itself, and may also include one
or more -L flag to tell the compiler where to find the libraries. But it does not include
flags that influence the program’s runtime search path for libraries, and will therefore
lead to a program that fails to start, unless all necessary libraries are installed in a
standard location such as /usr/1ib.

GUILE_LIBS and GUILE_LTLIBS: flags to pass to the compiler or to libtool, respec-
tively, to link a program against Guile. It includes flags that augment the program’s
runtime search path for libraries, so that shared libraries will be found at the location
where they were during linking, even in non-standard locations. GUILE_LIBS is to be
used when linking the program directly with the compiler, whereas GUILE_LTLIBS
is to be used when linking the program is done through libtool.

The variables are marked for substitution, as by AC_SUBST.

GUILE_SITE_DIR [Autoconf Macro]
This looks for Guile’s "site" directories. The variable GUILE_SITE will be
set to Guile’'s "site" directory for Scheme source files (usually something
like PREFIX/share/guile/site). GUILE_SITE_.CCACHE will be set to the
directory for compiled Scheme files also known as .go files (usually some-
thing like PREFIX/lib/guile/ GUILE_EFFECTIVE_VERSION /site-ccache).
GUILE_EXTENSION will be set to the directory for compiled C extensions (usually
something like PREFIX/lib/guile/ GUILE_EFFECTIVE_VERSION /extensions).
The latter two are set to blank if the particular version of Guile does not support
them. Note that this macro will run the macros GUILE_PKG and GUILE_PROGS if they
have not already been run.

The variables are marked for substitution, as by AC_SUBST.

GUILE_PROGS [VERSION]| [Autoconf Macro]
This macro looks for programs guile and guild, setting variables GUILE and GUILD
to their paths, respectively. The macro will attempt to find guile with the suffix of
-X.Y, followed by looking for it with the suffix X.Y, and then fall back to looking for
guile with no suffix. If guile is still not found, signal an error. The suffix, if any,
that was required to find guile will be used for guild as well.

By default, this macro will search for the latest stable version of Guile (e.g. 3.0). x.y
or x.y.z versions can be specified. If an older version is found, the macro will signal
an error.

The effective version of the found guile is set to GUILE_EFFECTIVE_VERSION.
This macro ensures that the effective version is compatible with the result of a previous
invocation of GUILE_FLAGS, if any.

As a legacy interface, it also looks for guile-config and guile-tools, setting
GUILE_CONFIG and GUILE_TOOLS.

The variables are marked for substitution, as by AC_SUBST.

GUILE_CHECK_RETVAL var check [Autoconf Macro]
var is a shell variable name to be set to the return value. check is a Guile Scheme
expression, evaluated with "$GUILE -c¢", and returning either 0 or non-#f to indicate

96 Guile Reference Manual

the check passed. Non-0 number or #f indicates failure. Avoid using the character
"#" since that confuses autoconf.

GUILE_MODULE_CHECK var module featuretest description [Autoconf Macro]
var is a shell variable name to be set to "yes" or "no". module is a list of symbols,
like: (ice-9 common-list). featuretest is an expression acceptable to GUILE_.CHECK,
q.v. description is a present-tense verb phrase (passed to AC_.MSG_CHECKING).

GUILE_MODULE_AVAILABLE var module [Autoconf Macro]
var is a shell variable name to be set to "yes" or "no". module is a list of symbols,
like: (ice-9 common-list).

GUILE_MODULE_REQUIRED symlist [Autoconf Macro]
symlist is a list of symbols, WITHOUT surrounding parens, like: ice-9 common-list.

GUILE_MODULE_EXPORTS var module modvar [Autoconf Macro]
var is a shell variable to be set to "yes" or "no". module is a list of symbols, like:
(ice-9 common-list). modvar is the Guile Scheme variable to check.

GUILE_MODULE_REQUIRED_EXPORT module modvar [Autoconf Macro]
module is a list of symbols, like: (ice-9 common-list). modvar is the Guile Scheme
variable to check.

5.8.3 Using Autoconf Macros

Using the autoconf macros is straightforward: Add the macro "calls" (actually
instantiations) to configure.ac, run aclocal, and finally, run autoconf. If your system
doesn’t have guile.m4 installed, place the desired macro definitions (AC_DEFUN forms) in
acinclude.m4, and aclocal will do the right thing.

Some of the macros can be used inside normal shell constructs: if foo ; then GUILE_
BAZ ; fi, but this is not guaranteed. It’s probably a good idea to instantiate macros at
top-level.

We now include two examples, one simple and one complicated.

The first example is for a package that uses libguile, and thus needs to know how to
compile and link against it. So we use PKG_CHECK_MODULES to set the vars GUILE_CFLAGS
and GUILE_LIBS, which are automatically substituted in the Makefile.

In configure.ac:
PKG_CHECK_MODULES ([GUILE], [guile-3.0]1)
In Makefile.in:

GUILE_CFLAGS = QGUILE_CFLAGS@
GUILE_LIBS = QGUILE_LIBS@

myprog.o: myprog.c
$(CC) -o $ $(GUILE_CFLAGS) $<

myprog: myprog.o

Chapter 5: Programming in C 97

$(CC) -o $ $< $(GUILE_LIBS)

The second example is for a package of Guile Scheme modules that uses an external
program and other Guile Scheme modules (some might call this a "pure scheme" package).
So we use the GUILE_SITE_DIR macro, a regular AC_PATH_PROG macro, and the GUILE_
MODULE_AVAILABLE macro.

In configure.ac:
GUILE_SITE_DIR

probably_wont_work=""

pgtype pgtable
GUILE_MODULE_AVAILABLE(have_guile_pg, (database postgres))

test $have_guile_pg = no &&
probably_wont_work="(my pgtype) (my pgtable) $probably_wont_work"

gpgutils
AC_PATH_PROG (GNUPG, gpg)
test x"$GNUPG" = x &&
probably_wont_work="(my gpgutils) $probably_wont_work"

if test ! "$probably_wont_work" = "" ; then
p=|| *kk"
echo
echo "$p"

echo "$p NOTE:"

echo "$p The following modules probably won't work:"

echo "$p $probably_wont_work"

echo "$p They can be installed anyway, and will work if their"
echo "$p dependencies are installed later. Please see README."
echo "$p"

fi
In Makefile.in:
instdir = QGUILE_SITEQ/my

install:
$(INSTALL) my/*.scm $(instdir)

99

6 API Reference

Guile provides an application programming interface (API) to developers in two core lan-
guages: Scheme and C. This part of the manual contains reference documentation for all of
the functionality that is available through both Scheme and C interfaces.

6.1 Overview of the Guile API

Guile’s application programming interface (API) makes functionality available that an ap-
plication developer can use in either C or Scheme programming. The interface consists of
elements that may be macros, functions or variables in C, and procedures, variables, syntax
or other types of object in Scheme.

Many elements are available to both Scheme and C, in a form that is appropriate.
For example, the assq Scheme procedure is also available as scm_assq to C code. These
elements are documented only once, addressing both the Scheme and C aspects of them.

The Scheme name of an element is related to its C name in a regular way. Also, a C
function takes its parameters in a systematic way.

Normally, the name of a C function can be derived given its Scheme name, using some
simple textual transformations:

e Replace - (hyphen) with _ (underscore).

e Replace 7 (question mark) with _p.

e Replace ! (exclamation point) with _x.

e Replace internal -> with _to_.

e Replace <= (less than or equal) with _legq.

e Replace >= (greater than or equal) with _geq.

e Replace < (less than) with _less.

e Replace > (greater than) with _gr.

e Prefix with scm_.

A C function always takes a fixed number of arguments of type SCM, even when the

corresponding Scheme function takes a variable number.

For some Scheme functions, some last arguments are optional; the corresponding C
function must always be invoked with all optional arguments specified. To get the effect
as if an argument has not been specified, pass SCM_UNDEFINED as its value. You can not
do this for an argument in the middle; when one argument is SCM_UNDEFINED all the ones
following it must be SCM_UNDEFINED as well.

Some Scheme functions take an arbitrary number of rest arguments; the corresponding
C function must be invoked with a list of all these arguments. This list is always the last
argument of the C function.

These two variants can also be combined.

The type of the return value of a C function that corresponds to a Scheme function is
always SCM. In the descriptions below, types are therefore often omitted but for the return
value and for the arguments.

100 Guile Reference Manual

6.2 Deprecation

From time to time functions and other features of Guile become obsolete. Guile’s depreca-
tion is a mechanism that can help you cope with this.

When you use a feature that is deprecated, you will likely get a warning message at run-
time. Also, if you have a new enough toolchain, using a deprecated function from libguile
will cause a link-time warning.

The primary source for information about just what interfaces are deprecated in a given
release is the file NEWS. That file also documents what you should use instead of the obsoleted
things.

The file README contains instructions on how to control the inclusion or removal of
the deprecated features from the public API of Guile, and how to control the deprecation
warning messages.

The idea behind this mechanism is that normally all deprecated interfaces are available,
but you get feedback when compiling and running code that uses them, so that you can
migrate to the newer APIs at your leisure.

6.3 The SCM Type

Guile represents all Scheme values with the single C type SCM. For an introduction to this
topic, See Section 5.4.1 [Dynamic Types], page 65.

SCM [C Type]
SCM is the user level abstract C type that is used to represent all of Guile’s Scheme
objects, no matter what the Scheme object type is. No C operation except assignment
is guaranteed to work with variables of type SCM, so you should only use macros and
functions to work with SCM values. Values are converted between C data types and
the SCM type with utility functions and macros.

scm_t_bits [C Type]
scm_t_bits is an unsigned integral data type that is guaranteed to be large enough
to hold all information that is required to represent any Scheme object. While this
data type is mostly used to implement Guile’s internals, the use of this type is also
necessary to write certain kinds of extensions to Guile.

scm_t_signed_bits [C Type]
This is a signed integral type of the same size as scm_t_bits.

scm_t_bits SCM_UNPACK (SCM x) [C Macro|
Transforms the SCM value x into its representation as an integral type. Only after
applying SCM_UNPACK it is possible to access the bits and contents of the SCM value.

SCM SCM_PACK (scm_t_bits x) [C Macro]
Takes a valid integral representation of a Scheme object and transforms it into its
representation as a SCM value.

Chapter 6: API Reference 101

6.4 Initializing Guile

Each thread that wants to use functions from the Guile API needs to put itself into guile
mode with either scm_with_guile or scm_init_guile. The global state of Guile is initial-
ized automatically when the first thread enters guile mode.

When a thread wants to block outside of a Guile API function, it should leave guile
mode temporarily with scm_without_guile, See Section 6.22.6 [Blocking], page 461.

Threads that are created by call-with-new-thread or scm_spawn_thread start out in
guile mode so you don’t need to initialize them.

void * scm_with_guile (void *(*func)(void *), void *data) [C Function]
Call func, passing it data and return what func returns. While func is running, the
current thread is in guile mode and can thus use the Guile API.

When scm_with_guile is called from guile mode, the thread remains in guile mode
when scm_with_guile returns.

Otherwise, it puts the current thread into guile mode and, if needed, gives it a Scheme
representation that is contained in the list returned by all-threads, for example.
This Scheme representation is not removed when scm_with_guile returns so that a
given thread is always represented by the same Scheme value during its lifetime, if at
all.

When this is the first thread that enters guile mode, the global state of Guile is
initialized before calling func.

The function func is called via scm_with_continuation_barrier; thus, scm_with_
guile returns exactly once.

When scm_with_guile returns, the thread is no longer in guile mode (except when
scm_with_guile was called from guile mode, see above). Thus, only func can store
SCM variables on the stack and be sure that they are protected from the garbage
collector. See scm_init_guile for another approach at initializing Guile that does
not have this restriction.

It is OK to call scm_with_guile while a thread has temporarily left guile mode via
scm_without_guile. It will then simply temporarily enter guile mode again.

void scm_init_guile () [C Function]
Arrange things so that all of the code in the current thread executes as if from within
a call to scm_with_guile. That is, all functions called by the current thread can
assume that SCM values on their stack frames are protected from the garbage collector
(except when the thread has explicitly left guile mode, of course).

When scm_init_guile is called from a thread that already has been in guile mode
once, nothing happens. This behavior matters when you call scm_init_guile while
the thread has only temporarily left guile mode: in that case the thread will not be in
guile mode after scm_init_guile returns. Thus, you should not use scm_init_guile
in such a scenario.

When a uncaught throw happens in a thread that has been put into guile mode via
scm_init_guile, a short message is printed to the current error port and the thread
is exited via scm_pthread_exit (NULL). No restrictions are placed on continuations.

102 Guile Reference Manual

The function scm_init_guile might not be available on all platforms since it requires
some stack-bounds-finding magic that might not have been ported to all platforms
that Guile runs on. Thus, if you can, it is better to use scm_with_guile or its
variation scm_boot_guile instead of this function.

void scm_boot_guile (int argc, char **argv, void [C Function]
(*main_func) (void *data, int argc, char **argv), void *data)
Enter guile mode as with scm_with_guile and call main_func, passing it data, argc,
and argv as indicated. When main_func returns, scm_boot_guile calls exit (0);
scm_boot_guile never returns. If you want some other exit value, have main_func
call exit itself. If you don’t want to exit at all, use scm_with_guile instead of
scm_boot_guile.

The function scm_boot_guile arranges for the Scheme command-line function to
return the strings given by argc and argv. If main_func modifies argc or argv, it should
call scm_set_program_arguments with the final list, so Scheme code will know which
arguments have been processed (see Section 7.2.6 [Runtime Environment|, page 528).

void scm_shell (int argc, char **argv) [C Function]
Process command-line arguments in the manner of the guile executable. This in-
cludes loading the normal Guile initialization files, interacting with the user or run-
ning any scripts or expressions specified by -s or —-e options, and then exiting. See
Section 4.2 [Invoking Guile], page 35, for more details.

Since this function does not return, you must do all application-specific initialization
before calling this function.

6.5 Snarfing Macros

The following macros do two different things: when compiled normally, they expand in one
way; when processed during snarfing, they cause the guile-snarf program to pick up some
initialization code, See Section 5.6 [Function Snarfing], page 81.

The descriptions below use the term ‘normally’ to refer to the case when the code is
compiled normally, and ‘while snarfing’ when the code is processed by guile-snarf.

SCM_SNARF_INIT (code) [C Macro]
Normally, SCM_SNARF_INIT expands to nothing; while snarfing, it causes code to be
included in the initialization action file, followed by a semicolon.

This is the fundamental macro for snarfing initialization actions. The more specialized
macros below use it internally.

SCM_DEFINE (c-name, scheme_name, req, opt, var, arglist, docstring) [C Macro]
Normally, this macro expands into
static const char s_c_name[] = scheme_name;
SCM

c_name arglist

While snarfing, it causes

scm_c_define_gsubr (s_c_name, req, opt, var,
c_name) ;

Chapter 6: API Reference 103

to be added to the initialization actions. Thus, you can use it to declare a C function
named c_name that will be made available to Scheme with the name scheme_name.

Note that the arglist argument must have parentheses around it.

SCM_SYMBOL (c_-name, scheme_name) [C Macro]
SCM_GLOBAL_SYMBOL (c_name, scheme_name) [C Macro]
Normally, these macros expand into

static SCM c_name

or
SCM c_name

respectively. While snarfing, they both expand into the initialization code
c_name = scm_permanent_object (scm_from_locale_symbol (scheme_name));

Thus, you can use them declare a static or global variable of type SCM that will be
initialized to the symbol named scheme_name.

SCM_KEYWORD (c-name, scheme_name) [C Macro]
SCM_GLOBAL_KEYWORD (c_name, scheme_name) [C Macro]
Normally, these macros expand into

static SCM c_name

or
SCM c_name

respectively. While snarfing, they both expand into the initialization code
c_name = scm_permanent_object (scm_c_make_keyword (scheme_name));

Thus, you can use them declare a static or global variable of type SCM that will be
initialized to the keyword named scheme_name.

SCM_VARIABLE (c_name, scheme_name) [C Macro|

SCM_GLOBAL_VARIABLE (c_name, scheme_name) [C Macro]
These macros are equivalent to SCM_VARIABLE_INIT and SCM_GLOBAL_VARIABLE_
INIT, respectively, with a value of SCM_BOOL_F.

SCM_VARIABLE_INIT (c_name, scheme_name, value) [C Macro]
SCM_GLOBAL_VARIABLE_INIT (c_name, scheme_name, value) [C Macro]
Normally, these macros expand into

static SCM c_name
or
SCM c_name
respectively. While snarfing, they both expand into the initialization code
c_name = scm_permanent_object (scm_c_define (scheme_name, value));
Thus, you can use them declare a static or global C variable of type SCM that will
be initialized to the object representing the Scheme variable named scheme_name in

the current module. The variable will be defined when it doesn’t already exist. It is
always set to value.

104 Guile Reference Manual

6.6 Data Types

Guile’s data types form a powerful built-in library of representations and functionality that
you can apply to your problem domain. This chapter surveys the data types built-in to
Guile, from the simple to the complex.

6.6.1 Booleans

The two boolean values are #t for true and #£f for false. They can also be written as #true
and #false, as per R7RS.

Boolean values are returned by predicate procedures, such as the general equality predi-
cates eq?, equ? and equal? (see Section 6.9.1 [Equality], page 281) and numerical and string
comparison operators like string=? (see Section 6.6.5.7 [String Comparison], page 148) and
<= (see Section 6.6.2.8 [Comparison], page 117).

(<= 3 8)
= #t
(<= 3 -3)
= {#f

(equal? "house" "houses")
= #f

(eq? #f #f)
=
#t

In test condition contexts like if and cond (see Section 6.11.2 [Conditionals], page 297),
where a group of subexpressions will be evaluated only if a condition expression evaluates
to “true”, “true” means any value at all except #f.

(lf #t llyesll "IlO")
= "yes"

(lf o “yes" "IlO")
= "yes"

(1f #f "yes" "IlO")
i Hnoll
A result of this asymmetry is that typical Scheme source code more often uses #f ex-
plicitly than #t: #f is necessary to represent an if or cond false value, whereas #t is not
necessary to represent an if or cond true value.

It is important to note that #f is not equivalent to any other Scheme value. In particular,
#f is not the same as the number 0 (like in C and C++), and not the same as the “empty
list” (like in some Lisp dialects).

In C, the two Scheme boolean values are available as the two constants SCM_BOOL_T for
#t and SCM_BOOL_F for #f. Care must be taken with the false value SCM_BOOL_F: it is not
false when used in C conditionals. In order to test for it, use scm_is_false or scm_is_true.

Chapter 6: API Reference

not x
scm_not (x)

Return #t if x is #£, else return #£.

boolean? obj
scm_boolean_p (obj)

SCM

SCM

int

int

int

SCM

int

Return #t if obj is either #t or #£, else return #f£.

SCM_BOOL_T
The SCM representation of the Scheme object #t.

SCM_BOOL_F
The SCM representation of the Scheme object #f.

scm_is_true (SCM obj)
Return 0 if obj is #f, else return 1.

scm_is_false (SCM obj)
Return 1 if obj is #£, else return 0.

scm_is_bool (SCM obj)
Return 1 if obj is either #t or #£f, else return 0.

scm_from_bool (int val)
Return #£ if val is 0, else return #t.

scm_to_bool (SCM val)

105

[Scheme Procedure]
[C Function]

[Scheme Procedure]
[C Function]

[C Macro]

[C Macro]

[C Function]

[C Function]

[C Function]

[C Function]

[C Function]

Return 1 if val is SCM_BOOL_T, return 0 when val is SCM_BOOL_F, else signal a ‘wrong

type’ error.

You should probably use scm_is_true instead of this function when you just want

to test a SCM value for trueness.

6.6.2 Numerical data types

Guile supports a rich “tower” of numerical types — integer, rational, real and complex
— and provides an extensive set of mathematical and scientific functions for operating on
numerical data. This section of the manual documents those types and functions.

You may also find it illuminating to read R5RS’s presentation of numbers in Scheme,
which is particularly clear and accessible: see Section “Numbers” in R5RS.

6.6.2.1 Scheme’s Numerical “Tower”

Scheme’s numerical “tower” consists of the following categories of numbers:

integers

rationals

Whole numbers, positive or negative; e.g. -5, 0, 18.

The set of numbers that can be expressed as p/q where p and q are integers;

e.g. 9/16 works, but pi (an irrational number) doesn’t. These include integers

(n/1).

real numbers
The set of numbers that describes all possible positions along a one-dimensional

line. This includes rationals as well as irrational numbers.

106 Guile Reference Manual

complex numbers
The set of numbers that describes all possible positions in a two dimensional
space. This includes real as well as imaginary numbers (a + bi, where a is the
real part, b is the imaginary part, and i is the square root of —1.)

It is called a tower because each category “sits on” the one that follows it, in the sense
that every integer is also a rational, every rational is also real, and every real number is
also a complex number (but with zero imaginary part).

In addition to the classification into integers, rationals, reals and complex numbers,
Scheme also distinguishes between whether a number is represented exactly or not. For
example, the result of 2sin(7/4) is exactly v/2, but Guile can represent neither 7/4 nor v/2
exactly. Instead, it stores an inexact approximation, using the C type double.

Guile can represent exact rationals of any magnitude, inexact rationals that fit into a C
double, and inexact complex numbers with double real and imaginary parts.

The number? predicate may be applied to any Scheme value to discover whether the
value is any of the supported numerical types.

number? obj [Scheme Procedure]
scm_number_p (obj) [C Function]
Return #t if obj is any kind of number, else #£.

For example:

(number? 3)
= {#t

(number? "hello there!")
= #f

(define pi 3.141592654)
(number? pi)
= #t

int scm_is_number (SCM obj) [C Function]
This is equivalent to scm_is_true (scm_number_p (obj)).

The next few subsections document each of Guile’s numerical data types in detail.

6.6.2.2 Integers

Integers are whole numbers, that is numbers with no fractional part, such as 2, 83, and
—3789.

Integers in Guile can be arbitrarily big, as shown by the following example.

(define (factorial n)
(let loop ((n n) (product 1))
(if (=n 0)
product
(loop (- n 1) (* product n)))))

Chapter 6: API Reference 107

(factorial 3)
= 6

(factorial 20)
= 2432902008176640000

(- (factorial 45))
= -119622220865480194561963161495657715064383733760000000000

Readers whose background is in programming languages where integers are limited by
the need to fit into just 4 or 8 bytes of memory may find this surprising, or suspect that
Guile’s representation of integers is inefficient. In fact, Guile achieves a near optimal balance
of convenience and efficiency by using the host computer’s native representation of integers
where possible, and a more general representation where the required number does not fit in
the native form. Conversion between these two representations is automatic and completely
invisible to the Scheme level programmer.

C has a host of different integer types, and Guile offers a host of functions to convert
between them and the SCM representation. For example, a C int can be handled with
scm_to_int and scm_from_int. Guile also defines a few C integer types of its own, to help
with differences between systems.

C integer types that are not covered can be handled with the generic scm_
to_signed_integer and scm_from_signed_integer for signed types, or with
scm_to_unsigned_integer and scm_from_unsigned_integer for unsigned types.

Scheme integers can be exact and inexact. For example, a number written as 3.0 with
an explicit decimal-point is inexact, but it is also an integer. The functions integer? and
scm_is_integer report true for such a number, but the functions exact-integer?, scm_
is_exact_integer, scm_is_signed_integer, and scm_is_unsigned_integer only allow
exact integers and thus report false. Likewise, the conversion functions like scm_to_signed_
integer only accept exact integers.

The motivation for this behavior is that the inexactness of a number should not be
lost silently. If you want to allow inexact integers, you can explicitly insert a call to
inexact->exact or to its C equivalent scm_inexact_to_exact. (Only inexact integers
will be converted by this call into exact integers; inexact non-integers will become exact
fractions.)

integer? x [Scheme Procedure]
scm_integer_p (x) [C Function]
Return #t if x is an exact or inexact integer number, else return #f£.
(integer? 487)
= #t

(integer? 3.0)
= #t

(integer? -3.4)
= #f

108

(integer? +inf.0)
= #f

int scm_is_integer (SCM x)

This is equivalent to scm_is_true (scm_integer_p (x)).

exact-integer? x
scm_exact_integer_p (x)

Return #t if x is an exact integer number, else return #f£.

(exact-integer? 37)
= #t

(exact-integer? 3.0)
= #f

int scm_is_exact_integer (SCM x)

Guile Reference Manual

[C Function]

[Scheme Procedure]
[C Function]

[C Function]

This is equivalent to scm_is_true (scm_exact_integer_p (x)).

scm_t_int8
scm_t_uint8
scm_t_int16
scm_t_uinti16
scm_t_int32
scm_t_uint32
scm_t_int64
scm_t_uint64
scm_t_intmax
scm_t_uintmax

The C types are equivalent to the corresponding ISO C types but are defined on all
platforms, with the exception of scm_t_int64 and scm_t_uint64, which are only
defined when a 64-bit type is available. For example, scm_t_int8 is equivalent to
int8_t.

You can regard these definitions as a stop-gap measure until all platforms provide
these types. If you know that all the platforms that you are interested in already
provide these types, it is better to use them directly instead of the types provided by
Guile.

int scm_is_signed_integer (SCM x, scm_t_intmax min, [C Function]

scm_t_intmax max)

int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, [C Function]

scm_t_uintmax max)
Return 1 when x represents an exact integer that is between min and max, inclusive.

These functions can be used to check whether a SCM value will fit into a given range,
such as the range of a given C integer type. If you just want to convert a SCM value
to a given C integer type, use one of the conversion functions directly.

Chapter 6: API Reference 109

scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax [C Function]
min, scm_t_intmax max)
scm_t_uintmax scm_to_unsigned_integer (SCM x, [C Function]

scm_t_uintmax min, scm_t_uintmax max)
When x represents an exact integer that is between min and max inclusive, return
that integer. Else signal an error, either a ‘wrong-type’ error when x is not an exact
integer, or an ‘out-of-range’ error when it doesn’t fit the given range.

SCM scm_from_signed_integer (scm_t_intmax x) [C Function]
SCM scm_from_unsigned_integer (scm_t_uintmax x) [C Function]
Return the SCM value that represents the integer x. This function will always succeed

and will always return an exact number.

scm_t_uint16 scm_to_uintl6 (SCM x)
scm_t_int32 scm_to_int32 (SCM x)

C Function
C Function

char scm_to_char (SCM x) [C Function]
signed char scm_to_schar (SCM x) [C Function]
unsigned char scm_to_uchar (SCM x) [C Function]
short scm_to_short (SCM x) [C Function]
unsigned short scm_to_ushort (SCM x) [C Function]
int scm_to_int (SCM x) [C Function]
unsigned int scm_to_uint (SCM x) [C Function]
long scm_to_long (SCM x) [C Function]
unsigned long scm_to_ulong (SCM x) [C Function]
long long scm_to_long_long (SCM x) [C Function]
unsigned long long scm_to_ulong_long (SCM x) [C Function]
size_t scm_to_size_t (SCM x) [C Function]
ssize_t scm_to_ssize_t (SCM x) [C Function]
scm_t_uintptr scm_to_uintptr_t (SCM x) [C Function]
scm_t_ptrdiff scm_to_ptrdiff_t (SCM x) [C Function]
scm_t_int8 scm_to_int8 (SCM x) [C Function]
scm_t_uint8 scm_to_uint8 (SCM x) [C Function]
scm_t_int16 scm_to_int16 (SCM x) [C Function]
[]
[]
[]
[]
[]
[]
[|
[]
[

scm_t_uint32 scm_to_uint32 (SCM x) C Function
scm_t_int64 scm_to_int64 (SCM x) C Function
scm_t_uint64 scm_to_uint64 (SCM x) C Function
scm_t_intmax scm_to_intmax (SCM x) C Function
scm_t_uintmax scm_to_uintmax (SCM x) C Function
scm_t_intptr scm_to_intptr_t (SCM x) C Function
scm_t_uintptr scm_to_uintptr_t (SCM x) C Function]

When x represents an exact integer that fits into the indicated C type, return that
integer. Else signal an error, either a ‘wrong-type’ error when x is not an exact
integer, or an ‘out-of-range’ error when it doesn’t fit the given range.

The functions scm_to_long_long, scm_to_ulong_long, scm_to_int64, and scm_to_
uint64 are only available when the corresponding types are.

SCM scm_from_char (char x) [C Function]
SCM scm_from_schar (signed char x) [C Function]

110 Guile Reference Manual

SCM scm_from_uchar (unsigned char x) C Function
SCM scm_from_short (short x) C Function
SCM scm_from_ushort (unsigned short x) C Function
SCM scm_from_int (int x) C Function
SCM scm_from_uint (unsigned int x) C Function
SCM scm_from_long (long x) C Function
SCM scm_from_ulong (unsigned long x) C Function
SCM scm_from_long_long (long long x) C Function
SCM scm_from_ulong_long (unsigned long long x) C Function
SCM scm_from_size_t (size_t x) C Function
SCM scm_from_ssize_t (ssize_t x) C Function
SCM scm_from_uintptr_t (uintptr_t x) C Function

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
==
SCM scm_from_ptrdiff_t (scm_t_ptrdiff x) [C Function]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

SCM scm_from_int8 (scm_t_int8 x) C Function
SCM scm_from_uint8 (scm_t_uint8 x) C Function
SCM scm_from_int16 (scm_t_intl6 x) C Function
SCM scm_from_uint16 (scm_t_uintl6 x) C Function
SCM scm_from_int32 (scm_t_int32 x) C Function
SCM scm_from_uint32 (scm_t_uint32 x) C Function
SCM scm_from_int64 (scm_t_int64 x) C Function
SCM scm_from_uint64 (scm_t_uint64 x) C Function
SCM scm_from_intmax (scm_t_intmax x) C Function
SCM scm_from_uintmax (scm_t_uintmax x) C Function
SCM scm_from_intptr_t (scm_t_intptr x) C Function
SCM scm_from_uintptr_t (scm_t_uintptr x) C Function

Return the SCM value that represents the integer x. These functions will always
succeed and will always return an exact number.

void scm_to_mpz (SCM val, mpz_t rop) [C Function]
Assign val to the multiple precision integer rop. val must be an exact integer, other-
wise an error will be signaled. rop must have been initialized with mpz_init before
this function is called. When rop is no longer needed the occupied space must be
freed with mpz_clear. See Section “Initializing Integers” in GNU MP Manual, for
details.

SCM scm_from_mpz (mpz_t val) [C Function]
Return the SCM value that represents val.

6.6.2.3 Real and Rational Numbers

Mathematically, the real numbers are the set of numbers that describe all possible points
along a continuous, infinite, one-dimensional line. The rational numbers are the set of all
numbers that can be written as fractions p/q, where p and g are integers. All rational
numbers are also real, but there are real numbers that are not rational, for example v/2,
and .

Guile can represent both exact and inexact rational numbers, but it cannot represent
precise finite irrational numbers. Exact rationals are represented by storing the numera-

Chapter 6: API Reference 111

tor and denominator as two exact integers. Inexact rationals are stored as floating point
numbers using the C type double.

Exact rationals are written as a fraction of integers. There must be no whitespace around
the slash:
1/2
-22/7
Even though the actual encoding of inexact rationals is in binary, it may be helpful to
think of it as a decimal number with a limited number of significant figures and a decimal
point somewhere, since this corresponds to the standard notation for non-whole numbers.
For example:
0.34
-0.00000142857931198
-5648394822220000000000.0
4.0

The limited precision of Guile’s encoding means that any finite “real” number in Guile
can be written in a rational form, by multiplying and then dividing by sufficient powers of
10 (or in fact, 2). For example, ‘=0.00000142857931198’ is the same as —142857931198
divided by 100000000000000000. In Guile’s current incarnation, therefore, the rational?
and real? predicates are equivalent for finite numbers.

Dividing by an exact zero leads to a error message, as one might expect. However,
dividing by an inexact zero does not produce an error. Instead, the result of the division is
either plus or minus infinity, depending on the sign of the divided number and the sign of
the zero divisor (some platforms support signed zeroes ‘-0.0” and ‘+0.0’; ‘0.0’ is the same
as ‘+0.0").

Dividing zero by an inexact zero yields a NaN (‘not a number’) value, although they
are actually considered numbers by Scheme. Attempts to compare a NaN value with any
number (including itself) using =, <, >, <= or >= always returns #f. Although a NaN value
is not = to itself, it is both eqv? and equal? to itself and other NaN values. However, the
preferred way to test for them is by using nan?.

The real NaN values and infinities are written ‘4man.0’, ‘+inf.0’ and ‘-inf.0’. This
syntax is also recognized by read as an extension to the usual Scheme syntax. These
special values are considered by Scheme to be inexact real numbers but not rational. Note
that non-real complex numbers may also contain infinities or NaN values in their real or
imaginary parts. To test a real number to see if it is infinite, a NaN value, or neither, use
inf?, nan?, or finite?, respectively. Every real number in Scheme belongs to precisely
one of those three classes.

On platforms that follow IEEE 754 for their floating point arithmetic, the ‘+inf.0’,
‘-inf.0’, and ‘4nan.0’ values are implemented using the corresponding IEEE 754 values.
They behave in arithmetic operations like IEEE 754 describes it, i.e., (= +nan.0 +nan.0)
= #f.

real? obj [Scheme Procedure]

scm_real_p (obj) [C Function]
Return #t if obj is a real number, else #£. Note that the sets of integer and rational
values form subsets of the set of real numbers, so the predicate will also be fulfilled if
obj is an integer number or a rational number.

112 Guile Reference Manual

rational? x [Scheme Procedure]

scm_rational_p (x) [C Function]
Return #t if x is a rational number, #f otherwise. Note that the set of integer values
forms a subset of the set of rational numbers, i.e. the predicate will also be fulfilled if
x is an integer number.

rationalize x eps [Scheme Procedure]
scm_rationalize (x, eps) [C Function]
Returns the simplest rational number differing from x by no more than eps.

As required by R5RS, rationalize only returns an exact result when both its argu-
ments are exact. Thus, you might need to use inexact->exact on the arguments.

(rationalize (inexact—->exact 1.2) 1/100)
= 6/5

inf? x [Scheme Procedure]
scm_inf_p (x) [C Function]
Return #t if the real number x is ‘+inf .0’ or ‘-inf.0’. Otherwise return #f.

nan? x [Scheme Procedure]
scm_nan_p (x) [C Function]
Return #t if the real number x is ‘+nan.0’, or #f otherwise.

finite? x [Scheme Procedure]
scm_finite_p (x) [C Function]
Return #t if the real number x is neither infinite nor a NaN, #f otherwise.

nan [Scheme Procedure]
scm_nan () [C Function]
Return ‘+nan.0’, a NaN value.

inf [Scheme Procedure]
scm_inf () [C Function]
Return ‘+inf.0’, positive infinity.

numerator x [Scheme Procedure]
scm_numerator (x) [C Function]
Return the numerator of the rational number x.

denominator x [Scheme Procedure]
scm_denominator (x) [C Function]
Return the denominator of the rational number x.

int scm_is_real (SCM val) [C Function]

int scm_is_rational (SCM val) [C Function]
Equivalent to scm_is_true (scm_real_p (val)) and scm_is_true (scm_rational_
p (val)), respectively.

double scm_to_double (SCM val) [C Function]
Returns the number closest to val that is representable as a double. Returns infinity
for a val that is too large in magnitude. The argument val must be a real number.

Chapter 6: API Reference 113

SCM scm_from_double (double val) [C Function]
Return the SCM value that represents val. The returned value is inexact according to
the predicate inexact?, but it will be exactly equal to val.

6.6.2.4 Complex Numbers

Complex numbers are the set of numbers that describe all possible points in a
two-dimensional space. The two coordinates of a particular point in this space are known
as the real and imaginary parts of the complex number that describes that point.
In Guile, complex numbers are written in rectangular form as the sum of their real and

imaginary parts, using the symbol i to indicate the imaginary part.

3+41

=

3.0+4.01

(* 3-8i 2.3+0.31i)

=
9.3-17.51

Polar form can also be used, with an ‘@’ between magnitude and angle,
1@3.141592 = -1.0 (approx)

-101.57079 = 0.0-1.0i (approx)

Guile represents a complex number as a pair of inexact reals, so the real and imaginary
parts of a complex number have the same properties of inexactness and limited precision
as single inexact real numbers.

Note that each part of a complex number may contain any inexact real value, including
the special values ‘+nan.0’, ‘+inf.0’ and ‘-inf.0’, as well as either of the signed zeroes
‘0.0’ or ‘-0.0’.

complex? z [Scheme Procedure]

scm_complex_p (2) [C Function]
Return #t if z is a complex number, #f otherwise. Note that the sets of real, rational
and integer values form subsets of the set of complex numbers, i.e. the predicate will
also be fulfilled if z is a real, rational or integer number.

int scm_is_complex (SCM val) [C Function]
Equivalent to scm_is_true (scm_complex_p (val)).

6.6.2.5 Exact and Inexact Numbers

R5RS requires that, with few exceptions, a calculation involving inexact numbers always
produces an inexact result. To meet this requirement, Guile distinguishes between an exact
integer value such as ‘6’ and the corresponding inexact integer value which, to the limited
precision available, has no fractional part, and is printed as ‘5.0’. Guile will only convert
the latter value to the former when forced to do so by an invocation of the inexact->exact
procedure.

The only exception to the above requirement is when the values of the inexact numbers
do not affect the result. For example (expt n 0) is ‘1’ for any value of n, therefore (expt
5.0 0) is permitted to return an exact ‘1’.

114 Guile Reference Manual

exact? z [Scheme Procedure]
scm_exact_p (2) [C Function]
Return #t if the number z is exact, #f otherwise.

(exact? 2)
= {#t

(exact? 0.5)
= {#f

(exact? (/ 2))
= #t

int scm_is_exact (SCM z) [C Function]
Return a 1 if the number z is exact, and 0 otherwise. This is equivalent to scm_is_
true (scm_exact_p (2)).

An alternate approach to testing the exactness of a number is to use scm_is_signed_
integer or scm_is_unsigned_integer.

inexact? z [Scheme Procedure]
scm_inexact_p (2) [C Function]
Return #t if the number z is inexact, #f else.

int scm_is_inexact (SCM z) [C Function]
Return a 1 if the number z is inexact, and O otherwise. This is equivalent to scm_
is_true (scm_inexact_p (z)).

inexact->exact z [Scheme Procedure]

scm_inexact_to_exact (2) [C Function]
Return an exact number that is numerically closest to z, when there is one. For
inexact rationals, Guile returns the exact rational that is numerically equal to the
inexact rational. Inexact complex numbers with a non-zero imaginary part can not
be made exact.

(inexact—->exact 0.5)
= 1/2

The following happens because 12/10 is not exactly representable as a double (on
most platforms). However, when reading a decimal number that has been marked
exact with the “#e€” prefix, Guile is able to represent it correctly.

(inexact->exact 1.2)
= 5404319552844595/4503599627370496

#el.2

= 6/5
exact->inexact z [Scheme Procedure]
scm_exact_to_inexact (2) [C Function]

Convert the number z to its inexact representation.

Chapter 6: API Reference 115

6.6.2.6 Read Syntax for Numerical Data

The read syntax for integers is a string of digits, optionally preceded by a minus or plus
character, a code indicating the base in which the integer is encoded, and a code indicating
whether the number is exact or inexact. The supported base codes are:

#b

#B the integer is written in binary (base 2)

#o

#0 the integer is written in octal (base 8)

#d

#D the integer is written in decimal (base 10)

#x

#X the integer is written in hexadecimal (base 16)

If the base code is omitted, the integer is assumed to be decimal. The following examples
show how these base codes are used.
-13
= -13

#d-13
= -13

#x-13
= -19

#b+1101
= 13

#0377
= 255

The codes for indicating exactness (which can, incidentally, be applied to all numerical
values) are:

#e

#E the number is exact
#i

#I the number is inexact.

If the exactness indicator is omitted, the number is exact unless it contains a radix point.
Since Guile can not represent exact complex numbers, an error is signaled when asking for
them.

(exact? 1.2)
= #f

(exact? #el.2)
= {#t

116 Guile Reference Manual

(exact? #et+li)
ERROR: Wrong type argument

Guile also understands the syntax ‘“+inf.0’ and ‘-inf.0’ for plus and minus infinity,
respectively. The value must be written exactly as shown, that is, they always must have
a sign and exactly one zero digit after the decimal point. It also understands ‘+nan.0’ and
‘-nan.0’ for the special ‘not-a-number’ value. The sign is ignored for ‘not-a-number’ and
the value is always printed as ‘+nan.0’.

6.6.2.7 Operations on Integer Values

odd? n [Scheme Procedure]

scm_odd_p (n) [C Function]
Return #t if n is an odd number, #f otherwise.

even? n [Scheme Procedure]

scm_even_p (n) [C Function]

Return #t if n is an even number, #f otherwise.

quotient n d [Scheme Procedure]
remainder n d [Scheme Procedure]
scm_quotient (n, d) [C Function]
scm_remainder (n, d) [C Function]

Return the quotient or remainder from n divided by d. The quotient is rounded
towards zero, and the remainder will have the same sign as n. In all cases quotient
and remainder satisfy n = gx d 4+ r.

(remainder 13 4) = 1
(remainder -13 4) = -1

See also truncate-quotient, truncate-remainder and related operations in Sec-
tion 6.6.2.11 [Arithmetic|, page 119.

modulo n d [Scheme Procedure]
scm_modulo (n, d) [C Function]
Return the remainder from n divided by d, with the same sign as d.

(modulo 13 4) = 1
(modulo -13 4) = 3
(modulo 13 -4) = -3
(modulo -13 -4) = -1

See also floor-quotient, floor-remainder and related operations in
Section 6.6.2.11 [Arithmetic], page 119.

ged x. .. [Scheme Procedure]

scm_ged (X, y) [C Function]
Return the greatest common divisor of all arguments. If called without arguments, 0
is returned.

The C function scm_gcd always takes two arguments, while the Scheme function can
take an arbitrary number.

Chapter 6: API Reference 117

lem x. .. [Scheme Procedure]

scm_lcm (x, y) [C Function]
Return the least common multiple of the arguments. If called without arguments, 1
is returned.

The C function scm_lcm always takes two arguments, while the Scheme function can
take an arbitrary number.

modulo-expt n k m [Scheme Procedure]
scm_modulo_expt (n, k, m) [C Function]
Return n raised to the integer exponent k, modulo m.

(modulo-expt 2 3 5)

= 3
exact-integer-sqrt k [Scheme Procedure]
void scm_exact_integer_sqrt (SCM k, SCM *s, SCM *r) [C Function]

Return two exact non-negative integers s and r such that k = s®> +r and s> <=k <
(s+1)% An error is raised if k is not an exact non-negative integer.

(exact-integer-sqrt 10) = 3 and 1

6.6.2.8 Comparison Predicates

The C comparison functions below always takes two arguments, while the Scheme functions
can take an arbitrary number. Also keep in mind that the C functions return one of the
Scheme boolean values SCM_BOOL_T or SCM_BOOL_F which are both true as far as C is
concerned. Thus, always write scm_is_true (scm_num_eq_p (x, y)) when testing the two
Scheme numbers x and y for equality, for example.

= [Scheme Procedure]
scm_num_eq_p (X, y) [C Function]
Return #t if all parameters are numerically equal.

< [Scheme Procedure]
scm_less_p (X, y) [C Function]
Return #t if the list of parameters is monotonically increasing.

> [Scheme Procedure]

scm_gr_p (x, ¥) [C Function]
Return #t if the list of parameters is monotonically decreasing.

<= [Scheme Procedure]

scm_leq_p (X,) [C Function]
Return #t if the list of parameters is monotonically non-decreasing.

>= [Scheme Procedure]

scm_geq_p (x, y) [C Function]
Return #t if the list of parameters is monotonically non-increasing.

zero? z [Scheme Procedure]

scm_zero_p (2) [C Function]

Return #t if z is an exact or inexact number equal to zero.

118 Guile Reference Manual

positive? x [Scheme Procedure]
scm_positive_p (x) [C Function]
Return #t if x is an exact or inexact number greater than zero.

negative? x [Scheme Procedure]
scm_negative_p (x) [C Function]
Return #t if x is an exact or inexact number less than zero.

6.6.2.9 Converting Numbers To and From Strings

The following procedures read and write numbers according to their external representa-
tion as defined by R5RS (see Section “Lexical structure” in The Revised~5 Report on the
Algorithmic Language Scheme). See Section 6.25.4 [Number Input and Output|, page 477,
for locale-dependent number parsing.

number->string n [radix] [Scheme Procedure]

scm_number_to_string (n, radix) [C Function]
Return a string holding the external representation of the number n in the given
radix. If n is inexact, a radix of 10 will be used.

string->number string [radix] [Scheme Procedure]

scm_string_to_number (string, radix) [C Function]
Return a number of the maximally precise representation expressed by the given
string. radix must be an exact integer, either 2, 8, 10, or 16. If supplied, radix
is a default radix that may be overridden by an explicit radix prefix in string (e.g.
"#ol77"). If radix is not supplied, then the default radix is 10. If string is not a
syntactically valid notation for a number, then string->number returns #f.

SCM scm_c_locale_stringn_to_number (const char *string, [C Function]
size_t len, unsigned radix)
As per string->number above, but taking a C string, as pointer and length. The
string characters should be in the current locale encoding (locale in the name refers
only to that, there’s no locale-dependent parsing).

6.6.2.10 Complex Number Operations

make-rectangular real part imaginary_part [Scheme Procedure]
scm_make_rectangular (real_part, imaginary_part) [C Function]
Return a complex number constructed of the given real-part and imaginary-part parts.

make-polar mag ang [Scheme Procedure]
scm_make_polar (mag, ang) [C Function]
Return the complex number mag * e~(i * ang).

real-part z [Scheme Procedure]
scm_real_part (2) [C Function]
Return the real part of the number z.

imag-part z [Scheme Procedure]
scm_imag_part (2) [C Function]
Return the imaginary part of the number z.

Chapter 6: API Reference 119

magnitude z [Scheme Procedure]

scm_magnitude (2) [C Function]
Return the magnitude of the number z. This is the same as abs for real arguments,
but also allows complex numbers.

angle z [Scheme Procedure]
scm_angle (2) [C Function]
Return the angle of the complex number z.

SCM scm_c_make_rectangular (double re, double im) [C Function]

SCM scm_c_make_polar (double x, double y) [C Function]
Like scm_make_rectangular or scm_make_polar, respectively, but these functions
take doubles as their arguments.

double scm_c_real_part (z) [C Function]
double scm_c_imag_part (z) [C Function]
Returns the real or imaginary part of z as a double.

double scm_c_magnitude (z) [C Function]
double scm_c_angle (z) [C Function]
Returns the magnitude or angle of z as a double.

6.6.2.11 Arithmetic Functions

The C arithmetic functions below always takes two arguments, while the Scheme functions
can take an arbitrary number. When you need to invoke them with just one argument,
for example to compute the equivalent of (- x), pass SCM_UNDEFINED as the second one:
scm_difference (x, SCM_UNDEFINED).

+zI1 ... [Scheme Procedure]
scm_sum (zI, z2) [C Function]
Return the sum of all parameter values. Return 0 if called without any parameters.

-z1z2 ... [Scheme Procedure]

scm_difference (z1, z2) [C Function]
If called with one argument z1, -z1 is returned. Otherwise the sum of all but the first
argument are subtracted from the first argument.

* z1 ... [Scheme Procedure]
scm_product (z1, z2) [C Function]
Return the product of all arguments. If called without arguments, 1 is returned.

/ z12z2 ... [Scheme Procedure]

scm_divide (z1, z2) [C Function]
Divide the first argument by the product of the remaining arguments. If called with
one argument zI, 1/z1 is returned.

1+ z [Scheme Procedure]
scm_oneplus (2) [C Function]
Return z 4 1.

120 Guile Reference Manual

1- z [Scheme Procedure]
scm_oneminus (z) [C function]
Return z — 1.

abs x [Scheme Procedure]
scm_abs (x) [C Function]
Return the absolute value of x.

x must be a number with zero imaginary part. To calculate the magnitude of a
complex number, use magnitude instead.

max xI x2 ... [Scheme Procedure]
scm_max (xI1, x2) [C Function]
Return the maximum of all parameter values.

min xI x2 ... [Scheme Procedure]
scm_min (xI, x2) [C Function]
Return the minimum of all parameter values.

truncate x [Scheme Procedure]
scm_truncate_number (x) [C Function]
Round the inexact number x towards zero.

round X [Scheme Procedure]

scm_round_number (x) [C Function]
Round the inexact number x to the nearest integer. When exactly halfway between
two integers, round to the even one.

floor x [Scheme Procedure]
scm_floor (x) [C Function]
Round the number x towards minus infinity.

ceiling x [Scheme Procedure]
scm_ceiling (x) [C Function]
Round the number x towards infinity.

double scm_c_truncate (double x) [C Function]

double scm_c_round (double x) [C Function]
Like scm_truncate_number or scm_round_number, respectively, but these functions
take and return double values.

euclidean/ x y [Scheme Procedure]
euclidean-quotient x y [Scheme Procedure]
euclidean-remainder x y [Scheme Procedure]
void scm_euclidean_divide (SCM x, SCM y, SCM *q, SCM x*r) [C Function]
SCM scm_euclidean_quotient (SCM x, SCM y) [C Function]
SCM scm_euclidean_remainder (SCM x, SCM y) [C Function]

These procedures accept two real numbers x and y, where the divisor y must be non-
zero. euclidean-quotient returns the integer q and euclidean-remainder returns
the real number r such that x = gxy +r and 0 <= r < |y|. euclidean/ returns

Chapter 6: API Reference 121

both g and r, and is more efficient than computing each separately. Note that when
y > 0, euclidean-quotient returns floor(x/y), otherwise it returns ceiling(x/y).

Note that these operators are equivalent to the R6RS operators div, mod, and div-
and-mod.

(euclidean-quotient 123 10) = 12
(euclidean-remainder 123 10) = 3
(euclidean/ 123 10) = 12 and 3
(euclidean/ 123 -10) = -12 and 3
(euclidean/ -123 10) = -13 and 7
(euclidean/ -123 -10) = 13 and 7
(euclidean/ -123.2 -63.5) = 2.0 and 3.8
(euclidean/ 16/3 -10/7) = -3 and 22/21

floor/ x y [Scheme Procedure]
floor-quotient x y [Scheme Procedure]
floor-remainder x y [Scheme Procedure]
void scm_floor_divide (SCM x, SCM y, SCM *q, SCM *r) [C Function]
SCM scm_floor_quotient (x, y) [C Function]
SCM scm_floor_remainder (x, y) [C Function]

These procedures accept two real numbers x and y, where the divisor y must be
non-zero. floor-quotient returns the integer q and floor-remainder returns the
real number r such that q = floor(x/y) and x = q* y 4+ r. floor/ returns both g
and r, and is more efficient than computing each separately. Note that r, if non-zero,
will have the same sign as y.

When x and y are integers, floor-remainder is equivalent to the R5RS integer-only
operator modulo.

(floor-quotient 123 10) = 12
(floor-remainder 123 10) = 3

(floor/ 123 10) = 12 and 3

(floor/ 123 -10) = -13 and -7

(floor/ -123 10) = -13 and 7

(floor/ -123 -10) = 12 and -3

(floor/ -123.2 -63.5) = 1.0 and -59.7
(floor/ 16/3 -10/7) = -4 and -8/21

ceiling/ x y [Scheme Procedure]
ceiling-quotient x y [Scheme Procedure]
ceiling-remainder x y [Scheme Procedure]
void scm_ceiling_divide (SCM x, SCM y, SCM *q, SCM *r) [C Function]
SCM scm_ceiling_quotient (x, y) [C Function]
SCM scm_ceiling_remainder (x, y) [C Function]

These procedures accept two real numbers x and y, where the divisor y must be
non-zero. ceiling-quotient returns the integer q and ceiling-remainder returns
the real number r such that g = ceiling(x/y) and x = q* y + r. ceiling/ returns
both ¢ and r, and is more efficient than computing each separately. Note that r, if
non-zero, will have the opposite sign of y.

(ceiling-quotient 123 10) = 13

122 Guile Reference Manual

(ceiling-remainder 123 10) = -7
(ceiling/ 123 10) = 13 and -7
(ceiling/ 123 -10) = -12 and 3
(ceiling/ -123 10) = -12 and -3
(ceiling/ -123 -10) = 13 and 7
(ceiling/ -123.2 -63.5) = 2.0 and 3.8
(ceiling/ 16/3 -10/7) = -3 and 22/21

truncate/ x y [Scheme Procedure]
truncate-quotient x y [Scheme Procedure]
truncate-remainder x y [Scheme Procedure]
void scm_truncate_divide (SCM x, SCM y, SCM *q, SCM *r) [C Function]
SCM scm_truncate_quotient (x, y) [C Function]
SCM scm_truncate_remainder (x, y) [C Function]

These procedures accept two real numbers x and y, where the divisor y must be non-
zero. truncate—-quotient returns the integer q and truncate-remainder returns the
real number r such that q is x/y rounded toward zero, and x = q*y +r. truncate/
returns both g and r, and is more efficient than computing each separately. Note that
r, if non-zero, will have the same sign as x.

When x and y are integers, these operators are equivalent to the R5RS integer-only
operators quotient and remainder.

(truncate-quotient 123 10) = 12
(truncate-remainder 123 10) = 3
(truncate/ 123 10) = 12 and 3

(truncate/ 123 -10) = -12 and 3
(truncate/ -123 10) = -12 and -3
(truncate/ -123 -10) = 12 and -3
(truncate/ -123.2 -63.5) = 1.0 and -59.7
(truncate/ 16/3 -10/7) = -3 and 22/21

centered/ x y [Scheme Procedure]
centered-quotient x y [Scheme Procedure]
centered-remainder x y [Scheme Procedure]
void scm_centered_divide (SCM x, SCM y, SCM *q, SCM *r) [C Function]
SCM scm_centered_quotient (SCM x, SCM y) [C Function]
SCM scm_centered_remainder (SCM x, SCM y) [C Function]

These procedures accept two real numbers x and y, where the divisor y must be non-
zero. centered-quotient returns the integer q and centered-remainder returns
the real number r such that x = q*y +r and —|y/2| <= r < |y/2|. centered/
returns both g and r, and is more efficient than computing each separately.

Note that centered-quotient returns x/y rounded to the nearest integer. When x/y
lies exactly half-way between two integers, the tie is broken according to the sign of y.
If y > 0, ties are rounded toward positive infinity, otherwise they are rounded toward
negative infinity. This is a consequence of the requirement that —|y /2| <=1 < |y/2|.
Note that these operators are equivalent to the R6RS operators div0, mod0O, and
divO-and-modO.

(centered-quotient 123 10) = 12

Chapter 6: API Reference 123

(centered-remainder 123 10) = 3
(centered/ 123 10) = 12 and 3
(centered/ 123 -10) = -12 and 3
(centered/ -123 10) = -12 and -3
(centered/ -123 -10) = 12 and -3
(centered/ 125 10) = 13 and -5
(centered/ 127 10) = 13 and -3
(centered/ 135 10) = 14 and -5
(centered/ -123.2 -63.5) = 2.0 and 3.8
(centered/ 16/3 -10/7) = -4 and -8/21

round/ x y [Scheme Procedure]
round-quotient x y [Scheme Procedure]
round-remainder x y [Scheme Procedure]
void scm_round_divide (SCM x, SCM y, SCM *q, SCM *r) [C Function]
SCM scm_round_quotient (x, y) [C Function]
SCM scm_round_remainder (x, y) [C Function]

These procedures accept two real numbers x and y, where the divisor y must be
non-zero. round-quotient returns the integer q and round-remainder returns the
real number r such that x = gy + r and g is x/y rounded to the nearest integer,
with ties going to the nearest even integer. round/ returns both q and r, and is more
efficient than computing each separately.

Note that round/ and centered/ are almost equivalent, but their behavior differs
when x/y lies exactly half-way between two integers. In this case, round/ chooses
the nearest even integer, whereas centered/ chooses in such a way to satisfy the
constraint —|y /2| <= r < |y /2|, which is stronger than the corresponding constraint
for round/, —|y/2| <= r <= |y/2|. In particular, when x and y are integers, the
number of possible remainders returned by centered/ is |y|, whereas the number of
possible remainders returned by round/ is |y| 4+ 1 when y is even.

(round-quotient 123 10) = 12
(round-remainder 123 10) = 3
(round/ 123 10) = 12 and 3

(round/ 123 -10) = -12 and 3
(round/ -123 10) = -12 and -3
(round/ -123 -10) = 12 and -3
(round/ 125 10) = 12 and 5

(round/ 127 10) = 13 and -3
(round/ 135 10) = 14 and -5
(round/ -123.2 -63.5) = 2.0 and 3.8
(round/ 16/3 -10/7) = -4 and -8/21

6.6.2.12 Scientific Functions

The following procedures accept any kind of number as arguments, including complex num-
bers.

124

sqrt z

Guile Reference Manual

[Scheme Procedure]

Return the square root of z. Of the two possible roots (positive and negative), the
one with a positive real part is returned, or if that’s zero then a positive imaginary

part. Thus,
(sqrt 9.0)
(sqrt -9.0)

(sqrt 1.0+1.01)
(sqrt -1.0-1.01)

.09868411346781+0.4550898605622271

3.0
0.0+3.01
1
0.455089860562227-1.098684113467811

expt zl z2
Return z1 raised to the power of z2.

sin z
Return the sine of z.

cos z
Return the cosine of z.

tan z
Return the tangent of z.

asin z
Return the arcsine of z.

acos z
Return the arccosine of z.

atan z
atan y x

Return the arctangent of z, or of y/x.

exp z

[Scheme Procedure]

[Scheme Procedure]

[Scheme Procedure]

[Scheme Procedure]

[Scheme Procedure]

[Scheme Procedure]

[Scheme Procedure]
[Scheme Procedure]

[Scheme Procedure]

Return e to the power of z, where e is the base of natural logarithms (2.71828. . .).

log z
Return the natural logarithm of z.

logl0 z
Return the base 10 logarithm of z.

sinh z
Return the hyperbolic sine of z.

cosh z
Return the hyperbolic cosine of z.

tanh z
Return the hyperbolic tangent of z.

asinh z
Return the hyperbolic arcsine of z.

[Scheme Procedure]

[Scheme Procedure]

[Scheme Procedure]

[Scheme Procedure]

[Scheme Procedure]

[Scheme Procedure]

Chapter 6: API Reference 125

acosh z [Scheme Procedure]
Return the hyperbolic arccosine of z.

atanh z [Scheme Procedure]
Return the hyperbolic arctangent of z.

6.6.2.13 Bitwise Operations

For the following bitwise functions, negative numbers are treated as infinite precision twos-
complements. For instance —6 is bits ...111010, with infinitely many ones on the left. It
can be seen that adding 6 (binary 110) to such a bit pattern gives all zeros.

logand nl n2 ... [Scheme Procedure]
scm_logand (nl, n2) [C Function]
Return the bitwise AND of the integer arguments.
(logand) = -1
(logand 7) = 7
(logand #b111 #b011 #b001) = 1

logior nl n2 ... [Scheme Procedure]
scm_logior (nl, n2) [C Function]
Return the bitwise OR of the integer arguments.
(logior) = 0
(logior 7) = 7
(logior #b00O #b001 #b011) = 3

logxor nl n2 ... [Scheme Procedure]
scm_loxor (nl, n2) [C Function]
Return the bitwise XOR of the integer arguments. A bit is set in the result if it is set
in an odd number of arguments.
(logxor) = 0
(logxor 7) = 7
(logxor #b00O #b001 #b011) = 2
(logxor #b00O #b001 #b011 #b011) = 1

lognot n [Scheme Procedure]
scm_lognot (n) [C Function]
Return the integer which is the ones-complement of the integer argument, ie. each 0
bit is changed to 1 and each 1 bit to 0.
(number->string (lognot #b10000000) 2)
= "-10000001"
(number->string (lognot #b0) 2)
:> l|_1"

logtest j k [Scheme Procedure]

scm_logtest (j, k) [C Function]
Test whether j and k have any 1 bits in common. This is equivalent to (not (zero?
(logand j k))), but without actually calculating the logand, just testing for non-
Zero.

(logtest #b0100 #b1011) = #f

126

(logtest #b0100 #b0111) = #t

logbit? index j
scm_logbit_p (index, j)

Guile Reference Manual

[Scheme Procedure]
[C Function]

Test whether bit number index in j is set. index starts from 0 for the least significant

bit.

(logbit? 0 #b1101) =
(logbit? 1 #b1101) =
(logbit? 2 #b1101) = #t
(logbit? 3 #b1101) =
(logbit? 4 #b1101) =

ash n count
scm_ash (n, count)

#t
#f

#t
#f

[Scheme Procedure]
[C Function]

Return floor(n x 2°°*™). n and count must be exact integers.

With n viewed as an infinite-precision twos-complement integer, ash means a left shift
introducing zero bits when count is positive, or a right shift dropping bits when count
is negative. This is an “arithmetic” shift.

(number->string (ash #bl 3) 2)
(number->string (ash #b1010 -1) 2) = "101"

;5 —23 is bits
(ash -23 -2) =

round-ash n count
scm_round_ash (n, count)

...11101001,
-6

-6 is bits

=

n 1000"

...111010

[Scheme Procedure]
[C Function]

Return round(n % 2°ount). n and count must be exact integers.

With n viewed as an infinite-precision twos-complement integer, round-ash means a
left shift introducing zero bits when count is positive, or a right shift rounding to the
nearest integer (with ties going to the nearest even integer) when count is negative.
This is a rounded “arithmetic” shift.

(number->string
(number->string
(number->string
(number->string
(number->string
(number->string

logcount n
scm_logcount (n)

Return the number of bits in integer n.

(round-ash
(round-ash
(round-ash
(round-ash
(round-ash
(round-ash

#bl 3)
#b1010
#b1010
#b1011
#b1101
#b1110

2)

-1)
-2)
-2)
-2)
-2)

2)
2)
2)
2)
2)

N R

\""1000\"
\"101\"
\Il10\||
\"11\"
\"11\"
\"100\"

[Scheme Procedure]
[C Function]

If n is positive, the 1-bits in its binary

representation are counted. If negative, the 0-bits in its two’s-complement binary
representation are counted. If zero, 0 is returned.

(logcount #b10101010)

= 4
(logcount 0)
= 0

Chapter 6: API Reference 127

(logcount -2)

=1
integer-length n [Scheme Procedure]
scm_integer_length (n) [C Function]

Return the number of bits necessary to represent n.

For positive n this is how many bits to the most significant one bit. For negative n
it’s how many bits to the most significant zero bit in twos complement form.

(integer-length #b10101010) = 8
(integer-length #b1111)
(integer-length 0)
(integer-length -1)
(integer-length -256)
(integer-length -257)

R R
© oo o

integer-expt n k [Scheme Procedure]

scm_integer_expt (n, k) [C Function]
Return n raised to the power k. k must be an exact integer, n can be any number.
Negative k is supported, and results in 1/n'k| in the usual way. n° is 1, as usual, and
that includes 0° is 1.

(integer-expt 2 5) = 32
(integer-expt -3 3) = -27
(integer-expt 5 -3) = 1/125
(integer-expt 0 0) =1

bit-extract n start end [Scheme Procedure]

scm_bit_extract (n, start, end) [C Function]
Return the integer composed of the start (inclusive) through end (exclusive) bits of
n. The startth bit becomes the 0-th bit in the result.

(number->string (bit-extract #b1101101010 0 4) 2)

= "1010"
(number->string (bit-extract #b1101101010 4 9) 2)
= "10110"

6.6.2.14 Random Number Generation

Pseudo-random numbers are generated from a random state object, which can be created
with seed->random-state or datum->random-state. An external representation (i.e. one
which can written with write and read with read) of a random state object can be obtained
via random-state->datum. The state parameter to the various functions below is optional,
it defaults to the state object in the *random-state* variable.

copy-random-state [state] [Scheme Procedure]
scm_copy_random_state (state) [C Function]
Return a copy of the random state state.

random n [state] [Scheme Procedure]
scm_random (n, state) [C Function]
Return a number in [0, n).

128 Guile Reference Manual

Accepts a positive integer or real n and returns a number of the same type between
zero (inclusive) and n (exclusive). The values returned have a uniform distribution.

random:exp [state] [Scheme Procedure]

scm_random_exp (state) [C Function]
Return an inexact real in an exponential distribution with mean 1. For an exponential
distribution with mean u use (* u (random:exp)).

random:hollow-sphere! vect [state] [Scheme Procedure]

scm_random_hollow_sphere_x (vect, state) [C Function]
Fills vect with inexact real random numbers the sum of whose squares is equal to 1.0.
Thinking of vect as coordinates in space of dimension n = (vector-length vect),
the coordinates are uniformly distributed over the surface of the unit n-sphere.

random:normal [state] [Scheme Procedure]

scm_random_normal (state) [C Function]
Return an inexact real in a normal distribution. The distribution used has mean
0 and standard deviation 1. For a normal distribution with mean m and standard
deviation d use (+ m (* d (random:normal))).

random:normal-vector! vect [state] [Scheme Procedure]

scm_random_normal_vector_x (vect, state) [C Function]
Fills vect with inexact real random numbers that are independent and standard nor-
mally distributed (i.e., with mean 0 and variance 1).

random:solid-sphere! vect [state] [Scheme Procedure]

scm_random_solid_sphere_x (vect, state) [C Function]
Fills vect with inexact real random numbers the sum of whose squares is less than 1.0.
Thinking of vect as coordinates in space of dimension n = (vector-length vect),
the coordinates are uniformly distributed within the unit n-sphere.

random:uniform [state] [Scheme Procedure]
scm_random_uniform (state) [C Function]
Return a uniformly distributed inexact real random number in [0,1).

seed->random-state seed [Scheme Procedure]
scm_seed_to_random_state (seed) [C Function]
Return a new random state using seed.

datum->random-state datum [Scheme Procedure]

scm_datum_to_random_state (datum) [C Function]
Return a new random state from datum, which should have been obtained by random-
state->datum.

random-state->datum state [Scheme Procedure]

scm_random_state_to_datum (state) [C Function]
Return a datum representation of state that may be written out and read back with
the Scheme reader.

Chapter 6: API Reference 129

random-state-from-platform [Scheme Procedure]

scm_random_state_from_platform () [C Function]
Construct a new random state seeded from a platform-specific source of entropy,
appropriate for use in non-security-critical applications. Currently /dev/urandom is
tried first, or else the seed is based on the time, date, process ID, an address from a
freshly allocated heap cell, an address from the local stack frame, and a high-resolution
timer if available.

random-statex [Variable]
The global random state used by the above functions when the state parameter is
not given.

Note that the initial value of *random-statex* is the same every time Guile starts up.
Therefore, if you don’t pass a state parameter to the above procedures, and you don’t
set *random-state* to (seed->random-state your-seed), where your-seed is something
that isn’t the same every time, you’ll get the same sequence of “random” numbers on every
run.

For example, unless the relevant source code has changed, (map random (cdr (iota
30))), if the first use of random numbers since Guile started up, will always give:

(map random (cdr (iota 19)))
=
(0112221267 100531255 12)

To seed the random state in a sensible way for non-security-critical applications, do this
during initialization of your program:

(set! *random-state* (random-state-from-platform))

6.6.3 Characters

In Scheme, there is a data type to describe a single character.

Defining what exactly a character is can be more complicated than it seems. Guile
follows the advice of R6RS and uses The Unicode Standard to help define what a character
is. So, for Guile, a character is anything in the Unicode Character Database.

The Unicode Character Database is basically a table of characters indexed using integers
called ’code points’. Valid code points are in the ranges 0 to #xD7FF inclusive or #xE000 to
#x10FFFF inclusive, which is about 1.1 million code points.

Any code point that has been assigned to a character or that has otherwise been given a
meaning by Unicode is called a ’designated code point’. Most of the designated code points,
about 200,000 of them, indicate characters, accents or other combining marks that modify
other characters, symbols, whitespace, and control characters. Some are not characters but
indicators that suggest how to format or display neighboring characters.

If a code point is not a designated code point — if it has not been assigned to a character
by The Unicode Standard — it is a 'reserved code point’, meaning that they are reserved for
future use. Most of the code points, about 800,000, are 'reserved code points’.

By convention, a Unicode code point is written as “U+XXXX” where “XXXX” is a
hexadecimal number. Please note that this convenient notation is not valid code. Guile
does not interpret “U+XXXX” as a character.

130 Guile Reference Manual

In Scheme, a character literal is written as #\name where name is the name of the
character that you want. Printable characters have their usual single character name; for
example, #\a is a lower case a.

Some of the code points are ’combining characters’ that are not meant to be printed by
themselves but are instead meant to modify the appearance of the previous character. For
combining characters, an alternate form of the character literal is #\ followed by U+25CC
(a small, dotted circle), followed by the combining character. This allows the combining
character to be drawn on the circle, not on the backslash of #\.

Many of the non-printing characters, such as whitespace characters and control charac-
ters, also have names.

The most commonly used non-printing characters have long character names, described
in the table below.

Character Codepoint
Name

#\nul U+0000
#\alarm U+0007
#\backspace U+0008
#\tab U+0009
#\linefeed U+000A
#\newline U+000A
#\vtab U+000B
#\page U+000C
#\return U+000D
#\esc U+001B
#\space U+0020
#\delete U+007F

There are also short names for all of the “CO control characters” (those with code points
below 32). The following table lists the short name for each character.

0 = #\nul 1 = #\soh 2 = #\stx 3 = #\etx

= #\eot 5 = #\enq 6 = #\ack 7 = #\bel
8 = #\bs 9 = #\ht 10 = #\1f 11 = #\vt
12 = #\ff 13 = #\cr 14 = #\so 15 = #\si
16 = #\dle 17 = #\dc1 18 = #\dc2 19 = #\dc3
20 = #\dc4 21 = #\nak 22 = #\syn 23 = #\etb
24 = #\can 25 = #\em 26 = #\sub 27 = #\esc
28 = #\fs 29 = #\gs 30 = #\rs 31 = #\us
32 = #\sp

The short name for the “delete” character (code point U+007F) is #\del.
The R7RS name for the “escape” character (code point U+001B) is #\escape.

There are also a few alternative names left over for compatibility with previous versions

of Guile.
Alternate
#\nl
#\np

Standard

#\newline

#\page

Chapter 6: API Reference 131

#\null #\nul
Characters may also be written using their code point values. They can be written with
as an octal number, such as #\10 for #\bs or #\177 for #\del.

If one prefers hex to octal, there is an additional syntax for character escapes: #\xHHHH
— the letter 'x’ followed by a hexadecimal number of one to eight digits.

char? x [Scheme Procedure]
scm_char_p (x) [C Function]
Return #t if x is a character, else #£.

Fundamentally, the character comparison operations below are numeric comparisons of
the character’s code points.

char=? xy [Scheme Procedure]
Return #t if code point of x is equal to the code point of y, else #f.

char<? xy [Scheme Procedure]
Return #t if the code point of x is less than the code point of y, else #£.

char<=7? x y [Scheme Procedure]
Return #t if the code point of x is less than or equal to the code point of y, else #f£.

char>? xy [Scheme Procedure]
Return #t if the code point of x is greater than the code point of y, else #£.

char>=? xy [Scheme Procedure]
Return #t if the code point of x is greater than or equal to the code point of y, else
#f.

Case-insensitive character comparisons use Unicode case folding. In case folding compar-
isons, if a character is lowercase and has an uppercase form that can be expressed as a single
character, it is converted to uppercase before comparison. All other characters undergo no
conversion before the comparison occurs. This includes the German sharp S (Eszett) which
is not uppercased before conversion because its uppercase form has two characters. Unicode
case folding is language independent: it uses rules that are generally true, but, it cannot
cover all cases for all languages.

char-ci=? xy [Scheme Procedure]
Return #t if the case-folded code point of x is the same as the case-folded code point
of y, else #f.

char-ci<? xy [Scheme Procedure]
Return #t if the case-folded code point of x is less than the case-folded code point of
y, else #£.

char-ci<=? xy [Scheme Procedure]

Return #t if the case-folded code point of x is less than or equal to the case-folded
code point of y, else #£.

char-ci>? xy [Scheme Procedure]
Return #t if the case-folded code point of x is greater than the case-folded code point
of y, else #f.

132

char-ci>=7? xy

Guile Reference Manual

[Scheme Procedure]

Return #t if the case-folded code point of x is greater than or equal to the case-folded

code point of y, else #£.

char-alphabetic? chr
scm_char_alphabetic_p (chr)

Return #t if chr is alphabetic, else #£.

char-numeric? chr
scm_char_numeric_p (chr)
Return #t if chr is numeric, else #£.

char-whitespace? chr
scm_char_whitespace_p (chr)

Return #t if chr is whitespace, else #f£.

char-upper-case? chr
scm_char_upper_case_p (chr)
Return #t if chr is uppercase, else #f.

char-lower-case? chr
scm_char_lower_case_p (chr)
Return #t if chr is lowercase, else #f.

char-is-both? chr
scm_char_is_both_p (chr)

Return #t if chr is either uppercase or lowercase, else #f.

char-general-category chr
scm_char_general_category (chr)

[Scheme Procedure]
[C Function]

[Scheme Procedure]
[C Function]

[Scheme Procedure]
[C Function]

[Scheme Procedure]
[C Function]

[Scheme Procedure]
[C Function]

[Scheme Procedure]
[C Function]

[Scheme Procedure]
[C Function]

Return a symbol giving the two-letter name of the Unicode general category assigned
to chr or #f if no named category is assigned. The following table provides a list of

category names along with their meanings.

Lu Uppercase letter

LI Lowercase letter

Lt Titlecase letter

Lm Modifier letter

Lo Other letter

Mn Non-spacing mark

Mec Combining spacing mark
Me Enclosing mark

Nd Decimal digit number
N1 Letter number

No Other number

Pc Connector punctuation
Pd Dash punctuation

Ps Open punctuation

Pe Close punctuation

Pi Initial quote punctuation

Pt
Po
Sm
Sc
Sk
So
7s
YA
Zp
Cc
Cf
Cs
Co
Cn

Final quote punctuation
Other punctuation
Math symbol

Currency symbol
Modifier symbol

Other symbol

Space separator

Line separator
Paragraph separator

Control
Format
Surrogate
Private use
Unassigned

Chapter 6: API Reference 133

char->integer chr [Scheme Procedure]
scm_char_to_integer (chr) [C Function]
Return the code point of chr.

integer->char n [Scheme Procedure]
scm_integer_to_char (n) [C Function]
Return the character that has code point n. The integer n must be a valid code point.
Valid code points are in the ranges 0 to #xD7FF inclusive or #xE000 to #x1OFFFF

inclusive.
char-upcase chr [Scheme Procedure]
scm_char_upcase (chr) [C Function]

Return the uppercase character version of chr.

char-downcase chr [Scheme Procedure]
scm_char_downcase (chr) [C Function]
Return the lowercase character version of chr.

char-titlecase chr [Scheme Procedure]

scm_char_titlecase (chr) [C Function]
Return the titlecase character version of chr if one exists; otherwise return the up-
percase version.

For most characters these will be the same, but the Unicode Standard includes cer-
tain digraph compatibility characters, such as U+01F3 “dz”, for which the uppercase
and titlecase characters are different (U+01F1 “DZ” and U+01F2 “Dz” in this case,

respectively).
scm_t_wchar scm_c_upcase (scm_t_wchar c) [C Function]
scm_t_wchar scm_c_downcase (scm_t_wchar c) [C Function]
scm_t_wchar scm_c_titlecase (scm_t_wchar c) [C Function]

These C functions take an integer representation of a Unicode codepoint and return
the codepoint corresponding to its uppercase, lowercase, and titlecase forms respec-
tively. The type scm_t_wchar is a signed, 32-bit integer.

Characters also have “formal names”, which are defined by Unicode. These names can
be accessed in Guile from the (ice-9 unicode) module:

(use-modules (ice-9 unicode))

char->formal-name chr [Scheme Procedure]
Return the formal all-upper-case Unicode name of ch, as a string, or #f if the character
has no name.

formal-name->char name [Scheme Procedure]
Return the character whose formal all-upper-case Unicode name is name, or #£f if no
such character is known.

134 Guile Reference Manual

6.6.4 Character Sets

The features described in this section correspond directly to SRFI-14.

The data type charset implements sets of characters (see Section 6.6.3 [Characters],
page 129). Because the internal representation of character sets is not visible to the user, a
lot of procedures for handling them are provided.

Character sets can be created, extended, tested for the membership of a characters and
be compared to other character sets.

6.6.4.1 Character Set Predicates/Comparison

Use these procedures for testing whether an object is a character set, or whether several
character sets are equal or subsets of each other. char-set-hash can be used for calculating
a hash value, maybe for usage in fast lookup procedures.

char-set? obj [Scheme Procedure]

scm_char_set_p (obj) [C Function]
Return #t if obj is a character set, #f otherwise.

char-set= char_set . .. [Scheme Procedure]

scm_char_set_eq (char_sets) [C Function]
Return #t if all given character sets are equal.

char-set<= char_set . .. [Scheme Procedure]

scm_char_set_leq (char_sets) [C Function]
Return #t if every character set char_seti is a subset of character set char_seti+1.

char-set-hash cs [bound] [Scheme Procedure]

scm_char_set_hash (cs, bound) [C Function]
Compute a hash value for the character set cs. If bound is given and non-zero, it
restricts the returned value to the range 0 ... bound - 1.

6.6.4.2 Iterating Over Character Sets

Character set cursors are a means for iterating over the members of a character sets. After
creating a character set cursor with char-set-cursor, a cursor can be dereferenced with
char-set-ref, advanced to the next member with char-set-cursor-next. Whether a
cursor has passed past the last element of the set can be checked with end-of-char-set?.

Additionally, mapping and (un-)folding procedures for character sets are provided.

char-set-cursor cs [Scheme Procedure]

scm_char_set_cursor (cs) [C Function]
Return a cursor into the character set cs.

char-set-ref cs cursor [Scheme Procedure]

scm_char_set_ref (cs, cursor) [C Function]

Return the character at the current cursor position cursor in the character set cs. It
is an error to pass a cursor for which end-of-char-set? returns true.

char-set-cursor-next cs cursor [Scheme Procedure]

scm_char_set_cursor_next (cs, cursor) [C Function]
Advance the character set cursor cursor to the next character in the character set cs.
It is an error if the cursor given satisfies end-of-char-set?.

Chapter 6: API Reference 135

end-of-char-set? cursor [Scheme Procedure]
scm_end_of_char_set_p (cursor) [C Function]
Return #t if cursor has reached the end of a character set, #f otherwise.

char-set-fold kons knil cs [Scheme Procedure]
scm_char_set_fold (kons, knil, cs) [C Function]
Fold the procedure kons over the character set cs, initializing it with knil.

char-set-unfold p f g seed [base_cs] [Scheme Procedure]
scm_char_set_unfold (p, f, g, seed, base_cs) [C Function]
This is a fundamental constructor for character sets.

e g isused to generate a series of “seed” values from the initial seed: seed, (g seed),
(g72 seed), (g3 seed), . ..

e p tells us when to stop — when it returns true when applied to one of the seed
values.

e { maps each seed value to a character. These characters are added to the base
character set base_cs to form the result; base_cs defaults to the empty set.

char-set-unfold! p f g seed base_cs [Scheme Procedure]
scm_char_set_unfold_x (p, f, g, seed, base_cs) [C Function]
This is a fundamental constructor for character sets.

e g isused to generate a series of “seed” values from the initial seed: seed, (g seed),
(g72 seed), (g3 seed), . ..

e p tells us when to stop — when it returns true when applied to one of the seed
values.

e { maps each seed value to a character. These characters are added to the base
character set base_cs to form the result; base_cs defaults to the empty set.

char-set-for-each proc cs [Scheme Procedure]
scm_char_set_for_each (proc, cs) [C Function]
Apply proc to every character in the character set cs. The return value is not specified.

char-set-map proc cs [Scheme Procedure]

scm_char_set_map (proc, cs) [C Function]
Map the procedure proc over every character in cs. proc must be a character ->
character procedure.

6.6.4.3 Creating Character Sets

New character sets are produced with these procedures.

char-set-copy cs [Scheme Procedure]
scm_char_set_copy (cs) [C Function]
Return a newly allocated character set containing all characters in cs.

char-set chr ... [Scheme Procedure]
scm_char_set (chrs) [C Function]
Return a character set containing all given characters.

136 Guile Reference Manual

list->char-set list [base_cs] [Scheme Procedure]

scm_list_to_char_set (list, base_cs) [C Function]
Convert the character list list to a character set. If the character set base_cs is given,
the character in this set are also included in the result.

list->char-set! list base_cs [Scheme Procedure]

scm_list_to_char_set_x (list, base_cs) [C Function]
Convert the character list list to a character set. The characters are added to base_cs
and base_cs is returned.

string->char-set str [base_cs] [Scheme Procedure]

scm_string_to_char_set (str, base_cs) [C Function]
Convert the string str to a character set. If the character set base_cs is given, the
characters in this set are also included in the result.

string->char-set! str base_cs [Scheme Procedure]

scm_string_to_char_set_x (str, base_cs) [C Function]
Convert the string str to a character set. The characters from the string are added
to base_cs, and base_cs is returned.

char-set-filter pred cs [base-cs] [Scheme Procedure]

scm_char_set_filter (pred, cs, base_cs) [C Function]
Return a character set containing every character from cs so that it satisfies pred. If
provided, the characters from base_cs are added to the result.

char-set-filter! pred cs base_cs [Scheme Procedure]

scm_char_set_filter_x (pred, cs, base_cs) [C Function]
Return a character set containing every character from cs so that it satisfies pred.
The characters are added to base_cs and base_cs is returned.

ucs-range->char-set lower upper [error [base_cs|] [Scheme Procedure]

scm_ucs_range_to_char_set (lower, upper, error, base_cs) [C Function]
Return a character set containing all characters whose character codes lie in the half-
open range [lower,upper).

If error is a true value, an error is signaled if the specified range contains characters
which are not contained in the implemented character range. If error is #f, these
characters are silently left out of the resulting character set.

The characters in base_cs are added to the result, if given.

ucs-range->char-set! lower upper error base_cs [Scheme Procedure]

scm_ucs_range_to_char_set_x (lower, upper, error, base_cs) [C Function]
Return a character set containing all characters whose character codes lie in the half-
open range [lower,upper).

If error is a true value, an error is signaled if the specified range contains characters
which are not contained in the implemented character range. If error is #f, these
characters are silently left out of the resulting character set.

The characters are added to base_cs and base_cs is returned.

Chapter 6: API Reference 137

->char-set x [Scheme Procedure]

scm_to_char_set (x) [C Function]
Coerces x into a char-set. x may be a string, character or char-set. A string is con-
verted to the set of its constituent characters; a character is converted to a singleton
set; a char-set is returned as-is.

6.6.4.4 Querying Character Sets

Access the elements and other information of a character set with these procedures.

hchar-set-dump cs [Scheme Procedure]
Returns an association list containing debugging information for cs. The association
list has the following entries.

char-set The char-set itself
len The number of groups of contiguous code points the char-set contains

ranges A list of lists where each sublist is a range of code points and their asso-
ciated characters

The return value of this function cannot be relied upon to be consistent between
versions of Guile and should not be used in code.

char-set-size cs [Scheme Procedure]
scm_char_set_size (cs) [C Function]
Return the number of elements in character set cs.

char-set-count pred cs [Scheme Procedure]

scm_char_set_count (pred, cs) [C Function]
Return the number of the elements int the character set c¢s which satisfy the predicate
pred.

char-set->list cs [Scheme Procedure]

scm_char_set_to_list (cs) [C Function]

Return a list containing the elements of the character set cs.

char-set->string cs [Scheme Procedure]

scm_char_set_to_string (cs) [C Function]
Return a string containing the elements of the character set c¢s. The order in which
the characters are placed in the string is not defined.

char-set-contains? cs ch [Scheme Procedure]
scm_char_set_contains_p (cs, ch) [C Function]
Return #t if the character ch is contained in the character set cs, or #f otherwise.

char-set-every pred cs [Scheme Procedure]

scm_char_set_every (pred, cs) [C Function]
Return a true value if every character in the character set cs satisfies the predicate
pred.

138 Guile Reference Manual

char-set-any pred cs [Scheme Procedure]

scm_char_set_any (pred, cs) [C Function]
Return a true value if any character in the character set cs satisfies the predicate
pred.

6.6.4.5 Character-Set Algebra

Character sets can be manipulated with the common set algebra operation, such as union,
complement, intersection etc. All of these procedures provide side-effecting variants, which
modify their character set argument(s).

char-set-adjoin cs chr ... [Scheme Procedure]
scm_char_set_adjoin (cs, chrs) [C Function]
Add all character arguments to the first argument, which must be a character set.

char-set-delete cs chr ... [Scheme Procedure]

scm_char_set_delete (cs, chrs) [C Function]
Delete all character arguments from the first argument, which must be a character
set.

char-set-adjoin! cschr ... [Scheme Procedure]

scm_char_set_adjoin_x (cs, chrs) [C Function]

Add all character arguments to the first argument, which must be a character set.

char-set-delete! cschr ... [Scheme Procedure]

scm_char_set_delete_x (cs, chrs) [C Function]
Delete all character arguments from the first argument, which must be a character
set.

char-set-complement cs [Scheme Procedure]

scm_char_set_complement (cs) [C Function]

Return the complement of the character set cs.

Note that the complement of a character set is likely to contain many reserved code
points (code points that are not associated with characters). It may be helpful to modify
the output of char-set-complement by computing its intersection with the set of designated
code points, char-set:designated.

char-set-union cs ... [Scheme Procedure]
scm_char_set_union (char_sets) [C Function]
Return the union of all argument character sets.

char-set-intersection cs ... [Scheme Procedure]
scm_char_set_intersection (char_sets) [C Function]
Return the intersection of all argument character sets.

char-set-difference csl cs . .. [Scheme Procedure]
scm_char_set_difference (csl, char_sets) [C Function]
Return the difference of all argument character sets.

Chapter 6: API Reference 139

char-set-xor cs ... [Scheme Procedure]
scm_char_set_xor (char_sets) [C Function]
Return the exclusive-or of all argument character sets.
char-set-diff+intersection csl cs ... [Scheme Procedure]
scm_char_set_diff_plus_intersection (csl, char_sets) [C Function]

Return the difference and the intersection of all argument character sets.

char-set-complement! cs [Scheme Procedure]
scm_char_set_complement_x (cs) [C Function]
Return the complement of the character set cs.

char-set-union! cslcs ... [Scheme Procedure]
scm_char_set_union_x (csl, char_sets) [C Function]
Return the union of all argument character sets.

char-set-intersection! csl cs ... [Scheme Procedure]

scm_char_set_intersection_x (csl, char_sets) [C Function]
Return the intersection of all argument character sets.

char-set-difference! cslcs ... [Scheme Procedure]

scm_char_set_difference_x (csl, char_sets) [C Function]

Return the difference of all argument character sets.

char-set-xor! cslcs ... [Scheme Procedure]
scm_char_set_xor_x (csl, char_sets) [C Function]
Return the exclusive-or of all argument character sets.

char-set-diff+intersection! csl cs2cs ... [Scheme Procedure]
scm_char_set_diff_plus_intersection_x (csl, cs2, char_sets) [C Function]
Return the difference and the intersection of all argument character sets.

6.6.4.6 Standard Character Sets

In order to make the use of the character set data type and procedures useful, several
predefined character set variables exist.

These character sets are locale independent and are not recomputed upon a setlocale
call. They contain characters from the whole range of Unicode code points. For instance,
char-set:letter contains about 100,000 characters.

char-set:lower-case [Scheme Variable]
scm_char_set_lower_case [C Variable]
All lower-case characters.

char-set:upper-case [Scheme Variable]
scm_char_set_upper_case [C Variable]
All upper-case characters.

char-set:title-case [Scheme Variable]

scm_char_set_title_case [C Variable]
All single characters that function as if they were an upper-case letter followed by a
lower-case letter.

140 Guile Reference Manual

char-set:letter [Scheme Variable]
scm_char_set_letter [C Variable]
All letters. This includes char-set:lower-case, char-set:upper-case,

char-set:title-case, and many letters that have no case at all. For example,
Chinese and Japanese characters typically have no concept of case.

char-set:digit [Scheme Variable]

scm_char_set_digit [C Variable]
All digits.

char-set:letter+digit [Scheme Variable]

scm_char_set_letter_and_digit [C Variable]
The union of char-set:letter and char-set:digit.

char-set:graphic [Scheme Variable]

scm_char_set_graphic [C Variable]

All characters which would put ink on the paper.

char-set:printing [Scheme Variable]
scm_char_set_printing [C Variable]
The union of char-set:graphic and char-set:whitespace.

char-set:whitespace [Scheme Variable]
scm_char_set_whitespace [C Variable]
All whitespace characters.

char-set:blank [Scheme Variable]
scm_char_set_blank [C Variable]
All horizontal whitespace characters, which notably includes #\space and #\tab.

char-set:iso-control [Scheme Variable]

scm_char_set_iso_control [C Variable]
The ISO control characters are the CO control characters (U+0000 to U+001F), delete
(U+007F), and the C1 control characters (U+0080 to U+009F).

char-set:punctuation [Scheme Variable]
scm_char_set_punctuation [C Variable]
All punctuation characters, such as the characters !"#%&' O*,-./:;?20[\\]1_{}

char-set:symbol [Scheme Variable]
scm_char_set_symbol [C Variable]
All symbol characters, such as the characters $+<=>""1".

char-set:hex-digit [Scheme Variable]
scm_char_set_hex_digit [C Variable]
The hexadecimal digits 0123456789abcdef ABCDEF.

char-set:ascii [Scheme Variable]
scm_char_set_ascii [C Variable]
All ASCII characters.

Chapter 6: API Reference 141

char-set:empty [Scheme Variable]
scm_char_set_empty [C Variable]
The empty character set.

char-set:designated [Scheme Variable]

scm_char_set_designated [C Variable]
This character set contains all designated code points. This includes all the code
points to which Unicode has assigned a character or other meaning.

char-set:full [Scheme Variable]

scm_char_set_full [C Variable]
This character set contains all possible code points. This includes both designated
and reserved code points.

6.6.5 Strings

Strings are fixed-length sequences of characters. They can be created by calling constructor
procedures, but they can also literally get entered at the REPL or in Scheme source files.

Strings always carry the information about how many characters they are composed of
with them, so there is no special end-of-string character, like in C. That means that Scheme
strings can contain any character, even the ‘#\nul’ character ‘\0’.

To use strings efficiently, you need to know a bit about how Guile implements them. In
Guile, a string consists of two parts, a head and the actual memory where the characters
are stored. When a string (or a substring of it) is copied, only a new head gets created, the
memory is usually not copied. The two heads start out pointing to the same memory.

When one of these two strings is modified, as with string-set!, their common mem-
ory does get copied so that each string has its own memory and modifying one does not
accidentally modify the other as well. Thus, Guile’s strings are ‘copy on write’; the actual
copying of their memory is delayed until one string is written to.

This implementation makes functions like substring very efficient in the common case
that no modifications are done to the involved strings.

If you do know that your strings are getting modified right away, you can use
substring/copy instead of substring. This function performs the copy immediately at
the time of creation. This is more efficient, especially in a multi-threaded program. Also,
substring/copy can avoid the problem that a short substring holds on to the memory of
a very large original string that could otherwise be recycled.

If you want to avoid the copy altogether, so that modifications of one string show up in
the other, you can use substring/shared. The strings created by this procedure are called
mutation sharing substrings since the substring and the original string share modifications
to each other.

If you want to prevent modifications, use substring/read-only.

Guile provides all procedures of SRFI-13 and a few more.

6.6.5.1 String Read Syntax

The read syntax for strings is an arbitrarily long sequence of characters enclosed in double
quotes (").

142 Guile Reference Manual

Backslash is an escape character and can be used to insert the following special charac-
ters. \" and \\ are R5RS standard, \ | is R7TRS standard, the next seven are R6RS standard
— notice they follow C syntax — and the remaining four are Guile extensions.

\\ Backslash character.

\" Double quote character (an unescaped " is otherwise the end of the string).
\ Vertical bar character.

\a Bell character (ASCII 7).

\f Formfeed character (ASCII 12).

\n Newline character (ASCII 10).

\r Carriage return character (ASCII 13).

\t Tab character (ASCII 9).

\v Vertical tab character (ASCII 11).

\b Backspace character (ASCII 8).

\0 NUL character (ASCII 0).

\ (Open parenthesis. This is intended for use at the beginning of lines in multiline

strings to avoid confusing Emacs lisp modes.

\ followed by newline (ASCII 10)
Nothing. This way if \ is the last character in a line, the string will continue
with the first character from the next line, without a line break.

If the hungry-eol-escapes reader option is enabled, which is not the case by
default, leading whitespace on the next line is discarded.

"foo\
bar"
= "foo bar"
(read-enable 'hungry-eol-escapes)
"foo\
bar"
= "foobar"

\xHH Character code given by two hexadecimal digits. For example \x7f for an
ASCII DEL (127).

\uHHHH Character code given by four hexadecimal digits. For example \u0100 for a
capital A with macron (U+0100).

\UHHHHHH Character code given by six hexadecimal digits. For example \U010402.

The following are examples of string literals:

llfooll

"bar plonk"

"Hello World"
"\"Hi\", he said."

Chapter 6: API Reference 143

The three escape sequences \xHH, \uHHHH and \UHHHHHH were chosen to not break com-
patibility with code written for previous versions of Guile. The R6RS specification suggests
a different, incompatible syntax for hex escapes: \xHHHH; — a character code followed by
one to eight hexadecimal digits terminated with a semicolon. If this escape format is desired
instead, it can be enabled with the reader option r6rs-hex-escapes.

(read-enable 'r6rs-hex-escapes)

For more on reader options, See Section 6.16.2 [Scheme Read], page 388.

6.6.5.2 String Predicates

The following procedures can be used to check whether a given string fulfills some specified
property.

string? obj [Scheme Procedure]

scm_string_p (obj) [C Function]
Return #t if obj is a string, else #f.

int scm_is_string (SCM obj) [C Function]
Returns 1 if obj is a string, 0 otherwise.

string-null? str [Scheme Procedure]

scm_string_null_p (str) [C Function]

Return #t if str’s length is zero, and #f otherwise.
(string-null? "") = #t

y = "foo"

(string-null? y) = #f
string-any char_pred s [start [end|] [Scheme Procedure]
scm_string_any (char_pred, s, start, end) [C Function]

Check if char_pred is true for any character in string s.

char_pred can be a character to check for any equal to that, or a character set (see
Section 6.6.4 [Character Sets], page 134) to check for any in that set, or a predicate
procedure to call.

For a procedure, calls (char_pred c) are made successively on the characters from
start to end. If char_pred returns true (ie. non-#f), string-any stops and that return
value is the return from string-any. The call on the last character (ie. at end — 1),
if that point is reached, is a tail call.

If there are no characters in s (ie. start equals end) then the return is #£.

string-every char_pred s [start [end]] [Scheme Procedure]
scm_string_every (char_pred, s, start, end) [C Function]
Check if char_pred is true for every character in string s.

char_pred can be a character to check for every character equal to that, or a character
set (see Section 6.6.4 [Character Sets], page 134) to check for every character being
in that set, or a predicate procedure to call.

For a procedure, calls (char_pred c) are made successively on the characters from
start to end. If char_pred returns #f, string-every stops and returns #£. The call

144 Guile Reference Manual

on the last character (ie. at end — 1), if that point is reached, is a tail call and the
return from that call is the return from string-every.

If there are no characters in s (ie. start equals end) then the return is #t.

6.6.5.3 String Constructors

The string constructor procedures create new string objects, possibly initializing them with
some specified character data. See also See Section 6.6.5.5 [String Selection], page 145, for
ways to create strings from existing strings.

string char. .. [Scheme Procedure]
Return a newly allocated string made from the given character arguments.

(string #\x #\y #\z) = "xyz"

(string) = "
list->string Ist [Scheme Procedure]
scm_string (Ist) [C Function]

Return a newly allocated string made from a list of characters.
(list->string '(#\a #\b #\c)) = "abc"

reverse-list->string Ist [Scheme Procedure]
scm_reverse_list_to_string (Ist) [C Function]
Return a newly allocated string made from a list of characters, in reverse order.

(reverse-list->string '(#\a #\B #\c)) = "cBa"

make-string k [chr] [Scheme Procedure]

scm_make_string (k, chr) [C Function]
Return a newly allocated string of length k. If chr is given, then all elements of the
string are initialized to chr, otherwise the contents of the string are unspecified.

SCM scm_c_make_string (size_t len, SCM chr) [C Function]
Like scm_make_string, but expects the length as a size_t.

string-tabulate proc len [Scheme Procedure]

scm_string_tabulate (proc, len) [C Function]

proc is an integer->char procedure. Construct a string of size Ien by applying proc to
each index to produce the corresponding string element. The order in which proc is
applied to the indices is not specified.

string-join Is [delimiter [grammar]] [Scheme Procedure]
scm_string_join (Is, delimiter, grammar) [C Function]
Append the string in the string list Is, using the string delimiter as a delimiter between
the elements of Is. delimiter defaults to ¢ ’, that is, strings in Is are appended with

the space character in between them. grammar is a symbol which specifies how the
delimiter is placed between the strings, and defaults to the symbol infix.

infix Insert the separator between list elements. An empty string will produce
an empty list.

strict-infix
Like infix, but will raise an error if given the empty list.

Chapter 6: API Reference 145

suffix Insert the separator after every list element.

prefix Insert the separator before each list element.

6.6.5.4 List/String conversion

When processing strings, it is often convenient to first convert them into a list representation
by using the procedure string->1ist, work with the resulting list, and then convert it back
into a string. These procedures are useful for similar tasks.

string->list str [start [end]] [Scheme Procedure]

scm_substring_to_list (str, start, end) [C Function]

scm_string_to_list (str) [C Function]
Convert the string str into a list of characters.

string-split str char_pred [Scheme Procedure]

scm_string_split (str, char_pred) [C Function]
Split the string str into a list of substrings delimited by appearances of characters
that

e equal char_pred, if it is a character,
e satisfy the predicate char_pred, if it is a procedure,
e are in the set char_pred, if it is a character set.
Note that an empty substring between separator characters will result in an empty
string in the result list.
(string-split "root:x:0:0:root:/root:/bin/bash" #\:)
=
"root" "x" "O0" "O0" "root" "/root" "/bin/bash")

(string-split "::" #\:)
=

(nn nn llll)
(string-split "" #\:)
=

(nn)

6.6.5.5 String Selection

Portions of strings can be extracted by these procedures. string-ref delivers individual
characters whereas substring can be used to extract substrings from longer strings.

string-length string [Scheme Procedure]

scm_string_length (string) [C Function]
Return the number of characters in string.

size_t scm_c_string_length (SCM str) [C Function]
Return the number of characters in str as a size_t.

string-ref str k [Scheme Procedure]

scm_string_ref (str, k) [C Function]

Return character k of str using zero-origin indexing. k must be a valid index of str.

146 Guile Reference Manual

SCM scm_c_string_ref (SCM str, size_t k) [C Function]

Return character k of str using zero-origin indexing. k must be a valid index of str.
string-copy str [start [end]] [Scheme Procedure]
scm_substring_copy (str, start, end) [C Function]
scm_string_copy (str) [C Function]

Return a copy of the given string str.

The returned string shares storage with str initially, but it is copied as soon as one
of the two strings is modified.

substring str start [end] [Scheme Procedure]

scm_substring (str, start, end) [C Function]
Return a new string formed from the characters of str beginning with index start
(inclusive) and ending with index end (exclusive). str must be a string, start and end
must be exact integers satisfying:

0 <= start <= end <= (string-length str).

The returned string shares storage with str initially, but it is copied as soon as one
of the two strings is modified.

substring/shared str start [end] [Scheme Procedure]

scm_substring_shared (str, start, end) [C Function]
Like substring, but the strings continue to share their storage even if they are
modified. Thus, modifications to str show up in the new string, and vice versa.

substring/copy str start [end] [Scheme Procedure]
scm_substring_copy (str, start, end) [C Function]
Like substring, but the storage for the new string is copied immediately.

substring/read-only str start [end] [Scheme Procedure]
scm_substring_read_only (str, start, end) [C Function]
Like substring, but the resulting string can not be modified.

SCM scm_c_substring (SCM str, size_t start, size_t end) [C Function]

SCM scm_c_substring_shared (SCM str, size_t start, [C Function]
size_t end)

SCM scm_c_substring_copy (SCM str, size_t start, size_t [C Function]
end)

SCM scm_c_substring_read_only (SCM str, size_t start, [C Function]

size_t end)
Like scm_substring, etc. but the bounds are given as a size_t.

string-take s n [Scheme Procedure]
scm_string_take (s, n) [C Function]
Return the n first characters of s.

string-drop s n [Scheme Procedure]
scm_string_drop (s, n) [C Function]
Return all but the first n characters of s.

Chapter 6: API Reference 147

string-take-right s n [Scheme Procedure]
scm_string_take_right (s, n) [C Function]
Return the n last characters of s.

string-drop-right s n [Scheme Procedure]
scm_string_drop_right (s, n) [C Function]
Return all but the last n characters of s.

string-pad s len [chr [start [end]]] [Scheme Procedure]
string-pad-right s len [chr [start [end]]] [Scheme Procedure]
scm_string_pad (s, len, chr, start, end) [C Function]
scm_string_pad_right (s, len, chr, start, end) [C Function]

Take characters start to end from the string s and either pad with chr or truncate
them to give len characters.

string-pad pads or truncates on the left, so for example
(string-pad "x" 3) = " x"
(string-pad "abcde" 3) = "cde"

string-pad-right pads or truncates on the right, so for example

(string-pad-right "x" 3) = "x "

(string-pad-right "abcde" 3) = "abc"
string-trim s [char_pred [start [end]]] [Scheme Procedure]
string-trim-right s [char_pred [start [end]|] [Scheme Procedure]
string-trim-both s [char_pred [start [end]]] [Scheme Procedure]
scm_string_trim (s, char_pred, start, end) [C Function]
scm_string_trim_right (s, char_pred, start, end) [C Function]
scm_string_trim_both (s, char_pred, start, end) [C Function]

Trim occurrences of char_pred from the ends of s.

string-trim trims char_pred characters from the left (start) of the string, string-
trim-right trims them from the right (end) of the string, string-trim-both trims
from both ends.

char_pred can be a character, a character set, or a predicate procedure to call on
each character. If char_pred is not given the default is whitespace as per char-
set:whitespace (see Section 6.6.4.6 [Standard Character Sets|, page 139).

(string-trim " x ") = "x "
(string-trim-right "banana" #\a) = "banan"
g g
(string-trim-both ".,xy:;" char-set:punctuation)
: leyll

(string-trim-both "xyzzy" (lambda (c)
(or (eqv? c #\x)
(eqv? c #\y))))
= "zz"

6.6.5.6 String Modification

These procedures are for modifying strings in-place. This means that the result of the op-
eration is not a new string; instead, the original string’s memory representation is modified.

148 Guile Reference Manual

string-set! str k chr [Scheme Procedure]

scm_string_set_x (str, k, chr) [C Function]
Store chr in element k of str and return an unspecified value. k must be a valid index
of str.

void scm_c_string_set_x (SCM str, size_t k, SCM chr) [C Function]

Like scm_string_set_x, but the index is given as a size_t.

string-fill! str chr [start [end]] [Scheme Procedure]
scm_substring_fill_x (str, chr, start, end) [C Function]
scm_string_fill_x (str, chr) [C Function]

Stores chr in every element of the given str and returns an unspecified value.

substring-fill! str start end fill [Scheme Procedure]
scm_substring_fill_x (str, start, end, fill) [C Function]
Change every character in str between start and end to fill.

(define y (string-copy "abcdefg"))
(substring-fill! y 1 3 #\r)

y

= "arrdefg"
substring-move! strl startl endl str2 start2 [Scheme Procedure]
scm_substring_move_x (strl, startl, endl, str2, start2) [C Function]

Copy the substring of strl bounded by startl and end1 into str2 beginning at position
start2. strl and str2 can be the same string.

string-copy! target tstart s [start [end]] [Scheme Procedure]

scm_string_copy_x (target, tstart, s, start, end) [C Function]
Copy the sequence of characters from index range [start, end) in string s to string
target, beginning at index tstart. The characters are copied left-to-right or right-to-
left as needed — the copy is guaranteed to work, even if target and s are the same
string. It is an error if the copy operation runs off the end of the target string.

6.6.5.7 String Comparison

The procedures in this section are similar to the character ordering predicates (see Sec-
tion 6.6.3 [Characters|, page 129), but are defined on character sequences.

The first set is specified in R5RS and has names that end in 7. The second set is specified
in SRFI-13 and the names have not ending 7.

The predicates ending in -ci ignore the character case when comparing strings. For now,
case-insensitive comparison is done using the R5RS rules, where every lower-case character
that has a single character upper-case form is converted to uppercase before comparison.
See See Section 6.25.2 [Text Collation|, page 475, for locale-dependent string comparison.

string=7 sl s2s3 ... [Scheme Procedure]
Lexicographic equality predicate; return #t if all strings are the same length and
contain the same characters in the same positions, otherwise return #f£.

The procedure string-ci=? treats upper and lower case letters as though they were
the same character, but string="7 treats upper and lower case as distinct characters.

Chapter 6: API Reference 149

string<? sl s2s3 ... [Scheme Procedure]
Lexicographic ordering predicate; return #t if, for every pair of consecutive string
arguments str_i and str_i+1, str_i is lexicographically less than str_i+1.

string<=? sl s2s3 ... [Scheme Procedure]
Lexicographic ordering predicate; return #t if, for every pair of consecutive string
arguments str_i and str_i+1, str_i is lexicographically less than or equal to str_i+1.

string>? sl s2s3 ... [Scheme Procedure]
Lexicographic ordering predicate; return #t if, for every pair of consecutive string
arguments str_i and str_i+1, str_i is lexicographically greater than str_i+1.

string>=7? s1s2s3 ... [Scheme Procedure]
Lexicographic ordering predicate; return #t if, for every pair of consecutive string
arguments str_i and str_i+1, str_i is lexicographically greater than or equal to str_i+1.

string-ci=? sl1s2s3 ... [Scheme Procedure]
Case-insensitive string equality predicate; return #t if all strings are the same length
and their component characters match (ignoring case) at each position; otherwise
return #£f.

string-ci<? sl s2s3 ... [Scheme Procedure]
Case insensitive lexicographic ordering predicate; return #t if, for every pair of con-
secutive string arguments str_i and str_i+1, str_i is lexicographically less than str_i+1
regardless of case.

string-ci<=7 sl s2s3 ... [Scheme Procedure]
Case insensitive lexicographic ordering predicate; return #t if, for every pair of con-
secutive string arguments str_i and str_i+1, str_i is lexicographically less than or equal
to str_i+1 regardless of case.

string-ci>? sl s2s3 ... [Scheme Procedure]
Case insensitive lexicographic ordering predicate; return #t if, for every pair of consec-
utive string arguments str_i and str_i+1, str_i is lexicographically greater than str_i+1
regardless of case.

string-ci>=7 sl s2s3 ... [Scheme Procedure]
Case insensitive lexicographic ordering predicate; return #t if, for every pair of con-
secutive string arguments str_i and str_i+1, str_i is lexicographically greater than or
equal to str_i+1 regardless of case.

string-compare sl s2 proc_lt proc_eq proc_gt [startl [end1l [Scheme Procedure]
[start2 [end2]]]]
scm_string_compare (sl, s2, proc_lt, proc_eq, proc_gt, startl, [C Function]

endl, start2, end2)
Apply proc_lt, proc_eq, proc_gt to the mismatch index, depending upon whether si
is less than, equal to, or greater than s2. The mismatch index is the largest index i
such that for every 0 <= j < i, s1[j] = s2[j] — that is, i is the first position that does
not match.

150 Guile Reference Manual

string-compare-ci sl s2 proc_lt proc_eq proc_gt [startl [Scheme Procedure]
[end] [start2 [end2]]]]
scm_string_compare_ci (sl, s2, proc_lt, proc_eq, proc_gt, startl, [C Function]

endl, start2, end2)
Apply proc_lIt, proc_eq, proc_gt to the mismatch index, depending upon whether si
is less than, equal to, or greater than s2. The mismatch index is the largest index i
such that for every 0 <= j < i, s1[j] = s2[j] — that is, i is the first position where the
lowercased letters do not match.

string= sl s2 [start] [end] [start2 [end2]]]] [Scheme Procedure]

scm_string_eq (sl, s2, startl, endl, start2, end2) [C Function]
Return #£ if s1 and s2 are not equal, a true value otherwise.

string<> sl s2 [startl [endl [start2 [end2]]]] [Scheme Procedure]

scm_string_neq (s, s2, startl, endl, start2, end2) [C Function]
Return #f if s1 and s2 are equal, a true value otherwise.

string< sl s2 [startl [end] [start2 [end2]]]] [Scheme Procedure]

scm_string_1t (sl, s2, startl, endl, start2, end?2) [C Function]
Return #f if s1 is greater or equal to s2, a true value otherwise.

string> sl s2 [start] [end] [start2 [end2]]]] [Scheme Procedure]

scm_string_gt (sl, s2, startl, endl, start2, end2) [C Function]
Return #f£ if s is less or equal to s2, a true value otherwise.

string<= sl s2 [startl [end] [start2 [end2]]]] [Scheme Procedure]

scm_string_le (sl, s2, startl, endl, start2, end2) [C Function]
Return #f£ if sl is greater to s2, a true value otherwise.

string>= sl s2 [startl [endl [start2 [end2]]]] [Scheme Procedure]

scm_string_ge (sl, s2, startl, endl, start2, end2) [C Function]
Return #f£ if s is less to s2, a true value otherwise.

string-ci= sl s2 [start] [end] [start2 [end2]]]] [Scheme Procedure]

scm_string_ci_eq (sl, s2, startl, endl, start2, end2) [C Function]

Return #f if s1 and s2 are not equal, a true value otherwise. The character comparison
is done case-insensitively.

string-ci<> sl s2 [start] [endl [start2 [end2]]]] [Scheme Procedure]

scm_string_ci_neq (sl, s2, startl, endl, start2, end2) [C Function]
Return #£f if s1 and s2 are equal, a true value otherwise. The character comparison
is done case-insensitively.

string-ci< sl s2 [start] [end] [start2 [end2]]]] [Scheme Procedure]

scm_string_ci_1t (sl, s2, startl, endl, start2, end2) [C Function]
Return #f if sl is greater or equal to s2, a true value otherwise. The character
comparison is done case-insensitively.

string-ci> sl s2 [startl [endl [start2 [end2]]]] [Scheme Procedure]

scm_string_ci_gt (sl, s2, startl, endl, start2, end?2) [C Function]
Return #f£ if s1 is less or equal to s2, a true value otherwise. The character comparison
is done case-insensitively.

Chapter 6: API Reference 151

string-ci<= sl s2 [start] [endl [start2 [end2]]]] [Scheme Procedure]

scm_string_ci_le (sl, s2, startl, endl, start2, end?2) [C Function]
Return #f if s1 is greater to s2, a true value otherwise. The character comparison is
done case-insensitively.

string-ci>= sl s2 [start] [endl [start2 [end2]]]] [Scheme Procedure]

scm_string_ci_ge (sl, s2, startl, endl, start2, end2) [C Function]
Return #£ if s1 is less to s2, a true value otherwise. The character comparison is done
case-insensitively.

string-hash s [bound [start [end]]] [Scheme Procedure]

scm_substring_hash (s, bound, start, end) [C Function]
Compute a hash value for s. The optional argument bound is a non-negative exact
integer specifying the range of the hash function. A positive value restricts the return
value to the range [0,bound).

string-hash-ci s [bound [start [end]]] [Scheme Procedure]

scm_substring_hash_ci (s, bound, start, end) [C Function]
Compute a hash value for s. The optional argument bound is a non-negative exact
integer specifying the range of the hash function. A positive value restricts the return
value to the range [0,bound).

Because the same visual appearance of an abstract Unicode character can be obtained
via multiple sequences of Unicode characters, even the case-insensitive string comparison
functions described above may return #f when presented with strings containing different
representations of the same character. For example, the Unicode character “LATIN SMALL
LETTER S WITH DOT BELOW AND DOT ABOVE” can be represented with a single
character (U+1E69) or by the character “LATIN SMALL LETTER S” (U+0073) followed by
the combining marks “COMBINING DOT BELOW” (U+0323) and “COMBINING DOT
ABOVE” (U+0307).

For this reason, it is often desirable to ensure that the strings to be compared are using
a mutually consistent representation for every character. The Unicode standard defines two
methods of normalizing the contents of strings: Decomposition, which breaks composite
characters into a set of constituent characters with an ordering defined by the Unicode
Standard; and composition, which performs the converse.

There are two decomposition operations. “Canonical decomposition” produces character
sequences that share the same visual appearance as the original characters, while “compati-
bility decomposition” produces ones whose visual appearances may differ from the originals
but which represent the same abstract character.

These operations are encapsulated in the following set of normalization forms:
NFD Characters are decomposed to their canonical forms.
NFKD Characters are decomposed to their compatibility forms.
NFC Characters are decomposed to their canonical forms, then composed.
NFKC Characters are decomposed to their compatibility forms, then composed.

The functions below put their arguments into one of the forms described above.

152 Guile Reference Manual

string-normalize-nfd s [Scheme Procedure]
scm_string_normalize_nfd (s) [C Function]
Return the NFD normalized form of s.

string-normalize-nfkd s [Scheme Procedure]

scm_string_normalize_nfkd (s) [C Function]
Return the NFKD normalized form of s.

string-normalize-nfc s [Scheme Procedure]

scm_string_normalize_nfc (s) [C Function]

Return the NFC normalized form of s.

string-normalize-nfkc s [Scheme Procedure]
scm_string_normalize_nfkc (s) [C Function]
Return the NFKC normalized form of s.

6.6.5.8 String Searching

string-index s char_pred [start [end]] [Scheme Procedure]

scm_string_index (s, char_pred, start, end) [C Function]
Search through the string s from left to right, returning the index of the first occur-
rence of a character which

e cquals char_pred, if it is character,
e satisfies the predicate char_pred, if it is a procedure,
e is in the set char_pred, if it is a character set.

Return #f if no match is found.

string-rindex s char_pred [start [end]] [Scheme Procedure]
scm_string_rindex (s, char_pred, start, end) [C Function]
Search through the string s from right to left, returning the index of the last occurrence
of a character which
e equals char_pred, if it is character,
e satisfies the predicate char_pred, if it is a procedure,
e is in the set if char_pred is a character set.

Return #f if no match is found.

string-prefix-length sl s2 [start] [endl [start2 [end2]]]] [Scheme Procedure]
scm_string_prefix_length (sl, s2, startl, endl, start2, end?2) [C Function]
Return the length of the longest common prefix of the two strings.

string-prefix-length-ci sl s2 [start] [endl [start2 [Scheme Procedure]
[endZ]]]]

scm_string_prefix_length_ci (sl, s2, startl, endl, start2, end?2) [C Function]

Return the length of the longest common prefix of the two strings, ignoring character

case.
string-suffix-length sl s2 [startl [end] [start2 [endZ2]]]] [Scheme Procedure]
scm_string_suffix_length (sl, s2, startl, endl, start2, end?2) [C Function]

Return the length of the longest common suffix of the two strings.

Chapter 6: API Reference 153

string-suffix-length-ci sl s2 [start] [endl [start2 [Scheme Procedure]
fend2]]

scm_string_suffix_length_ci (sl, s2, startl, endl, start2, end2) [C Function]

Return the length of the longest common suffix of the two strings, ignoring character

case.

string-prefix? sl s2 [start] [endl [start2 [end2]]]] [Scheme Procedure]

scm_string_prefix_p (sl, s2, startl, endl, start2, end2) [C Function]
Is s1 a prefix of 527

string-prefix-ci? sl s2 [start] [endl [start2 [end2]]]] [Scheme Procedure]

scm_string_prefix_ci_p (sl, s2, startl, endl, start2, end2) [C Function]
Is s1 a prefix of s2, ignoring character case?

string-suffix? sl s2 [start] [endl [start2 [end2]]]] [Scheme Procedure]

scm_string_suffix_p (sl, s2, startl, endl, start2, end2) [C Function]
Is s1 a suffix of 527

string-suffix-ci? sl s2 [start] [endl [start2 [end2]]]] [Scheme Procedure]

scm_string_suffix_ci_p (sl, s2, startl, endl, start2, end2) [C Function]
Is s1 a suffix of s2, ignoring character case?

string-index-right s char_pred [start [end]] [Scheme Procedure]

scm_string_index_right (s, char_pred, start, end) [C Function]

Search through the string s from right to left, returning the index of the last occurrence
of a character which

e equals char_pred, if it is character,
e satisfies the predicate char_pred, if it is a procedure,

e is in the set if char_pred is a character set.

Return #f if no match is found.

string-skip s char_pred [start [end]] [Scheme Procedure]

scm_string_skip (s, char_pred, start, end) [C Function]
Search through the string s from left to right, returning the index of the first occur-
rence of a character which

e does not equal char_pred, if it is character,
e does not satisfy the predicate char_pred, if it is a procedure,

e is not in the set if char_pred is a character set.

string-skip-right s char_pred [start [end]] [Scheme Procedure]

scm_string_skip_right (s, char_pred, start, end) [C Function]
Search through the string s from right to left, returning the index of the last occurrence
of a character which

e does not equal char_pred, if it is character,
e does not satisfy the predicate char_pred, if it is a procedure,

e is not in the set if char_pred is a character set.

154 Guile Reference Manual

string-count s char_pred [start [end]] [Scheme Procedure]
scm_string_count (s, char_pred, start, end) [C Function]
Return the count of the number of characters in the string s which

e equals char_pred, if it is character,
e satisfies the predicate char_pred, if it is a procedure.

e is in the set char_pred, if it is a character set.

string-contains sl s2 [startl [endl [start2 [end2]]]] [Scheme Procedure]
scm_string_contains (sl, s2, startl, endl, start2, end2) [C Function]
Does string s1 contain string s2?7 Return the index in s where s2 occurs as a sub-
string, or false. The optional start/end indices restrict the operation to the indicated

substrings.
string-contains-ci sl s2 [startl [endl [start2 [end2]]]] [Scheme Procedure]
scm_string_contains_ci (sl, s2, startl, endl, start2, end2) [C Function]

Does string s1 contain string s2?7 Return the index in sI where s2 occurs as a sub-
string, or false. The optional start/end indices restrict the operation to the indicated
substrings. Character comparison is done case-insensitively.

6.6.5.9 Alphabetic Case Mapping

These are procedures for mapping strings to their upper- or lower-case equivalents, respec-
tively, or for capitalizing strings.

They use the basic case mapping rules for Unicode characters. No special language or
context rules are considered. The resulting strings are guaranteed to be the same length as
the input strings.

See Section 6.25.3 [Character Case Mapping|, page 476, for locale-dependent case con-
versions.

string-upcase str [start [end]] [Scheme Procedure]
scm_substring_upcase (str, start, end) [C Function]
scm_string_upcase (str) [C Function]

Upcase every character in str.

string-upcase! str [start [end]] [Scheme Procedure]
scm_substring_upcase_x (str, start, end) [C Function]
scm_string_upcase_x (str) [C Function]

Destructively upcase every character in str.

(string-upcase! y)

= "ARRDEFG"

y

= "ARRDEFG"
string-downcase str [start [end]] [Scheme Procedure]
scm_substring_downcase (str, start, end) [C Function]
scm_string_downcase (str) [C Function]

Downcase every character in str.

Chapter 6: API Reference 155

string-downcase! str [start [end]] [Scheme Procedure]
scm_substring_downcase_x (str, start, end) [C Function]
scm_string_downcase_x (str) [C Function]
Destructively downcase every character in str.

y

= "ARRDEFG"

(string-downcase! y)

= "arrdefg"

y

= "arrdefg"
string-capitalize str [Scheme Procedure]
scm_string_capitalize (str) [C Function]

Return a freshly allocated string with the characters in str, where the first character
of every word is capitalized.

string-capitalize! str [Scheme Procedure]
scm_string_capitalize_x (str) [C Function]
Upcase the first character of every word in str destructively and return str.
y = "hello world"
(string-capitalize! y) = "Hello World"
y = "Hello World"
string-titlecase str [start [end]] [Scheme Procedure]
scm_string_titlecase (str, start, end) [C Function]
Titlecase every first character in a word in str.
string-titlecase! str [start [end]] [Scheme Procedure]
scm_string_titlecase_x (str, start, end) [C Function]

Destructively titlecase every first character in a word in str.
6.6.5.10 Reversing and Appending Strings

string-reverse str [start [end]] [Scheme Procedure]

scm_string_reverse (str, start, end) [C Function]
Reverse the string str. The optional arguments start and end delimit the region of
str to operate on.

string-reverse! str [start [end]] [Scheme Procedure]

scm_string_reverse_x (str, start, end) [C Function]
Reverse the string str in-place. The optional arguments start and end delimit the
region of str to operate on. The return value is unspecified.

string-append arg ... [Scheme Procedure]
scm_string_append (args) [C Function]
Return a newly allocated string whose characters form the concatenation of the given
strings, arg
(let ((h "hello "))
(string-append h "world"))
= "hello world"

156 Guile Reference Manual

string-append/shared arg ... [Scheme Procedure]
scm_string_append_shared (args) [C Function]
Like string-append, but the result may share memory with the argument strings.

string-concatenate Is [Scheme Procedure]

scm_string_concatenate (Is) [C Function]
Append the elements (which must be strings) of Is together into a single string.
Guaranteed to return a freshly allocated string.

string-concatenate-reverse Is [final_string [end]] [Scheme Procedure]
scm_string_concatenate_reverse (Is, final_string, end) [C Function]
Without optional arguments, this procedure is equivalent to

(string-concatenate (reverse 1ls))

If the optional argument final_string is specified, it is consed onto the beginning to Is
before performing the list-reverse and string-concatenate operations. If end is given,
only the characters of final_string up to index end are used.

Guaranteed to return a freshly allocated string.

string-concatenate/shared Is [Scheme Procedure]

scm_string_concatenate_shared (Is) [C Function]
Like string-concatenate, but the result may share memory with the strings in the
list Is.

string-concatenate-reverse/shared Is [final_string [end]] [Scheme Procedure]

scm_string_concatenate_reverse_shared (Is, final_string, end) [C Function]

Like string-concatenate-reverse, but the result may share memory with the
strings in the Is arguments.

6.6.5.11 Mapping, Folding, and Unfolding

string-map proc s [start [end]] [Scheme Procedure]

scm_string_map (proc, s, start, end) [C Function]
proc is a char->char procedure, it is mapped over s. The order in which the procedure
is applied to the string elements is not specified.

string-map! proc s [start [end]] [Scheme Procedure]

scm_string_map_x (proc, s, start, end) [C Function]
proc is a char->char procedure, it is mapped over s. The order in which the procedure
is applied to the string elements is not specified. The string s is modified in-place,
the return value is not specified.

string-for-each proc s [start [end]] [Scheme Procedure]
scm_string_for_each (proc, s, start, end) [C Function]
proc is mapped over s in left-to-right order. The return value is not specified.

string-for-each-index proc s [start [end]] [Scheme Procedure]
scm_string_for_each_index (proc, s, start, end) [C Function]
Call (proc i) for each index i in s, from left to right.

Chapter 6: API Reference 157

For example, to change characters to alternately upper and lower case,

(define str (string-copy "studly"))
(string-for-each-index
(lambda (i)
(string-set! str i
((if (even? i) char-upcase char-downcase)
(string-ref str i))))
str)
str = "StUdLy"

string-fold kons knil s [start [end|] [Scheme Procedure]

scm_string_fold (kons, knil, s, start, end) [C Function]
Fold kons over the characters of s, with knil as the terminating element, from left to
right. kons must expect two arguments: The actual character and the last result of
kons’ application.

string-fold-right kons knil s [start [end]] [Scheme Procedure]

scm_string_fold_right (kons, knil, s, start, end) [C Function]
Fold kons over the characters of s, with knil as the terminating element, from right
to left. kons must expect two arguments: The actual character and the last result of
kons’ application.

string-unfold p f g seed [base [make_finall| [Scheme Procedure]
scm_string_unfold (p, f, g, seed, base, make_final) [C Function]
e g is used to generate a series of seed values from the initial seed: seed, (g seed),

(g°2 seed), (g3 seed), ...

e p tells us when to stop — when it returns true when applied to one of these seed
values.

e f maps each seed value to the corresponding character in the result string. These
chars are assembled into the string in a left-to-right order.

e base is the optional initial /leftmost portion of the constructed string; it default
to the empty string.

e make_final is applied to the terminal seed value (on which p returns true) to
produce the final/rightmost portion of the constructed string. The default is
nothing extra.

string-unfold-right p f g seed [base [make_finall] [Scheme Procedure]
scm_string_unfold_right (p, f, g, seed, base, make_final) [C Function]
e g is used to generate a series of seed values from the initial seed: seed, (g seed),

(g72 seed), (g3 seed), . ..

e p tells us when to stop — when it returns true when applied to one of these seed
values.

e { maps each seed value to the corresponding character in the result string. These
chars are assembled into the string in a right-to-left order.

e base is the optional initial /rightmost portion of the constructed string; it default
to the empty string.

158 Guile Reference Manual

e make._final is applied to the terminal seed value (on which p returns true) to pro-
duce the final/leftmost portion of the constructed string. It defaults to (1ambda
x)).

6.6.5.12 Miscellaneous String Operations

xsubstring s from [to [start [end]]] [Scheme Procedure]

scm_xsubstring (s, from, to, start, end) [C Function]
This is the extended substring procedure that implements replicated copying of a
substring of some string.

s is a string, start and end are optional arguments that demarcate a substring of
s, defaulting to 0 and the length of s. Replicate this substring up and down index
space, in both the positive and negative directions. xsubstring returns the substring
of this string beginning at index from, and ending at to, which defaults to from +
(end - start).

string-xcopy! target tstart s sfrom [sto [start [end]|] [Scheme Procedure]

scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end) [C Function]
Exactly the same as xsubstring, but the extracted text is written into the string
target starting at index tstart. The operation is not defined if (eq? target s) or
these arguments share storage — you cannot copy a string on top of itself.

string-replace sl s2 [start] [end] [start2 [end2]]]] [Scheme Procedure]

scm_string_replace (sl, s2, startl, endl, start2, end2) [C Function]
Return the string s1, but with the characters startl ... endl replaced by the char-
acters start2 ... end2 from s2.

string-tokenize s [token_set [start [end]|] [Scheme Procedure]

scm_string_tokenize (s, token_set, start, end) [C Function]

Split the string s into a list of substrings, where each substring is a maximal non-
empty contiguous sequence of characters from the character set token_set, which
defaults to char-set:graphic. If start or end indices are provided, they restrict
string-tokenize to operating on the indicated substring of s.

string-filter char_pred s [start [end]] [Scheme Procedure]
scm_string_filter (char_pred, s, start, end) [C Function]
Filter the string s, retaining only those characters which satisfy char_pred.

If char_pred is a procedure, it is applied to each character as a predicate, if it is a
character, it is tested for equality and if it is a character set, it is tested for member-

ship.
string-delete char_pred s [start [end]] [Scheme Procedure]
scm_string_delete (char_pred, s, start, end) [C Function]

Delete characters satisfying char_pred from s.

If char_pred is a procedure, it is applied to each character as a predicate, if it is a
character, it is tested for equality and if it is a character set, it is tested for member-
ship.

Chapter 6: API Reference 159

The following additional functions are available in the module (ice-9 string-fun).
They can be used with:

(use-modules (ice-9 string-fun))

string-replace-substring str substring replacement [Scheme Procedure]
Return a new string where every instance of substring in string str has been replaced
by replacement. For example:
(string-replace-substring "a ring of strings" "ring" "rut")
= "a rut of struts"

6.6.5.13 Representing Strings as Bytes

In the cold world outside of Guile, not all strings are treated in the same way. Out there there
are only bytes, and there are many ways of representing a strings (sequences of characters)
as binary data (sequences of bytes).

As a user, usually you don’t have to think about this very much. When you type on
your keyboard, your system encodes your keystrokes as bytes according to the locale that
you have configured on your computer. Guile uses the locale to decode those bytes back
into characters — hopefully the same characters that you typed in.

All is not so clear when dealing with a system with multiple users, such as a web server.
Your web server might get a request from one user for data encoded in the ISO-8859-1
character set, and then another request from a different user for UTF-8 data.

Guile provides an iconv module for converting between strings and sequences of bytes.
See Section 6.6.12 [Bytevectors|, page 193, for more on how Guile represents raw byte
sequences. This module gets its name from the common UNIX command of the same name.

Note that often it is sufficient to just read and write strings from ports instead of using
these functions. To do this, specify the port encoding using set-port-encoding!. See
Section 6.12.1 [Ports], page 329, for more on ports and character encodings.

Unlike the rest of the procedures in this section, you have to load the iconv module
before having access to these procedures:

(use-modules (ice-9 iconv))

string->bytevector string encoding [conversion-strategy] [Scheme Procedure]
Encode string as a sequence of bytes.

The string will be encoded in the character set specified by the encoding string. If
the string has characters that cannot be represented in the encoding, by default this
procedure raises an encoding-error. Pass a conversion-strategy argument to specify
other behaviors.

The return value is a bytevector. See Section 6.6.12 [Bytevectors|, page 193, for more
on bytevectors. See Section 6.12.1 [Ports|, page 329, for more on character encodings
and conversion strategies.

bytevector->string bytevector encoding [Scheme Procedure]
[conversion-strategy]
Decode bytevector into a string.

The bytes will be decoded from the character set by the encoding string. If the bytes
do not form a valid encoding, by default this procedure raises an decoding-error.

160 Guile Reference Manual

As with string->bytevector, pass the optional conversion-strategy argument to
modify this behavior. See Section 6.12.1 [Ports], page 329, for more on character
encodings and conversion strategies.

call-with-output-encoded-string encoding proc [Scheme Procedure]
[conversion-strategy]
Like call-with-output-string, but instead of returning a string, returns a encoding
of the string according to encoding, as a bytevector. This procedure can be more
efficient than collecting a string and then converting it via string->bytevector.

6.6.5.14 Conversion to/from C

When creating a Scheme string from a C string or when converting a Scheme string to a C
string, the concept of character encoding becomes important.

In C, a string is just a sequence of bytes, and the character encoding describes the relation
between these bytes and the actual characters that make up the string. For Scheme strings,
character encoding is not an issue (most of the time), since in Scheme you usually treat
strings as character sequences, not byte sequences.

Converting to C and converting from C each have their own challenges.

When converting from C to Scheme, it is important that the sequence of bytes in the
C string be valid with respect to its encoding. ASCII strings, for example, can’t have any
bytes greater than 127. An ASCII byte greater than 127 is considered ill-formed and cannot
be converted into a Scheme character.

Problems can occur in the reverse operation as well. Not all character encodings can
hold all possible Scheme characters. Some encodings, like ASCII for example, can only
describe a small subset of all possible characters. So, when converting to C, one must first
decide what to do with Scheme characters that can’t be represented in the C string.

Converting a Scheme string to a C string will often allocate fresh memory to hold the
result. You must take care that this memory is properly freed eventually. In many cases,
this can be achieved by using scm_dynwind_free inside an appropriate dynwind context,
See Section 6.11.10 [Dynamic Wind], page 318.

SCM scm_from_locale_string (const char *str) [C Function]

SCM scm_from_locale_stringn (const char *str, size_t len) [C Function]
Creates a new Scheme string that has the same contents as str when interpreted in
the character encoding of the current locale.

For scm_from_locale_string, str must be null-terminated.

For scm_from_locale_stringn, len specifies the length of str in bytes, and str does
not need to be null-terminated. If len is (size_t)-1, then str does need to be null-
terminated and the real length will be found with strlen.

If the C string is ill-formed, an error will be raised.

Note that these functions should not be used to convert C string constants, because
there is no guarantee that the current locale will match that of the execution character
set, used for string and character constants. Most modern C compilers use UTF-8 by
default, so to convert C string constants we recommend scm_from_utf8_string.

Chapter 6: API Reference 161

SCM scm_take_locale_string (char *str) [C Function]

SCM scm_take_locale_stringn (char *str, size_t len) [C Function]
Like scm_from_locale_string and scm_from_locale_stringn, respectively, but
also frees str with free eventually. Thus, you can use this function when you would
free str anyway immediately after creating the Scheme string. In certain cases, Guile
can then use str directly as its internal representation.

char * scm_to_locale_string (SCM str) [C Function]

char * scm_to_locale_stringn (SCM str, size_t *lenp) [C Function]
Returns a C string with the same contents as str in the character encoding of the
current locale. The C string must be freed with free eventually, maybe by using
scm_dynwind_free, See Section 6.11.10 [Dynamic Wind], page 318.

For scm_to_locale_string, the returned string is null-terminated and an error is
signaled when str contains #\nul characters.

For scm_to_locale_stringn and lenp not NULL, str might contain #\nul characters
and the length of the returned string in bytes is stored in *1enp. The returned string
will not be null-terminated in this case. If lenp is NULL, scm_to_locale_stringn
behaves like scm_to_locale_string.

If a character in str cannot be represented in the character encoding of the current lo-
cale, the default port conversion strategy is used. See Section 6.12.1 [Ports], page 329,
for more on conversion strategies.

If the conversion strategy is error, an error will be raised. If it is substitute, a
replacement character, such as a question mark, will be inserted in its place. If it is
escape, a hex escape will be inserted in its place.

size_t scm_to_locale_stringbuf (SCM str, char *buf, [C Function]
size_t max_len)
Puts str as a C string in the current locale encoding into the memory pointed to by
buf. The buffer at buf has room for max_len bytes and scm_to_local_stringbuf
will never store more than that. No terminating '\0' will be stored.

The return value of scm_to_locale_stringbuf is the number of bytes that are needed
for all of str, regardless of whether buf was large enough to hold them. Thus, when
the return value is larger than max_len, only max_Ilen bytes have been stored and you
probably need to try again with a larger buffer.

For most situations, string conversion should occur using the current locale, such as with
the functions above. But there may be cases where one wants to convert strings from a
character encoding other than the locale’s character encoding. For these cases, the lower-
level functions scm_to_stringn and scm_from_stringn are provided. These functions
should seldom be necessary if one is properly using locales.

scm_t_string_failed_conversion_handler [C Type]
This is an enumerated type that can take one of three values: SCM_
FAILED_CONVERSION_ERROR, SCM_FAILED_CONVERSION_QUESTION_MARK, and
SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE. They are used to indicate a strategy
for handling characters that cannot be converted to or from a given character
encoding. SCM_FAILED_CONVERSION_ERROR indicates that a conversion should

162

char

SCM

Guile Reference Manual

throw an error if some characters cannot be converted. SCM_FAILED_CONVERSION_
QUESTION_MARK indicates that a conversion should replace unconvertable characters
with the question mark character. And, SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE
requests that a conversion should replace an unconvertable character with an escape
sequence.

While all three strategies apply when converting Scheme strings to C, only
SCM_FAILED_CONVERSION_ERROR and SCM_FAILED_CONVERSION_QUESTION_MARK can
be used when converting C strings to Scheme.

xscm_to_stringn (SCM str, size_t *lenp, const char [C Function]
xencoding, scm_t_string failed_conversion_handler handler)

This function returns a newly allocated C string from the Guile string str. The length
of the returned string in bytes will be returned in lenp. The character encoding of
the C string is passed as the ASCII, null-terminated C string encoding. The handler
parameter gives a strategy for dealing with characters that cannot be converted into
encoding.

If lenp is NULL, this function will return a null-terminated C string. It will throw an
error if the string contains a null character.

The Scheme interface to this function is string->bytevector, from the ice-9 iconv
module. See Section 6.6.5.13 [Representing Strings as Bytes], page 159.

scm_from_stringn (const char *str, size_t len, const [C Function]
char *encoding, scm_t_string _failed_conversion_handler
handler)

This function returns a scheme string from the C string str. The length in bytes of
the C string is input as len. The encoding of the C string is passed as the ASCII,
null-terminated C string encoding. The handler parameters suggests a strategy for
dealing with unconvertable characters.

The Scheme interface to this function is bytevector->string. See Section 6.6.5.13
[Representing Strings as Bytes|, page 159.

The following conversion functions are provided as a convenience for the most commonly
used encodings.

SCM
SCM
SCM

SCM
SCM
SCM

scm_from_latinl_string (const char *str) [C Function]
scm_from_utf8_string (const char *str) [C Function]
scm_from_utf32_string (const scm_t_wchar *str) [C Function]

Return a scheme string from the null-terminated C string str, which is ISO-8859-1-,
UTF-8-, or UTF-32-encoded. These functions should be used to convert hard-coded
C string constants into Scheme strings.

scm_from_latinl_stringn (const char *str, size_t lemn) [C Function]
scm_from_utf8_stringn (const char *str, size_t len) [C Function]
scm_from_utf32_stringn (const scm_t_wchar *str, [C Function]

size_t len)
Return a scheme string from C string str, which is ISO-8859-1-, UTF-8-, or UTF-32-
encoded, of length len. len is the number of bytes pointed to by str for scm_from_
latinl_stringn and scm_from_utf8_stringn; it is the number of elements (code
points) in str in the case of scm_from_utf32_stringn.

Chapter 6: API Reference 163

char *scm_to_latinl_stringn (SCM str, size_t *lenp) [C function]
char *scm_to_utf8_stringn (SCM str, size_t *1lenp) [C function]
scm_t_wchar *scm_to_utf32_stringn (SCM str, size_t *lenp) [C function]

Return a newly allocated, ISO-8859-1-, UTF-8-, or UTF-32-encoded C string from
Scheme string str. An error is thrown when str cannot be converted to the specified
encoding. If lenp is NULL, the returned C string will be null terminated, and an error
will be thrown if the C string would otherwise contain null characters. If lenp is
not NULL, the string is not null terminated, and the length of the returned string is
returned in lenp. The length returned is the number of bytes for scm_to_latini_
stringn and scm_to_utf8_stringn; it is the number of elements (code points) for
scm_to_utf32_stringn.

It is not often the case, but sometimes when you are dealing with the implementation
details of a port, you need to encode and decode strings according to the encoding and
conversion strategy of the port. There are some convenience functions for that purpose as
well.

SCM scm_from_port_string (const char *str, SCM port) [C Function]

SCM scm_from_port_stringn (const char *str, size_t len, [C Function]
SCM port)

char* scm_to_port_string (SCM str, SCM port) [C Function]

char* scm_to_port_stringn (SCM str, size_t *lenp, SCM [C Function]
port)

Like scm_from_stringn and friends, except they take their encoding and conversion
strategy from a given port object.

6.6.5.15 String Internals

Guile stores each string in memory as a contiguous array of Unicode code points along with
an associated set of attributes. If all of the code points of a string have an integer range
between 0 and 255 inclusive, the code point array is stored as one byte per code point: it is
stored as an ISO-8859-1 (aka Latin-1) string. If any of the code points of the string has an
integer value greater that 255, the code point array is stored as four bytes per code point:
it is stored as a UTF-32 string.

Conversion between the one-byte-per-code-point and four-bytes-per-code-point represen-
tations happens automatically as necessary.

No API is provided to set the internal representation of strings; however, there are
pair of procedures available to query it. These are debugging procedures. Using them in
production code is discouraged, since the details of Guile’s internal representation of strings
may change from release to release.

string-bytes-per-char str [Scheme Procedure]

scm_string_bytes_per_char (str) [C Function]
Return the number of bytes used to encode a Unicode code point in string str. The
result is one or four.

164 Guile Reference Manual

hstring-dump str [Scheme Procedure]

scm_sys_string_dump (str) [C Function]
Returns an association list containing debugging information for str. The association
list has the following entries.

string The string itself.
start The start index of the string into its stringbuf
length The length of the string

shared If this string is a substring, it returns its parent string. Otherwise, it
returns #f

read-only
#t if the string is read-only

stringbuf-chars
A new string containing this string’s stringbuf’s characters

stringbuf-length
The number of characters in this stringbuf

stringbuf-shared
#t if this stringbuf is shared

stringbuf-wide
#t if this stringbuf’s characters are stored in a 32-bit buffer, or #£ if they
are stored in an 8-bit buffer

6.6.6 Symbols

Symbols in Scheme are widely used in three ways: as items of discrete data, as lookup keys
for alists and hash tables, and to denote variable references.

A symbol is similar to a string in that it is defined by a sequence of characters. The
sequence of characters is known as the symbol’s name. In the usual case — that is, where the
symbol’s name doesn’t include any characters that could be confused with other elements
of Scheme syntax — a symbol is written in a Scheme program by writing the sequence of
characters that make up the name, without any quotation marks or other special syntax.
For example, the symbol whose name is “multiply-by-2” is written, simply:

multiply-by-2
Notice how this differs from a string with contents “multiply-by-2”, which is written
with double quotation marks, like this:
"multiply-by-2"
Looking beyond how they are written, symbols are different from strings in two important
respects.

The first important difference is uniqueness. If the same-looking string is read twice from
two different places in a program, the result is two different string objects whose contents
just happen to be the same. If, on the other hand, the same-looking symbol is read twice
from two different places in a program, the result is the same symbol object both times.

Given two read symbols, you can use eq? to test whether they are the same (that is, have
the same name). eq? is the most efficient comparison operator in Scheme, and comparing

Chapter 6: API Reference 165

two symbols like this is as fast as comparing, for example, two numbers. Given two strings,
on the other hand, you must use equal? or string=7, which are much slower comparison
operators, to determine whether the strings have the same contents.

(define syml (quote hello))
(define sym2 (quote hello))
(eq? syml sym2) = #t

(define strl "hello")
(define str2 "hello")
(eq? strl str2) = #f
(equal? strl str2) = #t
The second important difference is that symbols, unlike strings, are not self-evaluating.
This is why we need the (quote ...)s in the example above: (quote hello) evaluates to
the symbol named "hello" itself, whereas an unquoted hello is read as the symbol named

"hello" and evaluated as a variable reference . . . about which more below (see Section 6.6.6.3
[Symbol Variables], page 167).

6.6.6.1 Symbols as Discrete Data

Numbers and symbols are similar to the extent that they both lend themselves to eq?
comparison. But symbols are more descriptive than numbers, because a symbol’s name can
be used directly to describe the concept for which that symbol stands.

For example, imagine that you need to represent some colors in a computer program.
Using numbers, you would have to choose arbitrarily some mapping between numbers and
colors, and then take care to use that mapping consistently:

;3 l=red, 2=green, 3=purple

(if (eq? (color-of vehicle) 1)
»)
You can make the mapping more explicit and the code more readable by defining constants:
(define red 1)

(define green 2)
(define purple 3)

(if (eq? (color-of vehicle) red)
D)

But the simplest and clearest approach is not to use numbers at all, but symbols whose
names specify the colors that they refer to:

(if (eq? (color-of vehicle) 'red)
)

The descriptive advantages of symbols over numbers increase as the set of concepts that
you want to describe grows. Suppose that a car object can have other properties as well,
such as whether it has or uses:

e automatic or manual transmission

e leaded or unleaded fuel

166 Guile Reference Manual

e power steering (or not).

Then a car’s combined property set could be naturally represented and manipulated as a
list of symbols:

(properties-of vehiclel)
=
(red manual unleaded power-steering)

(if (memq 'power-steering (properties-of vehiclel))

(display "Unfit people can drive this vehicle.\n")

(display "You'll need strong arms to drive this vehicle!\n"))
_|

Unfit people can drive this vehicle.

Remember, the fundamental property of symbols that we are relying on here is that
an occurrence of 'red in one part of a program is an indistinguishable symbol from an
occurrence of 'red in another part of a program; this means that symbols can usefully be
compared using eq?. At the same time, symbols have naturally descriptive names. This
combination of efficiency and descriptive power makes them ideal for use as discrete data.

6.6.6.2 Symbols as Lookup Keys

Given their efficiency and descriptive power, it is natural to use symbols as the keys in an
association list or hash table.

To illustrate this, consider a more structured representation of the car properties example
from the preceding subsection. Rather than mixing all the properties up together in a flat
list, we could use an association list like this:

(define carl-properties '((color . red)
(transmission . manual)
(fuel . unleaded)
(steering . power-assisted)))

Notice how this structure is more explicit and extensible than the flat list. For example
it makes clear that manual refers to the transmission rather than, say, the windows or the
locking of the car. It also allows further properties to use the same symbols among their
possible values without becoming ambiguous:

(define carl-properties '((color . red)
(transmission . manual)
(fuel . unleaded)
(steering . power-assisted)
(seat-color . red)
(locking . manual)))

With a representation like this, it is easy to use the efficient assq-XXX family of pro-
cedures (see Section 6.6.20 [Association Lists|, page 231) to extract or change individual
pieces of information:

(assq-ref carl-properties 'fuel) = unleaded
(assq-ref carl-properties 'transmission) = manual

Chapter 6: API Reference 167

(assq-set! carl-properties 'seat-color 'black)
=

((color . red)

(transmission . manual)

(fuel . unleaded)

(steering . power-assisted)

(seat-color . black)

(locking . manual)))

Hash tables also have keys, and exactly the same arguments apply to the use of symbols
in hash tables as in association lists. The hash value that Guile uses to decide where to
add a symbol-keyed entry to a hash table can be obtained by calling the symbol-hash
procedure:

symbol-hash symbol [Scheme Procedure]
scm_symbol_hash (symbol) [C Function]
Return a hash value for symbol.

See Section 6.6.22 [Hash Tables|, page 239, for information about hash tables in general,
and for why you might choose to use a hash table rather than an association list.

6.6.6.3 Symbols as Denoting Variables

When an unquoted symbol in a Scheme program is evaluated, it is interpreted as a variable
reference, and the result of the evaluation is the appropriate variable’s value.

For example, when the expression (string-length "abcd") is read and evaluated, the
sequence of characters string-length is read as the symbol whose name is "string-length".
This symbol is associated with a variable whose value is the procedure that implements
string length calculation. Therefore evaluation of the string-length symbol results in
that procedure.

The details of the connection between an unquoted symbol and the variable to which
it refers are explained elsewhere. See Section 6.10 [Binding Constructs|, page 291, for
how associations between symbols and variables are created, and Section 6.18 [Modules],
page 414, for how those associations are affected by Guile’s module system.

6.6.6.4 Operations Related to Symbols

Given any Scheme value, you can determine whether it is a symbol using the symbol?
primitive:

symbol? obj [Scheme Procedure]
scm_symbol_p (obj) [C Function]
Return #t if obj is a symbol, otherwise return #f£.

int scm_is_symbol (SCM val) [C Function]
Equivalent to scm_is_true (scm_symbol_p (val)).

Once you know that you have a symbol, you can obtain its name as a string by calling
symbol->string. Note that Guile differs by default from R5RS on the details of symbol-
>string as regards case-sensitivity:

168 Guile Reference Manual

symbol->string s [Scheme Procedure]

scm_symbol_to_string (s) [C Function]
Return the name of symbol s as a string. By default, Guile reads symbols case-
sensitively, so the string returned will have the same case variation as the sequence
of characters that caused s to be created.

If Guile is set to read symbols case-insensitively (as specified by R5RS), and s comes
into being as part of a literal expression (see Section “Literal expressions” in The
Revised™5 Report on Scheme) or by a call to the read or string-ci->symbol pro-
cedures, Guile converts any alphabetic characters in the symbol’s name to lower case
before creating the symbol object, so the string returned here will be in lower case.

If s was created by string->symbol, the case of characters in the string returned will
be the same as that in the string that was passed to string->symbol, regardless of
Guile’s case-sensitivity setting at the time s was created.

It is an error to apply mutation procedures like string-set! to strings returned by
this procedure.

Most symbols are created by writing them literally in code. However it is also possible
to create symbols programmatically using the following procedures:

symbol char. .. [Scheme Procedure]
Return a newly allocated symbol made from the given character arguments.

(symbol #\x #\y #\z) = xyz

list->symbol Ist [Scheme Procedure]
Return a newly allocated symbol made from a list of characters.

(list->symbol '(#\a #\b #\c)) = abc

symbol-append arg ... [Scheme Procedure]
Return a newly allocated symbol whose characters form the concatenation of the
given symbols, arg

(let ((h 'hello))
(symbol-append h 'world))
= helloworld

string->symbol string [Scheme Procedure]

scm_string_to_symbol (string) [C Function]
Return the symbol whose name is string. This procedure can create symbols with
names containing special characters or letters in the non-standard case, but it is
usually a bad idea to create such symbols because in some implementations of Scheme
they cannot be read as themselves.

string-ci->symbol str [Scheme Procedure]

scm_string_ci_to_symbol (str) [C Function]
Return the symbol whose name is str. If Guile is currently reading symbols case-
insensitively, str is converted to lowercase before the returned symbol is looked up or
created.

Chapter 6: API Reference 169

The following examples illustrate Guile’s detailed behavior as regards the case-sensitivity
of symbols:

(read-enable 'case-insensitive) ; RBRS compliant behavior

(symbol->string 'flying-fish)

(symbol->string 'Martin)

(symbol->string
(string->symbol "Malvina")) = "Malvina"

"flying-fish"

=
= "martin"

(eq? 'mISSISSIppi 'mississippi) = #t
(string->symbol "mISSISSIppi") = mISSISSIppi
(eq? 'bitBlt (string->symbol "bitBlt")) = #f
(eq? 'LolliPop

(string->symbol (symbol->string 'LolliPop))) = #t
(string=7 "K. Harper, M.D."

(symbol->string

(string->symbol "K. Harper, M.D."))) = #t

(read-disable 'case-insensitive) ; Guile default behavior

(symbol->string 'flying-fish) = "flying-fish"
(symbol->string 'Martin) = "Martin"
(symbol->string

(string->symbol "Malvina")) = "Malvina"

(eq? 'mISSISSIppi 'mississippi) = #f
(string->symbol "mISSISSIppi") = mISSISSIppi
(eq? 'bitBlt (string->symbol "bitBlt")) = #t
(eq? 'LolliPop

(string->symbol (symbol->string 'LolliPop))) = #t
(string=? "K. Harper, M.D."

(symbol->string

(string->symbol "K. Harper, M.D."))) = #t

From C, there are lower level functions that construct a Scheme symbol from a C string
in the current locale encoding.

When you want to do more from C, you should convert between symbols and strings
using scm_symbol_to_string and scm_string_to_symbol and work with the strings.

SCM scm_from_latinl_symbol (const char *name) [C Function]

SCM scm_from_utf8_symbol (const char *name) [C Function]
Construct and return a Scheme symbol whose name is specified by the null-terminated
C string name. These are appropriate when the C string is hard-coded in the source
code.

170 Guile Reference Manual

SCM scm_from_locale_symbol (const char *name) [C Function]
SCM scm_from_locale_symboln (const char *name, size_t [C Function]
len)

Construct and return a Scheme symbol whose name is specified by name. For scm_
from_locale_symbol, name must be null terminated; for scm_from_locale_symboln
the length of name is specified explicitly by len.

Note that these functions should not be used when name is a C string constant,
because there is no guarantee that the current locale will match that of the execution
character set, used for string and character constants. Most modern C compilers use
UTF-8 by default, so in such cases we recommend scm_from_utf8_symbol.

SCM scm_take_locale_symbol (char *str) [C Function]

SCM scm_take_locale_symboln (char *str, size_t len) [C Function]
Like scm_from_locale_symbol and scm_from_locale_symboln, respectively, but
also frees str with free eventually. Thus, you can use this function when you would
free str anyway immediately after creating the Scheme string. In certain cases, Guile
can then use str directly as its internal representation.

The size of a symbol can also be obtained from C:

size_t scm_c_symbol_length (SCM sym) [C Function]
Return the number of characters in sym.

Finally, some applications, especially those that generate new Scheme code dynamically,
need to generate symbols for use in the generated code. The gensym primitive meets this
need:

gensym [prefix] [Scheme Procedure]
scm_gensym (prefix) [C Function]
Create a new symbol with a name constructed from a prefix and a counter value. The
string prefix can be specified as an optional argument. Default prefix is ‘ g’. The
counter is increased by 1 at each call. There is no provision for resetting the counter.

The symbols generated by gensym are likely to be unique, since their names begin with
a space and it is only otherwise possible to generate such symbols if a programmer goes out
of their way to do so. Uniqueness can be guaranteed by instead using uninterned symbols
(see Section 6.6.6.6 [Symbol Uninterned], page 171), though they can’t be usefully written
out and read back in.

6.6.6.5 Extended Read Syntax for Symbols

The read syntax for a symbol is a sequence of letters, digits, and extended alphabetic
characters, beginning with a character that cannot begin a number. In addition, the special

cases of +, —, and ... are read as symbols even though numbers can begin with +, - or ..
Extended alphabetic characters may be used within identifiers as if they were letters.
The set of extended alphabetic characters is:
1 $%&*x+-./:<=>70"_"

In addition to the standard read syntax defined above (which is taken from R5RS (see
Section “Formal syntax” in The Revised"5 Report on Scheme)), Guile provides an extended

Chapter 6: API Reference 171

symbol read syntax that allows the inclusion of unusual characters such as space characters,
newlines and parentheses. If (for whatever reason) you need to write a symbol containing
characters not mentioned above, you can do so as follows.

e Begin the symbol with the characters #{,
e write the characters of the symbol and
e finish the symbol with the characters }#.

Here are a few examples of this form of read syntax. The first symbol needs to use
extended syntax because it contains a space character, the second because it contains a line
break, and the last because it looks like a number.

#{foo bar}#

#{what
everlt#

#{4242}4#

Although Guile provides this extended read syntax for symbols, widespread usage of it
is discouraged because it is not portable and not very readable.

Alternatively, if you enable the r7rs-symbols read option (see see Section 6.16.2 [Scheme
Read], page 388), you can write arbitrary symbols using the same notation used for strings,
except delimited by vertical bars instead of double quotes.

| foo bar|
I\x3BB; is a greek lambdal|
IN\| is a vertical bar|

Note that there’s also an r7rs-symbols print option (see Section 6.16.4 [Scheme Write],
page 390). To enable the use of this notation, evaluate one or both of the following expres-
sions:

(read-enable 'r7rs-symbols)
(print-enable 'r7rs-symbols)

6.6.6.6 Uninterned Symbols

What makes symbols useful is that they are automatically kept unique. There are no two
symbols that are distinct objects but have the same name. But of course, there is no rule
without exception. In addition to the normal symbols that have been discussed up to now,
you can also create special uninterned symbols that behave slightly differently.

To understand what is different about them and why they might be useful, we look at
how normal symbols are actually kept unique.

Whenever Guile wants to find the symbol with a specific name, for example during read
or when executing string->symbol, it first looks into a table of all existing symbols to find
out whether a symbol with the given name already exists. When this is the case, Guile just
returns that symbol. When not, a new symbol with the name is created and entered into
the table so that it can be found later.

Sometimes you might want to create a symbol that is guaranteed ‘fresh’; i.e. a symbol
that did not exist previously. You might also want to somehow guarantee that no one else
will ever unintentionally stumble across your symbol in the future. These properties of a

172 Guile Reference Manual

symbol are often needed when generating code during macro expansion. When introducing
new temporary variables, you want to guarantee that they don’t conflict with variables in
other people’s code.

The simplest way to arrange for this is to create a new symbol but not enter it into the
global table of all symbols. That way, no one will ever get access to your symbol by chance.
Symbols that are not in the table are called uninterned. Of course, symbols that are in the
table are called interned.

You create new uninterned symbols with the function make-symbol. You can test
whether a symbol is interned or not with symbol-interned?.

Uninterned symbols break the rule that the name of a symbol uniquely identifies the
symbol object. Because of this, they can not be written out and read back in like interned
symbols. Currently, Guile has no support for reading uninterned symbols. Note that the
function gensym does not return uninterned symbols for this reason.

make-symbol name [Scheme Procedure]

scm_make_symbol (name) [C Function]
Return a new uninterned symbol with the name name. The returned symbol is
guaranteed to be unique and future calls to string->symbol will not return it.

symbol-interned? symbol [Scheme Procedure]
scm_symbol_interned_p (symbol) [C Function]
Return #t if symbol is interned, otherwise return #f.

For example:

(define foo-1 (string->symbol "foo"))
(define foo-2 (string->symbol "foo"))
(define foo-3 (make-symbol "foo"))
(define foo-4 (make-symbol "foo"))

(eq? foo-1 foo-2)
= #t
; Two interned symbols with the same name are the same object,

(eq? foo-1 foo-3)

= #f

; but a call to make-symbol with the same name returns a
; distinct object.

(eq? foo-3 foo-4)

= #f

; A call to make-symbol always returns a new object, even for
; the same name.

foo-3
= #<uninterned-symbol foo 8085290>
; Uninterned symbols print differently from interned symbols,

Chapter 6: API Reference 173

(symbol? foo-3)
= #t
; but they are still symbols,

(symbol-interned? foo-3)
= #f
; just not intermned.

6.6.7 Keywords

Keywords are self-evaluating objects with a convenient read syntax that makes them easy
to type.

Guile’s keyword support conforms to R5RS, and adds a (switchable) read syntax exten-
sion to permit keywords to begin with : as well as #:, or to end with :.

6.6.7.1 Why Use Keywords?

Keywords are useful in contexts where a program or procedure wants to be able to accept
a large number of optional arguments without making its interface unmanageable.

To illustrate this, consider a hypothetical make-window procedure, which creates a new
window on the screen for drawing into using some graphical toolkit. There are many
parameters that the caller might like to specify, but which could also be sensibly defaulted,
for example:

e color depth — Default: the color depth for the screen
e background color — Default: white
e width — Default: 600
e height — Default: 400
If make-window did not use keywords, the caller would have to pass in a value for each

possible argument, remembering the correct argument order and using a special value to
indicate the default value for that argument:

(make-window 'default ;3 Color depth
'default ;3 Background color
800 ;3 Width
100 ;; Height
) ;3 More make-window arguments

With keywords, on the other hand, defaulted arguments are omitted, and non-default
arguments are clearly tagged by the appropriate keyword. As a result, the invocation
becomes much clearer:

(make-window #:width 800 #:height 100)

On the other hand, for a simpler procedure with few arguments, the use of keywords
would be a hindrance rather than a help. The primitive procedure cons, for example, would
not be improved if it had to be invoked as

(cons #:car x #:cdr y)

So the decision whether to use keywords or not is purely pragmatic: use them if they
will clarify the procedure invocation at point of call.

174 Guile Reference Manual

6.6.7.2 Coding With Keywords

If a procedure wants to support keywords, it should take a rest argument and then use
whatever means is convenient to extract keywords and their corresponding arguments from
the contents of that rest argument.

The following example illustrates the principle: the code for make-window uses a helper
procedure called get-keyword-value to extract individual keyword arguments from the
rest argument.

(define (get-keyword-value args keyword default)
(let ((kv (memq keyword args)))
(if (and kv (>= (length kv) 2))
(cadr kv)
default)))

(define (make-window . args)
(let ((depth (get-keyword-value args #:depth screen-depth))
(bg (get-keyword-value args #:bg "white"))
(width (get-keyword-value args #:width 800))
(height (get-keyword-value args #:height 100))
co)
o))

But you don’t need to write get-keyword-value. The (ice-9 optargs) module pro-

vides a set of powerful macros that you can use to implement keyword-supporting procedures
like this:

(use-modules (ice-9 optargs))

(define (make-window . args)
(let-keywords args #f ((depth screen-depth)
(bg "white")
(width 800)
(height 100))
22))

Or, even more economically, like this:

(use-modules (ice-9 optargs))

(define* (make-window #:key (depth screen-depth)
(bg "white")
(width 800)
(height 100))
.

For further details on let-keywords, define* and other facilities provided by the (ice-
9 optargs) module, see Section 6.7.4 [Optional Arguments], page 249.

To handle keyword arguments from procedures implemented in C, use scm_c_bind_
keyword_arguments (see Section 6.6.7.4 [Keyword Procedures]|, page 176).

Chapter 6: API Reference 175

6.6.7.3 Keyword Read Syntax

Guile, by default, only recognizes a keyword syntax that is compatible with R5RS. A token
of the form #:NAME, where NAME has the same syntax as a Scheme symbol (see Section 6.6.6.5
[Symbol Read Syntax], page 170), is the external representation of the keyword named NAME.
Keyword objects print using this syntax as well, so values containing keyword objects can
be read back into Guile. When used in an expression, keywords are self-quoting objects.

If the keywords read option is set to 'prefix, Guile also recognizes the alternative read
syntax :NAME. Otherwise, tokens of the form :NAME are read as symbols, as required by
R5RS.

If the keywords read option is set to 'postfix, Guile recognizes the SRFI-88 read syntax
NAME: (see Section 7.5.42 [SRFI-88], page 666). Otherwise, tokens of this form are read as
symbols.

To enable and disable the alternative non-R5RS keyword syntax, you use the read-set!
procedure documented Section 6.16.2 [Scheme Read], page 388. Note that the prefix and
postfix syntax are mutually exclusive.

(read-set! keywords 'prefix)

#:type
=
#:type

:type
=
#:type

(read-set! keywords 'postfix)

type:
=
#:type

1type
=

:type
(read-set! keywords #f)

#:type
=
#:type

1type

_|

ERROR: In expression :type:
ERROR: Unbound variable: :type
ABORT: (unbound-variable)

176

Guile Reference Manual

6.6.7.4 Keyword Procedures

keyword? obj [Scheme Procedure]

scm_keyword_p (obj) [C Function]
Return #t if the argument obj is a keyword, else #£.

keyword->symbol keyword [Scheme Procedure]

scm_keywor