The following procedures accept any kind of number as arguments, including complex numbers.
Return the square root of z. Of the two possible roots (positive and negative), the one with a positive real part is returned, or if that’s zero then a positive imaginary part. Thus,
(sqrt 9.0) ⇒ 3.0 (sqrt -9.0) ⇒ 0.0+3.0i (sqrt 1.0+1.0i) ⇒ 1.09868411346781+0.455089860562227i (sqrt -1.0-1.0i) ⇒ 0.455089860562227-1.09868411346781i
Return z1 raised to the power of z2.
Return the sine of z.
Return the cosine of z.
Return the tangent of z.
Return the arcsine of z.
Return the arccosine of z.
Return e to the power of z, where e is the base of natural logarithms (2.71828…).
Return the natural logarithm of z.
Return the base 10 logarithm of z.
Return the hyperbolic sine of z.
Return the hyperbolic cosine of z.
Return the hyperbolic tangent of z.
Return the hyperbolic arcsine of z.
Return the hyperbolic arccosine of z.
Return the hyperbolic arctangent of z.