
GNU Libtool
For version 2.5.3, 25 September 2024

Gordon Matzigkeit
Alexandre Oliva
Thomas Tanner
Gary V. Vaughan

This manual is for GNU Libtool (version 2.5.3, 25 September 2024).

Copyright c© 1996–2019, 2021–2024 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

i

Table of Contents

1 Introduction . 1
1.1 Motivation for writing libtool . 1
1.2 Implementation issues . 1
1.3 Other implementations . 2
1.4 A postmortem analysis of other implementations 2

2 The libtool paradigm . 3

3 Using libtool . 4
3.1 Creating object files . 4
3.2 Linking libraries . 6
3.3 Linking executables . 7

3.3.1 Wrapper executables for uninstalled programs 9
3.4 Debugging executables . 10
3.5 Installing libraries . 11
3.6 Installing executables . 12
3.7 Linking static libraries . 13

4 Invoking libtool . 15
4.1 Compile mode . 17
4.2 Link mode . 18
4.3 Execute mode . 22
4.4 Install mode . 22
4.5 Finish mode . 23
4.6 Uninstall mode . 23
4.7 Clean mode . 23

5 Integrating libtool with your package 24
5.1 Autoconf macros exported by libtool . 24
5.2 Writing Makefile rules for libtool . 26
5.3 Using Automake with libtool . 26
5.4 Configuring libtool . 27

5.4.1 The LT_INIT macro . 28
5.4.2 Platform-specific configuration notes . 34

5.5 Including libtool in your package . 35
5.5.1 Invoking libtoolize . 35
5.5.2 Autoconf and LTLIBOBJS . 38

5.6 Static-only libraries . 38

6 Using libtool with other languages 40
6.1 Writing libraries for C++ . 40
6.2 Tags . 40

ii

7 Library interface versions . 42
7.1 What are library interfaces? . 42
7.2 Libtool’s versioning system . 42
7.3 Updating library version information . 43
7.4 Managing release information . 44

8 Tips for interface design . 45
8.1 Writing C header files . 46

9 Inter-library dependencies . 48

10 Dlopened modules . 49
10.1 Building modules to dlopen . 49
10.2 Dlpreopening . 50
10.3 Linking with dlopened modules . 52
10.4 Finding the correct name to dlopen . 53
10.5 Unresolved dlopen issues . 54

11 Using libltdl . 55
11.1 How to use libltdl in your programs . 55
11.2 Creating modules that can be dlopened . 61
11.3 Using libltdl in a multi threaded environment 62
11.4 Data associated with loaded modules . 62
11.5 How to create and register new module loaders 65

11.5.1 Error handling within user module loaders 69
11.6 How to distribute libltdl with your package . 69

12 Libtool’s trace interface . 75

13 Frequently Asked Questions about libtool . . . 76
13.1 Why does libtool strip link flags when creating a library? 76

14 Troubleshooting . 77
14.1 The libtool test suite . 77

14.1.1 Description of test suite . 77
14.1.2 When tests fail . 84

14.2 Reporting bugs . 84

iii

15 Maintenance notes for libtool 86
15.1 Porting libtool to new systems . 86

15.1.1 Information sources . 86
15.1.2 Porting inter-library dependencies support 87

15.2 Tested platforms . 87
15.3 Platform quirks . 91

15.3.1 References . 91
15.3.2 Compilers . 92
15.3.3 Reloadable objects . 92
15.3.4 Multiple dependencies . 92
15.3.5 Archivers . 93
15.3.6 Cross compiling . 93
15.3.7 File name conversion . 95

15.3.7.1 File Name Conversion Failure . 95
15.3.7.2 Native MinGW File Name Conversion 96
15.3.7.3 Cygwin/Windows File Name Conversion 96
15.3.7.4 Unix/Windows File Name Conversion 97
15.3.7.5 LT CYGPATH . 97
15.3.7.6 Cygwin to MinGW Cross . 98

15.3.8 Windows DLLs . 99
15.4 libtool script contents . 102
15.5 Cheap tricks . 110

Appendix A GNU Free Documentation
License . 111

Combined Index . 119

1

1 Introduction

In the past, if you were a source code package developer and wanted to take advantage of
the power of shared libraries, you needed to write custom support code for each platform
on which your package ran. You also had to design a configuration interface so that the
package installer could choose what sort of libraries were built.

GNU Libtool simplifies your job by encapsulating both the platform-specific dependen-
cies, and the user interface, in a single script. GNU Libtool is designed so that the complete
functionality of each host type is available via a generic interface, but nasty quirks are
hidden from the programmer.

GNU Libtool’s consistent interface is reassuring. . . users don’t need to read obscure
documentation to have their favorite source package build shared libraries. They just run
your package configure script (or equivalent), and libtool does all the dirty work.

There are several examples throughout this document. All assume the same environment:
we want to build a library, libhello, in a generic way.

libhello could be a shared library, a static library, or both. . . whatever is available on
the host system, as long as libtool has been ported to it.

This chapter explains the original design philosophy of libtool. Feel free to skip to the
next chapter, unless you are interested in history, or want to write code to extend libtool
in a consistent way.

1.1 Motivation for writing libtool

Since early 1995, several different GNU developers have recognized the importance of having
shared library support for their packages. The primary motivation for such a change is
to encourage modularity and reuse of code (both conceptually and physically) in GNU
programs.

Such a demand means that the way libraries are built in GNU packages needs to be
general, to allow for any library type the package installer might want. The problem is
compounded by the absence of a standard procedure for creating shared libraries on different
platforms.

The following sections outline the major issues facing shared library support in GNU,
and how shared library support could be standardized with libtool.

The following specifications were used in developing and evaluating this system:

1. The system must be as elegant as possible.

2. The system must be fully integrated with the GNU Autoconf and Automake utilities,
so that it will be easy for GNU maintainers to use. However, the system must not
require these tools, so that it can be used by non-GNU packages.

3. Portability to other (non-GNU) architectures and tools is desirable.

1.2 Implementation issues

The following issues need to be addressed in any reusable shared library system, specifically
libtool:

1. The package installer should be able to control what sort of libraries are built.

Chapter 1: Introduction 2

2. It can be tricky to run dynamically linked programs whose libraries have not yet been
installed. LD_LIBRARY_PATH must be set properly (if it is supported), or programs fail
to run.

3. The system must operate consistently even on hosts that don’t support shared libraries.

4. The commands required to build shared libraries may differ wildly from host to host.
These need to be determined at configure time in a consistent way.

5. It is not always obvious with what prefix or suffix a shared library should be installed.
This makes it difficult for Makefile rules, since they generally assume that file names
are the same from host to host.

6. The system needs a simple library version number abstraction, so that shared libraries
can be upgraded in place. The programmer should be informed how to design the
interfaces to the library to maximize binary compatibility.

7. The install Makefile target should warn the package installer to set the proper envi-
ronment variables (LD_LIBRARY_PATH or equivalent), or run ldconfig.

1.3 Other implementations

Even before libtool was developed, many free software packages built and installed their
own shared libraries. At first, these packages were examined to avoid reinventing existing
features.

Now it is clear that none of these packages have documented the details of shared library
systems that libtool requires. So, other packages have been more or less abandoned as
influences.

1.4 A postmortem analysis of other implementations

In all fairness, each of the implementations that were examined do the job that they were
intended to do, for a number of different host systems. However, none of these solutions
seem to function well as a generalized, reusable component.

Most were too complex to use (much less modify) without understanding exactly what
the implementation does, and they were generally not documented.

The main difficulty is that different vendors have different views of what libraries are,
and none of the packages that were examined seemed to be confident enough to settle on a
single paradigm that just works.

Ideally, libtool would be a standard that would be implemented as series of extensions
and modifications to existing library systems to make them work consistently. However, it
is not an easy task to convince operating system developers to mend their evil ways, and
people want to build shared libraries right now, even on buggy, broken, confused operating
systems.

For this reason, libtool was designed as an independent shell script. It isolates the
problems and inconsistencies in library building that plague Makefile writers by wrapping
the compiler suite on different platforms with a consistent, powerful interface.

With luck, libtool will be useful to and used by the GNU community, and that the lessons
that were learned in writing it will be taken up by designers of future library systems.

3

2 The libtool paradigm

At first, libtool was designed to support an arbitrary number of library object types. After
libtool was ported to more platforms, a new paradigm gradually developed for describing
the relationship between libraries and programs.

In summary, “libraries are programs with multiple entry points, and more formally
defined interfaces.”

The best way to introduce the libtool paradigm is to contrast it with the paradigm of
existing library systems, with examples from each. It is a new way of thinking, so it may
take a little time to absorb, but when you understand it, the world becomes simpler.

4

3 Using libtool

It makes little sense to talk about using libtool in your own packages until you have seen
how it makes your life simpler. The examples in this chapter introduce the main features of
libtool by comparing the standard library building procedure to libtool’s operation on two
different platforms:

‘a23’ An Ultrix 4.2 platform with only static libraries.

‘burger’ A NetBSD/i386 1.2 platform with shared libraries.

Source files for the following examples are taken from the Autotest file tests/demo.at.
The files can be extracted by running a demo test and preserving the artifacts:

burger$ make check TESTSUITEFLAGS="-d -k 'preloaded static library'"

burger$ cp -r tests/testsuite.dir/027 demo/

You can follow these examples on your own platform, using the preconfigured libtool
script that was installed with libtool (see Section 5.4 [Configuring], page 27). Assume that
we are building a library, libhello, out of the files foo.c and hello.c.

Note that the foo.c source file uses the cos math library function, which is usually
found in the standalone math library, and not the C library (see Section “Trigonometric
Functions” in The GNU C Library Reference Manual). So, we need to add -lm to the end
of the link line whenever we link foo.lo into an executable or a library (see Chapter 9
[Inter-library dependencies], page 48).

The same rule applies whenever you use functions that don’t appear in the standard C
library. . . you need to add the appropriate -lname flag to the end of the link line when you
link against those objects.

After we have built that library, we want to create a program by linking main.o against
libhello.

3.1 Creating object files

To create an object file from a source file, the compiler is invoked with the -c flag (and any
other desired flags):

burger$ gcc -I. -g -O -c main.c

burger$

The above compiler command produces an object file, usually named main.o, from the
source file main.c.

For most library systems, creating object files that become part of a static library is as
simple as creating object files that are linked to form an executable:

burger$ gcc -I. -g -O -c foo.c

burger$ gcc -I. -g -O -c hello.c

burger$

Shared libraries, however, may only be built from position-independent code (PIC). So,
special flags must be passed to the compiler to tell it to generate PIC rather than the
standard position-dependent code.

Since this is a library implementation detail, libtool hides the complexity of PIC compiler
flags and uses separate library object files (the PIC one lives in the .libs subdirectory and

Chapter 3: Using libtool 5

the static one lives in the current directory). On systems without shared libraries, the PIC
library object files are not created, whereas on systems where all code is PIC, such as AIX,
the static ones are not created.

To create library object files for foo.c and hello.c, simply invoke libtool with the
standard compilation command as arguments (see Section 4.1 [Compile mode], page 17):

a23$ libtool --mode=compile gcc -I. -g -O -c foo.c

gcc -I. -g -O -c foo.c -o foo.o

a23$ libtool --mode=compile gcc -I. -g -O -c hello.c

gcc -I. -g -O -c hello.c -o hello.o

a23$

Note that libtool silently creates an additional control file on each ‘compile’ invocation.
The .lo file is the libtool object, which Libtool uses to determine what object file may
be built into a shared library. On ‘a23’, only static libraries are supported so the library
objects look like this:

foo.lo - a libtool object file

Generated by ltmain.sh (GNU libtool) 2.5.3

#

Please DO NOT delete this file!

It is necessary for linking the library.

Name of the PIC object.

pic_object=none

Name of the non-PIC object.

non_pic_object='foo.o'

On shared library systems, libtool automatically generates an additional PIC object by
inserting the appropriate PIC generation flags into the compilation command:

burger$ libtool --mode=compile gcc -I. -g -O -c foo.c

mkdir .libs

gcc -I. -g -O -c foo.c -fPIC -DPIC -o .libs/foo.o

gcc -I. -g -O -c foo.c -o foo.o >/dev/null 2>&1

burger$

Note that Libtool automatically created the .libs directory upon its first execution,
where PIC library object files will be stored.

Since ‘burger’ supports shared libraries, and requires PIC objects to build them, Libtool
has compiled a PIC object and made a note of it in the libtool object:

foo.lo - a libtool object file

Generated by ltmain.sh (GNU libtool) 2.5.3

#

Please DO NOT delete this file!

It is necessary for linking the library.

Name of the PIC object.

pic_object='.libs/foo.o'

Chapter 3: Using libtool 6

Name of the non-PIC object.

non_pic_object='foo.o'

Notice the second run of GCC has its output discarded. This is done so the compiler
warnings aren’t annoyingly duplicated. If you need to see both sets of warnings (you might
have conditional code inside ‘#ifdef PIC’ for example), you can turn off suppression by
passing the -no-suppress option to libtool’s compile mode:

burger$ libtool --mode=compile gcc -no-suppress -I. -g -O -c hello.c

gcc -I. -g -O -c hello.c -fPIC -DPIC -o .libs/hello.o

gcc -I. -g -O -c hello.c -o hello.o

burger$

3.2 Linking libraries

Without libtool, the programmer would invoke the ar command to create a static library:

burger$ ar cr libhello.a hello.o foo.o

burger$

But of course, that would be too simple, so many systems require that you run the
ranlib command on the resulting library in order to generate a symbol table:

burger$ ranlib libhello.a

burger$

It seems more natural to use the C compiler for this task, given libtool’s “libraries are
programs” approach. So, on platforms without shared libraries, libtool simply acts as a
wrapper for the system ar (and possibly ranlib) commands.

Again, the libtool control file name (.la suffix) differs from the standard library name
(.a suffix). The arguments to libtool are the same ones you would use to produce an
executable named libhello.la with your compiler (see Section 4.2 [Link mode], page 18):

a23$ libtool --mode=link gcc -g -O -o libhello.la foo.o hello.o

*** Warning: Linking the shared library libhello.la against the

*** non-libtool objects foo.o hello.o is not portable!

ar cr .libs/libhello.a

ranlib .libs/libhello.a

creating libhello.la

(cd .libs && rm -f libhello.la && ln -s ../libhello.la libhello.la)

a23$

Aha! Libtool caught a common error. . . trying to build a library from standard objects
instead of special .lo object files. This doesn’t matter so much for static libraries, but on
shared library systems, it is of great importance. (Note that you may replace libhello.la
with libhello.a in which case libtool won’t issue the warning any more. But although
this method works, this is not intended to be used because it makes you lose the benefits
of using Libtool.)

So, let’s try again, this time with the library object files. Remember also that we need
to add -lm to the link command line because foo.c uses the cos math library function (see
Chapter 3 [Using libtool], page 4).

Chapter 3: Using libtool 7

Another complication in building shared libraries is that we need to specify the path to
the directory where they will (eventually) be installed (in this case, /usr/local/lib)1:

a23$ libtool --mode=link gcc -g -O -o libhello.la foo.lo hello.lo \

-rpath /usr/local/lib -lm

ar cr .libs/libhello.a foo.o hello.o

ranlib .libs/libhello.a

creating libhello.la

(cd .libs && rm -f libhello.la && ln -s ../libhello.la libhello.la)

a23$

Now, let’s try the same trick on the shared library platform:

burger$ libtool --mode=link gcc -g -O -o libhello.la foo.lo hello.lo \

-rpath /usr/local/lib -lm

rm -fr .libs/libhello.a .libs/libhello.la

ld -Bshareable -o .libs/libhello.so.0.0 .libs/foo.o .libs/hello.o -lm

ar cr .libs/libhello.a foo.o hello.o

ranlib .libs/libhello.a

creating libhello.la

(cd .libs && rm -f libhello.la && ln -s ../libhello.la libhello.la)

burger$

Now that’s significantly cooler. . . Libtool just ran an obscure ld command to create a
shared library, as well as the static library.

Note how libtool creates extra files in the .libs subdirectory, rather than the current
directory. This feature makes it easier to clean up the build directory, and helps ensure
other programs fail horribly if you accidentally forget to use libtool when you should.

Again, you should look at the .la file to see what Libtool stores in it. You will see
Libtool uses this file to remember the destination directory for the library (the argument
to -rpath) as well as the dependency on the math library (‘-lm’).

3.3 Linking executables

If you choose at this point to install the library (put it in a permanent location) before
linking executables against it, then you don’t need to use libtool to do the linking. Simply
use the appropriate -L and -l flags to specify the library’s location.

Some system linkers insist on encoding the full directory name of each shared library in
the resulting executable. Libtool has to work around this misfeature by special magic to
ensure that only permanent directory names are put into installed executables.

The importance of this bug must not be overlooked: it won’t cause programs to crash
in obvious ways. It creates a security hole, and possibly even worse, if you are modifying
the library source code after you have installed the package, you will change the behaviour
of the installed programs!

So, if you want to link programs against the library before you install it, you must use
libtool to do the linking.

1 If you don’t specify an rpath, then libtool builds a libtool convenience archive, not a shared library (see
Section 3.7 [Static libraries], page 13).

Chapter 3: Using libtool 8

Here’s the old way of linking against an uninstalled library:

burger$ gcc -g -O -o hell.old main.o libhello.a -lm

burger$

Libtool’s way is almost the same2 (see Section 4.2 [Link mode], page 18):

a23$ libtool --mode=link gcc -g -O -o hell main.o libhello.la

gcc -g -O -o hell main.o ./.libs/libhello.a -lm

a23$

That looks too simple to be true. All libtool did was transform libhello.la to
./.libs/libhello.a, but remember that ‘a23’ has no shared libraries. Notice Libtool
also remembered libhello.la depends on -lm, so even though we didn’t specify -lm on
the libtool command line3 Libtool has added it to the gcc link line for us.

On ‘burger’ Libtool links against the uninstalled shared library:

burger$ libtool --mode=link gcc -g -O -o hell main.o libhello.la

gcc -g -O -o .libs/hell main.o -L./.libs -R/usr/local/lib -lhello -lm

creating hell

burger$

Now assume libhello.la had already been installed, and you want to link a new pro-
gram with it. You could figure out where it lives by yourself, then run:

burger$ gcc -g -O -o test test.o -L/usr/local/lib -lhello -lm

However, unless /usr/local/lib is in the standard library search path, you won’t be
able to run test. If instead you use libtool to link the already-installed libtool library, it
will do The Right Thing (TM) for you:

burger$ libtool --mode=link gcc -g -O -o test test.o \

/usr/local/lib/libhello.la

gcc -g -O -o .libs/test test.o -Wl,--rpath \

-Wl,/usr/local/lib /usr/local/lib/libhello.a -lm

creating test

burger$

Note that libtool added the necessary run-time path flag, as well as -lm, the library
libhello.la depended upon. Nice, huh?

Notice the executable, hell, was actually created in the .libs subdirectory. Then, a
wrapper script (or, on certain platforms, a wrapper executable see Section 3.3.1 [Wrapper
executables], page 9) was created in the current directory.

Since libtool created a wrapper script, you should use libtool to install it and debug it
too. However, since the program does not depend on any uninstalled libtool library, it is
probably usable even without the wrapper script.

On NetBSD 1.2, libtool encodes the installation directory of libhello, by using the
‘-R/usr/local/lib’ compiler flag. Then, the wrapper script guarantees the executable
finds the correct shared library (the one in ./.libs) so it can be properly installed.

2 However, you should avoid using -L or -l flags to link against an uninstalled libtool library. Just specify
the relative path to the .la file, such as ../intl/libintl.la. This is a design decision to eliminate any
ambiguity when linking against uninstalled shared libraries.

3 And why should we? main.o doesn’t directly depend on -lm after all.

Chapter 3: Using libtool 9

Let’s compare the two different programs:

burger$ time ./hell.old

Welcome to GNU Hell!

** This is not GNU Hello. There is no built-in mail reader. **

0.21 real 0.02 user 0.08 sys

burger$ time ./hell

Welcome to GNU Hell!

** This is not GNU Hello. There is no built-in mail reader. **

0.63 real 0.09 user 0.59 sys

burger$

The wrapper script takes significantly longer to execute, but at least the results are
correct, even though the shared library hasn’t been installed yet.

So, what about all the space savings that shared libraries are supposed to yield?

burger$ ls -l hell.old libhello.a

-rwxr-xr-x 1 gord gord 15481 Nov 14 12:11 hell.old

-rw-r--r-- 1 gord gord 4274 Nov 13 18:02 libhello.a

burger$ ls -l .libs/hell .libs/libhello.*

-rwxr-xr-x 1 gord gord 11647 Nov 14 12:10 .libs/hell

-rw-r--r-- 1 gord gord 4274 Nov 13 18:44 .libs/libhello.a

-rwxr-xr-x 1 gord gord 12205 Nov 13 18:44 .libs/libhello.so.0.0

burger$

Well, that sucks. Maybe I should just scrap this project and take up basket weaving.

Actually, it just proves an important point: shared libraries incur overhead because of
their (relative) complexity. In this situation, the price of being dynamic is eight kilobytes,
and the payoff is about four kilobytes. So, having a shared libhello won’t be an advantage
until we link it against at least a few more programs.

3.3.1 Wrapper executables for uninstalled programs

Some platforms, notably those hosted on Windows such as Cygwin and MinGW, use a
wrapper executable rather than a wrapper script to ensure proper operation of uninstalled
programs linked by libtool against uninstalled shared libraries. The wrapper executable thus
performs the same function as the wrapper script used on other platforms, but allows to
satisfy the make rules for the program, whose name ends in $(EXEEXT). The actual program
executable is created below .libs, and its name will end in $(EXEEXT) and may or may
not contain an lt- prefix. This wrapper executable sets various environment values so that
the program executable may locate its (uninstalled) shared libraries, and then launches the
program executable.

The wrapper executable provides a debug mode, enabled by passing the command-line
option --lt-debug (see below). When executing in debug mode, diagnostic information
will be printed to stderr before the program executable is launched.

Finally, the wrapper executable supports a number of command line options that may
be useful when debugging the operation of the wrapper system. All of these options begin
with --lt-, and if present they and their arguments will be removed from the argument list
passed on to the program executable. Therefore, the program executable may not employ
command line options that begin with --lt-. (In fact, the wrapper executable will detect

Chapter 3: Using libtool 10

any command line options that begin with --lt- and abort with an error message if the
option is not recognized.) If this presents a problem, please contact the Libtool team at the
Libtool bug reporting address bug-libtool@gnu.org.

These command line options include:

--lt-dump-script

Causes the wrapper to print a copy of the wrapper script to stdout, and exit.

--lt-debug

Causes the wrapper to print diagnostic information to stdout, before launching
the program executable.

For consistency, both the wrapper script and the wrapper executable support these
options.

3.4 Debugging executables

If hell was a complicated program, you would certainly want to test and debug it before
installing it on your system. In the above section, you saw how the libtool wrapper script
makes it possible to run the program directly, but unfortunately, this mechanism interferes
with the debugger:

burger$ gdb hell

GDB is free software and you are welcome to distribute copies of it

under certain conditions; type "show copying" to see the conditions.

There is no warranty for GDB; type "show warranty" for details.

GDB 4.16 (i386-unknown-netbsd), (C) 1996 Free Software Foundation, Inc.

"hell": not in executable format: File format not recognized

(gdb) quit

burger$

Sad. It doesn’t work because GDB doesn’t know where the executable lives. So, let’s
try again, by invoking GDB directly on the executable:

burger$ gdb .libs/hell

GNU gdb 5.3 (i386-unknown-netbsd)

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License,

and you are welcome to change it and/or distribute copies of it

under certain conditions. Type "show copying" to see the conditions.

There is no warranty for GDB. Type "show warranty" for details.

(gdb) break main

Breakpoint 1 at 0x8048547: file main.c, line 29.

(gdb) run

Starting program: /home/src/libtool/demo/.libs/hell

/home/src/libtool/demo/.libs/hell: can't load library 'libhello.so.0'

Program exited with code 020.

(gdb) quit

mailto:bug-libtool@gnu.org

Chapter 3: Using libtool 11

burger$

Argh. Now GDB complains because it cannot find the shared library that hell is linked
against. So, we must use libtool to properly set the library path and run the debugger.
Fortunately, we can forget all about the .libs directory, and just run it on the executable
wrapper (see Section 4.3 [Execute mode], page 22):

burger$ libtool --mode=execute gdb hell

GNU gdb 5.3 (i386-unknown-netbsd)

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License,

and you are welcome to change it and/or distribute copies of it

under certain conditions. Type "show copying" to see the conditions.

There is no warranty for GDB. Type "show warranty" for details.

(gdb) break main

Breakpoint 1 at 0x8048547: file main.c, line 29.

(gdb) run

Starting program: /home/src/libtool/demo/.libs/hell

Breakpoint 1, main (argc=1, argv=0xbffffc40) at main.c:29

29 printf ("Welcome to GNU Hell!\n");

(gdb) quit

The program is running. Quit anyway (and kill it)? (y or n) y

burger$

3.5 Installing libraries

Installing libraries on a non-libtool system is quite straightforward. . . just copy them into
place:4

burger$ su

Password: ********

burger# cp libhello.a /usr/local/lib/libhello.a

burger#

Oops, don’t forget the ranlib command:

burger# ranlib /usr/local/lib/libhello.a

burger#

Libtool installation is quite simple, as well. Just use the install or cp command that
you normally would (see Section 4.4 [Install mode], page 22):

a23# libtool --mode=install cp libhello.la /usr/local/lib/libhello.la

cp libhello.la /usr/local/lib/libhello.la

cp .libs/libhello.a /usr/local/lib/libhello.a

ranlib /usr/local/lib/libhello.a

a23#

Note that the libtool library libhello.la is also installed, to help libtool with unin-
stallation (see Section 4.6 [Uninstall mode], page 23) and linking (see Section 3.3 [Linking

4 Don’t strip static libraries though, or they will be unusable.

Chapter 3: Using libtool 12

executables], page 7) and to help programs with dlopening (see Chapter 10 [Dlopened mod-
ules], page 49).

Here is the shared library example:

burger# libtool --mode=install install -c libhello.la \

/usr/local/lib/libhello.la

install -c .libs/libhello.so.0.0 /usr/local/lib/libhello.so.0.0

install -c libhello.la /usr/local/lib/libhello.la

install -c .libs/libhello.a /usr/local/lib/libhello.a

ranlib /usr/local/lib/libhello.a

burger#

It is safe to specify the -s (strip symbols) flag if you use a BSD-compatible install
program when installing libraries. Libtool will either ignore the -s flag, or will run a
program that will strip only debugging and compiler symbols from the library.

Once the libraries have been put in place, there may be some additional configuration
that you need to do before using them. First, you must make sure that where the library
is installed actually agrees with the -rpath flag you used to build it.

Then, running ‘libtool -n finish libdir’ can give you further hints on what to do
(see Section 4.5 [Finish mode], page 23):

burger# libtool -n finish /usr/local/lib

PATH="$PATH:/sbin" ldconfig -m /usr/local/lib

Libraries have been installed in:

/usr/local/lib

To link against installed libraries in a given directory, LIBDIR,

you must use the '-LLIBDIR' flag during linking.

You will also need to do one of the following:

- add LIBDIR to the 'LD_LIBRARY_PATH' environment variable

during execution

- add LIBDIR to the 'LD_RUN_PATH' environment variable

during linking

- use the '-RLIBDIR' linker flag

See any operating system documentation about shared libraries for

more information, such as the ld and ld.so manual pages.

burger#

After you have completed these steps, you can go on to begin using the installed libraries.
You may also install any executables that depend on libraries you created.

3.6 Installing executables

If you used libtool to link any executables against uninstalled libtool libraries (see Section 3.3
[Linking executables], page 7), you need to use libtool to install the executables after the
libraries have been installed (see Section 3.5 [Installing libraries], page 11).

Chapter 3: Using libtool 13

So, for our Ultrix example, we would run:

a23# libtool --mode=install install -c hell /usr/local/bin/hell

install -c hell /usr/local/bin/hell

a23#

On shared library systems that require wrapper scripts, libtool just ignores the wrapper
script and installs the correct binary:

burger# libtool --mode=install install -c hell /usr/local/bin/hell

install -c .libs/hell /usr/local/bin/hell

burger#

3.7 Linking static libraries

Why return to ar and ranlib silliness when you’ve had a taste of libtool? Well, sometimes
it is desirable to create a static archive that can never be shared. The most frequent case is
when you have a set of object files that you use to build several different libraries. You can
create a “convenience library” out of those objects, and link against that with the other
libraries, instead of listing all the object files every time.

If you just want to link this convenience library into programs, then you could just
ignore libtool entirely, and use the old ar and ranlib commands (or the corresponding
GNU Automake ‘_LIBRARIES’ rules). You can even install a convenience library using
GNU Libtool, though you probably don’t want to and hence GNU Automake doesn’t allow
you to do so.

burger$ libtool --mode=install ./install-sh -c libhello.a \

/local/lib/libhello.a

./install-sh -c libhello.a /local/lib/libhello.a

ranlib /local/lib/libhello.a

burger$

Using libtool for static library installation protects your library from being accidentally
stripped (if the installer used the -s flag), as well as automatically running the correct
ranlib command.

But libtool libraries are more than just collections of object files: they can also carry
library dependency information, which old archives do not. If you want to create a libtool
static convenience library, you can omit the -rpath flag and use -static to indicate that
you’re only interested in a static library. When you link a program with such a library,
libtool will actually link all object files and dependency libraries into the program.

If you omit both -rpath and -static, libtool will create a convenience library that can
be used to create other libtool libraries, even shared ones. Just like in the static case, the
library behaves as an alias to a set of object files and dependency libraries, but in this case
the object files are suitable for inclusion in shared libraries. But be careful not to link a
single convenience library, directly or indirectly, into a single program or library, otherwise
you may get errors about symbol redefinitions.

The key is remembering that a convenience library contains PIC objects, and can be
linked where a list of PIC objects makes sense; i.e. into a shared library. A static convenience
library contains non-PIC objects, so can be linked into an old static library, or a program.

Chapter 3: Using libtool 14

When GNU Automake is used, you should use noinst_LTLIBRARIES instead of lib_
LTLIBRARIES for convenience libraries, so that the -rpath option is not passed when they
are linked.

As a rule of thumb, link a libtool convenience library into at most one libtool library,
and never into a program, and link libtool static convenience libraries only into programs,
and only if you need to carry library dependency information to the user of the static
convenience library.

Another common situation where static linking is desirable is in creating a standalone
binary. Use libtool to do the linking and add the -all-static flag.

15

4 Invoking libtool

The libtool program has the following synopsis:

libtool [option]... [mode-arg]...

and accepts the following options:

--config Display libtool configuration variables and exit.

--debug Dump a trace of shell script execution to standard output. This produces a lot
of output, so you may wish to pipe it to less (or more) or redirect to a file.

-n

--dry-run

Don’t create, modify, or delete any files, just show what commands would be
executed by libtool.

--features

Display basic configuration options. This provides a way for packages to deter-
mine whether shared or static libraries will be built.

--finish Same as --mode=finish.

-h Display short help message.

--help Display a help message and exit. If --mode=mode is specified, then detailed help
for mode is displayed.

--help-all

Display help for the general options as well as detailed help for each operation
mode, and exit.

--mode=mode

Use mode as the operation mode. When using libtool from the command line,
you can give justmode (or a unique abbreviation of it) as the first argument as a
shorthand for the full --mode=mode. For example, the following are equivalent:

$ libtool --mode=execute --dry-run gdb prog.exe

$ libtool execute --dry-run gdb prog.exe

$ libtool exe --dry-run gdb prog.exe

$ libtool e --dry-run gdb prog.exe

mode must be set to one of the following:

compile Compile a source file into a libtool object.

execute Automatically set the library path so that another program can use
uninstalled libtool-generated programs or libraries.

link Create a library or an executable.

install Install libraries or executables.

finish Complete the installation of libtool libraries on the system.

uninstall

Delete installed libraries or executables.

Chapter 4: Invoking libtool 16

clean Delete uninstalled libraries or executables.

--tag=tag

Use configuration variables from tag tag (see Section 6.2 [Tags], page 40).

--preserve-dup-deps

Do not remove duplicate dependencies in libraries. When building packages
with static libraries, the libraries may depend circularly on each other (shared
libs can too, but for those it doesn’t matter), so there are situations, where -la
-lb -la is required, and the second -la may not be stripped or the link will fail.
In cases where these duplications are required, this option will preserve them,
only stripping the libraries that libtool knows it can safely.

--quiet

--silent Do not print out any progress or informational messages.

-v

--verbose

Print out progress and informational messages (enabled by default), as well as
additional messages not ordinary seen by default.

--no-quiet

--no-silent

Print out the progress and informational messages that are seen by default.
This option has no effect on whether the additional messages seen in --verbose

mode are shown.

--no-verbose

Do not print out any additional informational messages beyond those ordinarily
seen by default. This option has no effect on whether the ordinary progress and
informational messages enabled by --no-quiet are shown.

Thus, there are now three different message levels (not counting --debug),
depending on whether the normal messages and/or the additional verbose mes-
sages are displayed. Note that there is no mechanism to display verbose mes-
sages, without also displaying normal messages.

default Normal messages are displayed, verbose messages are not displayed.
In addition to being the default mode, it can be forcibly achieved by
using both option --no-verbose and either option --no-silent or
option --no-quiet.

silent Neither normal messages nor verbose messages are displayed. This
mode can be achieved using either option --silent or option
--quiet.

verbose Both normal messages and verbose messages are displayed. This
mode can be achieved using either option -v or option --verbose.

--version

Print libtool version information and exit.

Chapter 4: Invoking libtool 17

-W

--warnings=CATEGORY

Report the warnings falling in category CATEGORY. The default category is
all. To disable warnings, use the category none.

The current libtool implementation is done with a shell script that needs to be in-
voked by the shell that configure chose for configuring libtool (see Section “config.status
Invocation” in The Autoconf Manual). This shell is set in the she-bang (‘#!’) line of the
libtool script. Using a different shell may cause undefined behavior.

The mode-args are a variable number of arguments, depending on the selected operation
mode. In general, each mode-arg is interpreted by programs libtool invokes, rather than
libtool itself.

4.1 Compile mode

For compile mode, mode-args is a compiler command to be used in creating a “standard”
object file. These arguments should begin with the name of the C compiler, and contain
the -c compiler flag so that only an object file is created.

Libtool determines the name of the output file by removing the directory component
from the source file name, then substituting the source code suffix (e.g. ‘.c’ for C source
code) with the library object suffix, ‘.lo’.

If shared libraries are being built, any necessary PIC generation flags are substituted
into the compilation command.

The following components of mode-args are treated specially:

-o Note that the -o option is now fully supported. It is emulated on the platforms
that don’t support it (by locking and moving the objects), so it is really easy
to use libtool, just with minor modifications to your Makefiles. Typing for
example

libtool --mode=compile gcc -c foo/x.c -o foo/x.lo

will do what you expect.

Note, however, that, if the compiler does not support -c and -o, it is impossible
to compile foo/x.c without overwriting an existing ./x.o. Therefore, if you
do have a source file ./x.c, make sure you introduce dependencies in your
Makefile to make sure ./x.o (or ./x.lo) is re-created after any sub-directory’s
x.lo:

x.o x.lo: foo/x.lo bar/x.lo

This will also ensure that make won’t try to use a temporarily corrupted x.o to
create a program or library. It may cause needless recompilation on platforms
that support -c and -o together, but it’s the only way to make it safe for those
that don’t.

-no-suppress

If both PIC and non-PIC objects are being built, libtool will normally suppress
the compiler output for the PIC object compilation to save showing very similar,
if not identical duplicate output for each object. If the -no-suppress option is
given in compile mode, libtool will show the compiler output for both objects.

Chapter 4: Invoking libtool 18

-prefer-pic

Libtool will try to build only PIC objects.

-prefer-non-pic

Libtool will try to build only non-PIC objects.

-shared Even if Libtool was configured with --enable-static, the object file Libtool
builds will not be suitable for static linking. Libtool will signal an error if it
was configured with --disable-shared, or if the host does not support shared
libraries.

-static Even if libtool was configured with --disable-static, the object file Libtool
builds will be suitable for static linking.

-Wc,flag

-Xcompiler flag

Pass a flag directly to the compiler. With -Wc,, multiple flags may be separated
by commas, whereas -Xcompiler passes through commas unchanged.

4.2 Link mode

Link mode links together object files (including library objects) to form another library or
to create an executable program.

mode-args consist of a command using the C compiler to create an output file (with the
-o flag) from several object files.

The following components of mode-args are treated specially:

-all-static

If output-file is a program, then do not link it against any shared libraries at all.
If output-file is a library, then only create a static library. In general, this flag
cannot be used together with ‘disable-static’ (see Section 5.4.1 [LT INIT],
page 28).

-avoid-version

Tries to avoid versioning (see Chapter 7 [Versioning], page 42) for libraries and
modules, i.e. no version information is stored and no symbolic links are created.
If the platform requires versioning, this option has no effect.

-bindir Pass the absolute name of the directory for installing executable programs (see
Section “Directory Variables” in The GNU Coding Standards). libtool may
use this value to install shared libraries there on systems that do not provide
for any library hardcoding and use the directory of a program and the PATH

variable as library search path. This is typically used for DLLs on Windows or
other systems using the PE (Portable Executable) format. On other systems,
-bindir is ignored. The default value used is libdir/../bin for libraries
installed to libdir. You should not use -bindir for modules.

-dlopen file

Same as -dlpreopen file, if native dlopening is not supported on the host
platform (see Chapter 10 [Dlopened modules], page 49) or if the program is
linked with -static, -static-libtool-libs, or -all-static. Otherwise, no

Chapter 4: Invoking libtool 19

effect. If file is self Libtool will make sure that the program can dlopen itself,
either by enabling -export-dynamic or by falling back to -dlpreopen self.

-dlpreopen file

Link file into the output program, and add its symbols to the list of preloaded
symbols (see Section 10.2 [Dlpreopening], page 50). If file is self, the symbols
of the program itself will be added to preloaded symbol lists. If file is force

Libtool will make sure that a preloaded symbol list is always defined, regardless
of whether it’s empty or not.

-export-dynamic

Allow symbols from output-file to be resolved with dlsym (see Chapter 10
[Dlopened modules], page 49).

-export-symbols symfile

Tells the linker to export only the symbols listed in symfile. The symbol file
should end in .sym and must contain the name of one symbol per line. This
option has no effect:

• on static libraries, and

• on shared libraries on some platforms, such as AIX and Haiku.

By default all symbols are exported.

-export-symbols-regex regex

Same as -export-symbols, except that only symbols matching the regular
expression regex are exported. By default all symbols are exported.

-Llibdir Search libdir for required libraries that have already been installed.

-lname output-file requires the installed library libname. This option is required even
when output-file is not an executable.

-module Creates a library that can be dlopened (see Chapter 10 [Dlopened modules],
page 49). This option doesn’t work for programs. Module names don’t need
to be prefixed with ‘lib’. In order to prevent name clashes, however, libname
and name must not be used at the same time in your package.

-no-fast-install

Disable fast-install mode for the executable output-file. Useful if the program
won’t be necessarily installed.

-no-install

Link an executable output-file that can’t be installed and therefore doesn’t need
a wrapper script on systems that allow hardcoding of library paths. Useful if
the program is only used in the build tree, e.g., for testing or generating other
files.

-no-undefined

Declare that output-file does not depend on any libraries other than the ones
listed on the command line, i.e., after linking, it will not have unresolved sym-
bols. Some platforms require all symbols in shared libraries to be resolved at
library creation (see Chapter 9 [Inter-library dependencies], page 48), and using
this parameter allows libtool to assume that this will not happen.

Chapter 4: Invoking libtool 20

-o output-file

Create output-file from the specified objects and libraries.

-objectlist file

Use a list of object files found in file to specify objects.

-os2dllname name

Use this to change the DLL base name on OS/2 to name, to keep within the 8
character base name limit on this system.

-precious-files-regex regex

Prevents removal of files from the temporary output directory whose names
match this regular expression. You might specify ‘\.bbg?$’ to keep those files
created with gcc -ftest-coverage for example.

-release release

Specify that the library was generated by release release of your package, so that
users can easily tell what versions are newer than others. Be warned that no
two releases of your package will be binary compatible if you use this flag. If you
want binary compatibility, use the -version-info flag instead (see Chapter 7
[Versioning], page 42).

-rpath libdir

If output-file is a library, it will eventually be installed in libdir. If output-file
is a program, add libdir to the run-time path of the program. On platforms
that don’t support hardcoding library paths into executables and only search
PATH for shared libraries, such as when output-file is a Windows (or other PE
platform) DLL, the .la control file will be installed in libdir, but see -bindir

above for the eventual destination of the .dll or other library file itself.

-R libdir If output-file is a program, add libdir to its run-time path. If output-file is a
library, add -Rlibdir to its dependency libs, so that, whenever the library is
linked into a program, libdir will be added to its run-time path.

-shared If output-file is a program, then link it against any uninstalled shared libtool
libraries (this is the default behavior). If output-file is a library, then only create
a shared library. In the later case, libtool will signal an error if it was configured
with --disable-shared, or if the host does not support shared libraries.

-shrext suffix

If output-file is a libtool library, replace the system’s standard file name exten-
sion for shared libraries with suffix (most systems use .so here). This option
is helpful in certain cases where an application requires that shared libraries
(typically modules) have an extension other than the default one. Please note
you must supply the full file name extension including any leading dot.

-static If output-file is a program, then do not link it against any uninstalled shared
libtool libraries. If output-file is a library, then only create a static library.

-static-libtool-libs

If output-file is a program, then do not link it against any shared libtool li-
braries. If output-file is a library, then only create a static library.

Chapter 4: Invoking libtool 21

-version-info current[:revision[:age]]

If output-file is a libtool library, use interface version information current,
revision, and age to build it (see Chapter 7 [Versioning], page 42). Do not
use this flag to specify package release information, rather see the -release

flag.

-version-number major[:minor[:revision]]

If output-file is a libtool library, compute interface version information so that
the resulting library uses the specified major, minor and revision numbers. This
is designed to permit libtool to be used with existing projects where identical
version numbers are already used across operating systems. New projects should
use the -version-info flag instead.

-weak libname

if output-file is a libtool library, declare that it provides a weak libname inter-
face. This is a hint to libtool that there is no need to append libname to the
list of dependency libraries of output-file, because linking against output-file
already supplies the same interface (see Section 10.3 [Linking with dlopened
modules], page 52).

-Wc,flag

-Xcompiler flag

Pass a linker-specific flag directly to the compiler. With -Wc,, multiple flags
may be separated by commas, whereas -Xcompiler passes through commas
unchanged.

-Wa,flag

-Xassembler flag

Pass a linker-specific flag directly to the assembler. With -Wa,, multiple flags
may be separated by commas, whereas -Xassembler passes through commas
unchanged.

-Wl,flag

-Xlinker flag

Pass a linker-specific flag directly to the linker.

-XCClinker flag

Pass a link-specific flag to the compiler driver (CC) during linking.

If the output-file ends in .la, then a libtool library is created, which must be built only
from library objects (.lo files). The -rpath option is required. In the current implementa-
tion, libtool libraries may not depend on other uninstalled libtool libraries (see Chapter 9
[Inter-library dependencies], page 48).

If the output-file ends in .a, then a standard library is created using ar and possibly
ranlib.

If output-file ends in .o or .lo, then a reloadable object file is created from the input
files (generally using ‘ld -r’). This method is often called partial linking.

Otherwise, an executable program is created.

Chapter 4: Invoking libtool 22

4.3 Execute mode

For execute mode, the library path is automatically set, then a program is executed.

The first of the mode-args is treated as a program name, with the rest as arguments to
that program.

The following components of mode-args are treated specially:

-dlopen file

Add the directory containing file to the library path.

This mode sets the library path environment variable according to any -dlopen flags.

If any of the args are libtool executable wrappers, then they are translated into the name
of their corresponding uninstalled binary, and any of their required library directories are
added to the library path.

4.4 Install mode

In install mode, libtool interprets most of the elements of mode-args as an installation
command beginning with cp, or a BSD-compatible install program.

The following components of mode-args are treated specially:

-inst-prefix-dir inst-prefix-dir

When installing into a temporary staging area, rather than the final prefix,
this argument is used to reflect the temporary path, in much the same way
automake uses DESTDIR. For instance, if prefix is /usr/local, but inst-prefix-
dir is /tmp, then the object will be installed under /tmp/usr/local/. If the
installed object is a libtool library, then the internal fields of that library will
reflect only prefix, not inst-prefix-dir:

Directory that this library needs to be installed in:

libdir='/usr/local/lib'

not

Directory that this library needs to be installed in:

libdir='/tmp/usr/local/lib'

inst-prefix is also used to ensure that if the installed object must be re-
linked upon installation, that it is relinked against the libraries in inst-prefix-
dir/prefix, not prefix.

In truth, this option is not really intended for use when calling libtool di-
rectly; it is automatically used when libtool --mode=install calls libtool
--mode=relink. Libtool does this by analyzing the destination path given in
the original libtool --mode=install command and comparing it to the ex-
pected installation path established during libtool --mode=link.

Thus, end-users need change nothing, and automake-style make install

DESTDIR=/tmp will Just Work(tm) most of the time. For systems where fast
installation cannot be turned on, relinking may be needed. In this case, a
‘DESTDIR’ install will fail.

Currently it is not generally possible to install into a temporary staging area
that contains needed third-party libraries that are not yet visible at their final
location.

Chapter 4: Invoking libtool 23

The rest of the mode-args are interpreted as arguments to the cp or install command.

The command is run, and any necessary unprivileged post-installation commands are
also completed.

4.5 Finish mode

Finish mode has two functions. One is to help system administrators install libtool libraries
so that they can be located and linked into user programs. To invoke this functionality, pass
the name of a library directory as mode-arg. Running this command may require superuser
privileges, and the --dry-run option may be useful.

The second is to facilitate transferring libtool libraries to a native compilation environ-
ment after they were built in a cross-compilation environment. Cross-compilation environ-
ments may rely on recent libtool features, and running libtool in finish mode will make it
easier to work with older versions of libtool. This task is performed whenever the mode-arg
is a .la file.

4.6 Uninstall mode

Uninstall mode deletes installed libraries, executables and objects.

The first mode-arg is the name of the program to use to delete files (typically /bin/rm).

The remaining mode-args are either flags for the deletion program (beginning with a
‘-’), or the names of files to delete.

4.7 Clean mode

Clean mode deletes uninstalled libraries, executables, objects and libtool’s temporary files
associated with them.

The first mode-arg is the name of the program to use to delete files (typically /bin/rm).

The remaining mode-args are either flags for the deletion program (beginning with a
‘-’), or the names of files to delete.

24

5 Integrating libtool with your package

This chapter describes how to integrate libtool with your packages so that your users can
install hassle-free shared libraries.

There are several ways that Libtool may be integrated in your package, described in
the following sections. Typically, the Libtool macro files as well as ltmain.sh are copied
into your package using libtoolize and aclocal after setting up the configure.ac and
toplevel Makefile.am, then autoconf adds the needed tests to the configure script. These
individual steps are often automated with autoreconf.

Here is a diagram showing how such a typical Libtool configuration works when preparing
a package for distribution, assuming that m4 has been chosen as the location for additional
Autoconf macros, and build-aux as the location for auxiliary build tools (see Section “The
Autoconf Manual” in The Autoconf Manual):

libtool.m4 -----. .--> aclocal.m4 -----.

ltoptions.m4 ---+ .-> aclocal* -+ +--> autoconf*

ltversion.m4 ---+--+ `--> [copy in m4/] --+ |

ltsugar.m4 -----+ | ^ | \/

lt~obsolete.m4 -+ +-> libtoolize* -----' | configure

[ltdl.m4] ------+ | |

`----------------------------------'

ltmain.sh -----------> libtoolize* -> [copy in build-aux/]

During configuration, the libtool script is generated either through config.status or
config.lt:

.--> config.status* --.

configure* --+ +--> libtool

`--> [config.lt*] ----' ^

|

ltmain.sh --------------------------------'

At make run time, libtool is then invoked as needed as a wrapper around compilers,
linkers, install and cleanup programs.

There are alternatives choices to several parts of the setup; for example, the Libtool
macro files can either be copied or symlinked into the package, or copied into aclocal.m4.
As another example, an external, pre-configured libtool script may be used, by-passing
most of the tests and package-specific setup for Libtool.

5.1 Autoconf macros exported by libtool

Libtool uses a number of macros to interrogate the host system when it is being built, and
you can use some of them yourself too. Although there are a great many other macros
in the libtool installed m4 files, these do not form part of the published interface, and are
subject to change between releases.

Macros in the ‘LT_CMD_’ namespace check for various shell commands:

Chapter 5: Integrating libtool with your package 25

[Macro]LT_CMD_MAX_LEN
Finds the longest command line that can be safely passed to ‘$SHELL’ without being
truncated, and store in the shell variable ‘$max_cmd_len’. It is only an approximate
value, but command lines of this length or shorter are guaranteed not to be truncated.

Macros in the ‘LT_FUNC_’ namespace check characteristics of library functions:

[Macro]LT_FUNC_DLSYM_USCORE
‘AC_DEFINE’ the preprocessor symbol ‘DLSYM_USCORE’ if we have to add an underscore
to symbol-names passed in to ‘dlsym’.

Macros in the ‘LT_LIB_’ namespace check characteristics of system libraries:

[Macro]LT_LIB_M
Set ‘LIBM’ to the math library or libraries required on this machine, if any.

[Macro]LT_LIB_DLLOAD
This is the macro used by ‘libltdl’ to determine what dlloaders to use on this ma-
chine, if any. Several shell variables are set (and ‘AC_SUBST’ed) depending on the
dlload interfaces are available on this machine. ‘LT_DLLOADERS’ contains a list of
libtool libraries that can be used, and if necessary also sets ‘LIBADD_DLOPEN’ if addi-
tional system libraries are required by the ‘dlopen’ loader, and ‘LIBADD_SHL_LOAD’
if additional system libraries are required by the ‘shl_load’ loader, respectively. Fi-
nally some symbols are set in config.h depending on the loaders that are found to
work: ‘HAVE_LIBDL’, ‘HAVE_SHL_LOAD’, ‘HAVE_DYLD’, ‘HAVE_DLD’.

Macros in the ‘LT_PATH_’ namespace search the system for the full path to particular system
commands:

[Macro]LT_PATH_LD
Add a --with-gnu-ld option to configure. Try to find the path to the linker used
by ‘$CC’, and whether it is the GNU linker. The result is stored in the shell variable
‘$LD’, which is AC_SUBSTed.

[Macro]LT_PATH_NM
Try to find a BSD-compatible nm or a MS-compatible dumpbin command on this
machine. The result is stored in the shell variable ‘$NM’, which is AC_SUBSTed.

Macros in the ‘LT_SYS_’ namespace probe for system characteristics:

[Macro]LT_SYS_DLOPEN_SELF
Tests whether a program can dlopen itself, and then also whether the same program
can still dlopen itself when statically linked. Results are stored in the shell variables
‘$enable_dlopen_self’ and ‘enable_dlopen_self_static’ respectively.

[Macro]LT_SYS_DLOPEN_DEPLIBS
Define the preprocessor symbol ‘LTDL_DLOPEN_DEPLIBS’ if the OS needs help to load
dependent libraries for ‘dlopen’ (or equivalent).

[Macro]LT_SYS_DLSEARCH_PATH
Define the preprocessor symbol ‘LT_DLSEARCH_PATH’ to the system default library
search path.

Chapter 5: Integrating libtool with your package 26

[Macro]LT_SYS_MODULE_EXT
Define the preprocessor symbol ‘LT_MODULE_EXT’ to the extension used for runtime
loadable modules. If you use libltdl to open modules, then you can simply use the
libtool library extension, .la.

[Macro]LT_SYS_MODULE_PATH
Define the preprocessor symbol ‘LT_MODULE_PATH_VAR’ to the name of the shell envi-
ronment variable that determines the run-time module search path.

[Macro]LT_SYS_SYMBOL_USCORE
Set the shell variable ‘sys_symbol_underscore’ to ‘no’ unless the compiler prefixes
global symbols with an underscore.

5.2 Writing Makefile rules for libtool

Libtool is fully integrated with Automake (see Section “Introduction” in The Automake
Manual), starting with Automake version 1.2.

If you want to use libtool in a regular Makefile (or Makefile.in), you are on your own.
If you’re not using Automake, and you don’t know how to incorporate libtool into your
package you need to do one of the following:

1. Download the latest Automake distribution from your nearest GNU mirror, install it,
and start using it.

2. Learn how to write Makefile rules by hand. They’re sometimes complex, but if you’re
clever enough to write rules for compiling your old libraries, then you should be able
to figure out new rules for libtool libraries (hint: examine the Makefile.in in the
tests/demo subdirectory of the libtool distribution. . . note especially that it was au-
tomatically generated from the Makefile.am by Automake).

5.3 Using Automake with libtool

Libtool library support is implemented under the ‘LTLIBRARIES’ primary.

Here are some samples from the Automake Makefile.am in the libtool distribution’s
demo subdirectory.

First, to link a program against a libtool library, just use the ‘program_LDADD’1 variable:

bin_PROGRAMS = hell hell_static

Build hell from main.c and libhello.la

hell_SOURCES = main.c

hell_LDADD = libhello.la

1 Since GNU Automake 1.5, the flags -dlopen or -dlpreopen (see Section 4.2 [Link mode], page 18)
can be employed with the ‘program_LDADD’ variable. Unfortunately, older releases didn’t accept these
flags, so if you are stuck with an ancient Automake, we recommend quoting the flag itself, and setting
‘program_DEPENDENCIES’ too:

program_LDADD = "-dlopen" libfoo.la

program_DEPENDENCIES = libfoo.la

Chapter 5: Integrating libtool with your package 27

Create a statically linked version of hell.

hell_static_SOURCES = main.c

hell_static_LDADD = libhello.la

hell_static_LDFLAGS = -static

You may use the ‘program_LDFLAGS’ variable to stuff in any flags you want to pass to
libtool while linking program (such as -static to avoid linking uninstalled shared libtool
libraries).

Building a libtool library is almost as trivial. . . note the use of ‘libhello_la_LDFLAGS’
to pass the -version-info (see Chapter 7 [Versioning], page 42) option to libtool:

Build a libtool library, libhello.la for installation in libdir.

lib_LTLIBRARIES = libhello.la

libhello_la_SOURCES = hello.c foo.c

libhello_la_LDFLAGS = -version-info 3:12:1

The -rpath option is passed automatically by Automake (except for libraries listed as
noinst_LTLIBRARIES), so you should not specify it.

See Section “The Automake Manual” in The Automake Manual, for more information.

When building libtool archives which depend on built sources (for example a generated
header file), you may find it necessary to manually record these dependencies. Because
libtool archives generate object file names manually recording these dependencies is not as
straightforward as the examples in Automake’s manual describe. This affects header files
in particular, because simply listing them as ‘nodist_libfoo_la_SOURCES’ will not cause
Automake to establish a dependent relationship for the object files of libfoo.la. A useful
trick (although somewhat imprecise) is to manually record built sources used by a libtool
archive as dependencies of all the objects for that library as shown below (as opposed to a
particular object file):

Build a libtool library, libhello.la which depends on a generated header.

hello.h:

echo '#define HELLO_MESSAGE "Hello, World!"' > $@

BUILT_SOURCES = hello.h

CLEANFILES = hello.h

nodist_libhello_la_SOURCES = hello.h

libhello_la_SOURCES = hello.c foo.h foo.c bar.h bar.c

Manually record hello.h as a prerequisite for all objects in libhello.la

$(libhello_la_OBJECTS): hello.h

See Section “The Automake Manual” in The Automake Manual, for more information.

5.4 Configuring libtool

Libtool requires intimate knowledge of your compiler suite and operating system to be able
to create shared libraries and link against them properly. When you install the libtool
distribution, a system-specific libtool script is installed into your binary directory.

However, when you distribute libtool with your own packages (see Section 5.5 [Distribut-
ing], page 35), you do not always know the compiler suite and operating system that are
used to compile your package.

Chapter 5: Integrating libtool with your package 28

For this reason, libtool must be configured before it can be used. This idea should be
familiar to anybody who has used a GNU configure script. configure runs a number of
tests for system features, then generates the Makefiles (and possibly a config.h header
file), after which you can run make and build the package.

Libtool adds its own tests to your configure script to generate a libtool script for the
installer’s host machine.

5.4.1 The LT_INIT macro

If you are using GNU Autoconf (or Automake), you should add a call to LT_INIT to your
configure.ac file. This macro adds many new tests to the configure script so that
the generated libtool script will understand the characteristics of the host. It’s the most
important of a number of macros defined by Libtool:

[Macro]LT_PREREQ (version)
Ensure that a recent enough version of Libtool is being used. If the version of Libtool
used for LT_INIT is earlier than version, print an error message to the standard error
output and exit with failure (exit status is 63). For example:

LT_PREREQ([2.5.3])

[Macro]LT_INIT (options)
[Macro]AC_PROG_LIBTOOL
[Macro]AM_PROG_LIBTOOL

Add support for the --enable-shared, --disable-shared, --enable-static,
--disable-static, --enable-pic, and --disable-pic configure flags.2

AC_PROG_LIBTOOL and AM_PROG_LIBTOOL are deprecated names for older versions of
this macro; autoupdate will upgrade your configure.ac files.

By default, this macro turns on shared libraries if they are available, and also enables
static libraries if they don’t conflict with the shared libraries. You can modify these
defaults by passing either disable-shared or disable-static in the option list to
LT_INIT, or using AC_DISABLE_SHARED or AC_DISABLE_STATIC.

Turn off shared libraries during beta-testing, since they

make the build process take too long.

LT_INIT([disable-shared])

The user may specify modified forms of the configure flags --enable-shared and
--enable-static to choose whether shared or static libraries are built based on the
name of the package. For example, to have shared ‘bfd’ and ‘gdb’ libraries built, but
not shared ‘libg++’, you can run all three configure scripts as follows:

trick$./configure --enable-shared=bfd,gdb

In general, specifying --enable-shared=pkgs is the same as configuring with
--enable-shared every package named in the comma-separated pkgs list, and every
other package with --disable-shared. The --enable-static=pkgs flag behaves
similarly, but it uses --enable-static and --disable-static. The same applies

2 LT_INIT requires that you define the Makefile variable top_builddir in your Makefile.in. Automake
does this automatically, but Autoconf users should set it to the relative path to the top of your build
directory (../.., for example).

Chapter 5: Integrating libtool with your package 29

to the --enable-fast-install=pkgs flag, which uses --enable-fast-install and
--disable-fast-install.

The package name ‘default’ matches any packages that have not set their name in
the PACKAGE environment variable.

The --enable-pic and --disable-pic configure flags can be used to specify whether
or not libtool uses PIC objects. By default, libtool uses PIC objects for shared
libraries and non-PIC objects for static libraries. The --enable-pic option also
accepts a comma-separated list of package names. Specifying --enable-pic=pkgs is
the same as configuring every package in pkgs with --enable-pic and every other
package with the default configuration. The package name ‘default’ is treated the
same as for --enable-shared and --enable-static.

This macro also sets the shell variable LIBTOOL_DEPS, that you can use to automati-
cally update the libtool script if it becomes out-of-date. In order to do that, add to
your configure.ac:

LT_INIT

AC_SUBST([LIBTOOL_DEPS])

and, to Makefile.in or Makefile.am:

LIBTOOL_DEPS = @LIBTOOL_DEPS@

libtool: $(LIBTOOL_DEPS)

$(SHELL) ./config.status libtool

If you are using GNU Automake, you can omit the assignment, as Automake will take
care of it. You’ll obviously have to create some dependency on libtool.

Aside from disable-static and disable-shared, there are other options that you
can pass to LT_INIT to modify its behaviour. Here is a full list:

‘dlopen’ Enable checking for dlopen support. This option should be used if the
package makes use of the -dlopen and -dlpreopen libtool flags, otherwise
libtool will assume that the system does not support dlopening.

‘win32-dll’
This option should be used if the package has been ported to build
clean dlls on win32 platforms. Usually this means that any library data
items are exported with __declspec(dllexport) and imported with __

declspec(dllimport). If this option is not used, libtool will assume that
the package libraries are not dll clean and will build only static libraries
on win32 hosts.

Provision must be made to pass -no-undefined to libtool in link mode
from the package Makefile. Naturally, if you pass -no-undefined, you
must ensure that all the library symbols really are defined at link time!

‘aix-soname=aix’
‘aix-soname=svr4’
‘aix-soname=both’

Enable the --enable-aix-soname to configure, which the user can pass
to override the given default.

By default (and always in releases prior to 2.4.4), Libtool always behaves
as if aix-soname=aix is given, with no configure option for the user to

Chapter 5: Integrating libtool with your package 30

override. Specifically, when the -brtl linker flag is seen in LDFLAGS at
build-time, static archives are built from static objects only, otherwise,
traditional AIX shared library archives of shared objects using in-archive
versioning are built (with the .a file extension!). Similarly, with -brtl in
LDFLAGS, libtool shared archives are built from shared objects, without
any filename-based versioning; and without -brtl no shared archives are
built at all.

When aix-soname=svr4 option is given, or the --enable-aix-

soname=svr4 configure option is passed, static archives are always
created from static objects, even without -brtl in LDFLAGS. Shared
archives are made from shared objects, and filename based versioning is
enabled.

When aix-soname=both option is given, or the --enable-aix-

soname=svr4 configure option is passed, static archives are built
traditionally (as aix-soname=aix), and both kinds of shared archives
are built. The .la pseudo-archive specifies one or the other depending
on whether -brtl is specified in LDFLAGS when the library is built.

‘disable-fast-install’
Change the default behaviour for LT_INIT to disable optimization for
fast installation. The user may still override this default, depending on
platform support, by specifying --enable-fast-install to configure.

‘shared’ Change the default behaviour for LT_INIT to enable shared libraries.
This is the default on all systems where Libtool knows how to create
shared libraries. The user may still override this default by specifying
--disable-shared to configure.

‘disable-shared’
Change the default behaviour for LT_INIT to disable shared libraries.
The user may still override this default by specifying --enable-shared

to configure.

‘static’ Change the default behaviour for LT_INIT to enable static libraries. This
is the default on all systems where shared libraries have been disabled
for some reason, and on most systems where shared libraries have been
enabled. If shared libraries are enabled, the user may still override this
default by specifying --disable-static to configure.

‘disable-static’
Change the default behaviour for LT_INIT to disable static libraries. The
user may still override this default by specifying --enable-static to
configure.

‘pic-only’
Change the default behaviour for libtool to try to use only PIC objects.
The user may still override this default by specifying --disable-pic to
configure.

Chapter 5: Integrating libtool with your package 31

‘no-pic’ Change the default behaviour of libtool to try to use only non-PIC
objects. The user may still override this default by specifying --enable-

pic to configure.

[Macro]LT_LANG (language)
Enable libtool support for the language given if it has not yet already been en-
abled. Languages accepted are “C++”, “Fortran 77”, “Java”, “Go”, and “Windows
Resource”.

If Autoconf language support macros such as AC_PROG_CXX are used in your
configure.ac, Libtool language support will automatically be enabled.

Conversely using LT_LANG to enable language support for Libtool will automatically
enable Autoconf language support as well.

Both of the following examples are therefore valid ways of adding C++ language sup-
port to Libtool.

LT_INIT

LT_LANG([C++])

LT_INIT

AC_PROG_CXX

[Macro]AC_LIBTOOL_DLOPEN
This macro is deprecated, the ‘dlopen’ option to LT_INIT should be used instead.

[Macro]AC_LIBTOOL_WIN32_DLL
This macro is deprecated, the ‘win32-dll’ option to LT_INIT should be used instead.

[Macro]AC_DISABLE_FAST_INSTALL
This macro is deprecated, the ‘disable-fast-install’ option to LT_INIT should be
used instead.

[Macro]AC_DISABLE_SHARED
[Macro]AM_DISABLE_SHARED

Change the default behaviour for LT_INIT to disable shared libraries. The user
may still override this default by specifying ‘--enable-shared’. The option
‘disable-shared’ to LT_INIT is a shorthand for this. AM_DISABLE_SHARED is a
deprecated alias for AC_DISABLE_SHARED.

[Macro]AC_ENABLE_SHARED
[Macro]AM_ENABLE_SHARED

Change the default behaviour for LT_INIT to enable shared libraries. This is the
default on all systems where Libtool knows how to create shared libraries. The user
may still override this default by specifying ‘--disable-shared’. The option ‘shared’
to LT_INIT is a shorthand for this. AM_ENABLE_SHARED is a deprecated alias for AC_
ENABLE_SHARED.

[Macro]AC_DISABLE_STATIC
[Macro]AM_DISABLE_STATIC

Change the default behaviour for LT_INIT to disable static libraries. The user
may still override this default by specifying ‘--enable-static’. The option
‘disable-static’ to LT_INIT is a shorthand for this. AM_DISABLE_STATIC is a
deprecated alias for AC_DISABLE_STATIC.

Chapter 5: Integrating libtool with your package 32

[Macro]AC_ENABLE_STATIC
[Macro]AM_ENABLE_STATIC

Change the default behaviour for LT_INIT to enable static libraries. This is the default
on all systems where shared libraries have been disabled for some reason, and on most
systems where shared libraries have been enabled. If shared libraries are enabled, the
user may still override this default by specifying ‘--disable-static’. The option
‘static’ to LT_INIT is a shorthand for this. AM_ENABLE_STATIC is a deprecated alias
for AC_ENABLE_STATIC.

The tests in LT_INIT also recognize the following environment variables:

[Variable]CC
The C compiler that will be used by the generated libtool. If this is not set, LT_INIT
will look for gcc or cc.

[Variable]CFLAGS
Compiler flags used to generate standard object files. If this is not set, LT_INIT will
not use any such flags. It affects only the way LT_INIT runs tests, not the produced
libtool.

[Variable]CPPFLAGS
C preprocessor flags. If this is not set, LT_INIT will not use any such flags. It affects
only the way LT_INIT runs tests, not the produced libtool.

[Variable]LD
The system linker to use (if the generated libtool requires one). If this is not set,
LT_INIT will try to find out what is the linker used by CC.

[Variable]LDFLAGS
The flags to be used by libtool when it links a program. If this is not set, LT_
INIT will not use any such flags. It affects only the way LT_INIT runs tests, not the
produced libtool.

[Variable]LIBS
The libraries to be used by LT_INIT when it links a program. If this is not set, LT_
INIT will not use any such flags. It affects only the way LT_INIT runs tests, not the
produced libtool.

[Variable]NM
Program to use rather than checking for nm.

[Variable]RANLIB
Program to use rather than checking for ranlib.

[Variable]LN_S
A command that creates a link of a program, a soft-link if possible, a hard-link
otherwise. LT_INIT will check for a suitable program if this variable is not set.

[Variable]DLLTOOL
Program to use rather than checking for dlltool. Only meaningful for Cygwin/MS-
Windows.

Chapter 5: Integrating libtool with your package 33

[Variable]OBJDUMP
Program to use rather than checking for objdump. Only meaningful for Cygwin/MS-
Windows.

[Variable]AS
Program to use rather than checking for as. Only used on Cygwin/MS-Windows at
the moment.

[Variable]MANIFEST_TOOL
Program to use rather than checking for mt, the Manifest Tool. Only used on
Cygwin/MS-Windows at the moment.

[Variable]LT_SYS_LIBRARY_PATH
Libtool has heuristics for the system search path for runtime-loaded libraries. If the
guessed default does not match the setup of the host system, this variable can be
used to modify that path list, as follows (LT_SYS_LIBRARY_PATH is a colon-delimited
list like PATH):

• path: The heuristically determined paths will be appended after the trailing
colon;

• :path The heuristically determined paths will be prepended before the leading
colon;

• path::path The heuristically determined paths will be inserted between the
double colons;

• path With no dangling colons, the heuristically determined paths will be ignored
entirely.

With 1.3 era libtool, if you wanted to know any details of what libtool had discovered
about your architecture and environment, you had to run the script with --config and
grep through the results. This idiom was supported up to and including 1.5.x era libtool,
where it was possible to call the generated libtool script from configure.ac as soon as
LT_INIT had completed. However, one of the features of libtool 1.4 was that the libtool
configuration was migrated out of a separate ltconfig file, and added to the LT_INITmacro
(nee AC_PROG_LIBTOOL), so the results of the configuration tests were available directly to
code in configure.ac, rendering the call out to the generated libtool script obsolete.

Starting with libtool 2.0, the multipass generation of the libtool script has been consoli-
dated into a single config.status pass, which happens after all the code in configure.ac

has completed. The implication of this is that the libtool script does not exist during execu-
tion of code from configure.ac, and so obviously it cannot be called for --config details
anymore. If you are upgrading projects that used this idiom to libtool 2.0 or newer, you
should replace those calls with direct references to the equivalent Autoconf shell variables
that are set by the configure time tests before being passed to config.status for inclusion
in the generated libtool script.

[Macro]LT_OUTPUT
By default, the configured libtool script is generated by the call to AC_OUTPUT

command, and there is rarely any need to use libtool from configure. However,
sometimes it is necessary to run configure time compile and link tests using libtool.

Chapter 5: Integrating libtool with your package 34

You can add LT_OUTPUT to your configure.ac any time after LT_INIT and any LT_

LANG calls; that done, libtool will be created by a specially generated config.lt

file, and available for use in later tests.

Also, when LT_OUTPUT is used, for backwards compatibility with Automake regener-
ation rules, config.status will call config.lt to regenerate libtool, rather than
generating the file itself.

When you invoke the libtoolize program (see Section 5.5.1 [Invoking libtoolize],
page 35), it will tell you where to find a definition of LT_INIT. If you use Automake, the
aclocal program will automatically add LT_INIT support to your configure script when
it sees the invocation of LT_INIT in configure.ac.

Because of these changes, and the runtime version compatibility checks Libtool now
executes, we now advise against including a copy of libtool.m4 (and brethren) in
acinclude.m4. Instead, you should set your project macro directory with AC_CONFIG_

MACRO_DIRS. When you libtoolize your project, a copy of the relevant macro definitions
will be placed in your AC_CONFIG_MACRO_DIRS, where aclocal can reference them directly
from aclocal.m4.

5.4.2 Platform-specific configuration notes

While Libtool tries to hide as many platform-specific features as possible, some have to be
taken into account when configuring either the Libtool package or a libtoolized package.

• You currently need GNU make to build the Libtool package itself.

• On AIX there are two different styles of shared linking, one where symbols are bound
at link-time and one where symbols are bound at runtime only, similar to ELF. In case
of doubt use LDFLAGS=-Wl,-brtl for the latter style.

• On AIX, native tools are to be preferred over binutils; especially for C++ code,
if using the AIX Toolbox GCC 4.0 and binutils, configure with AR=/usr/bin/ar

LD=/usr/bin/ld NM='/usr/bin/nm -B'.

• On AIX, the /bin/sh is very slow due to its inefficient handling of here-documents. A
modern shell is preferable:

CONFIG_SHELL=/bin/bash; export $CONFIG_SHELL

$CONFIG_SHELL ./configure [...]

• For C++ code with templates, it may be necessary to specify the way the compiler
will generate the instantiations. For Portland pgCC version5, use CXX='pgCC --one_

instantiation_per_object' and avoid parallel make.

• For C++ code, it may be necessary to specify a library if it is a dependency of a
link/compile flag. For example in GNU G++, if you want to use -fsanitize=address
you need to specify the -lasan library, like so: g++ -o libx.la -fsanitize=address

-lasan -rpath [...].

• On Darwin, for C++ code with templates you need two level shared libraries. Libtool
builds these by default if MACOSX_DEPLOYMENT_TARGET is set to 10.3 or later at
configure time. See rdar://problem/4135857 for more information on this issue.

• The default shell on UNICOS 9, a ksh 88e variant, is too buggy to correctly execute
the libtool script. Users are advised to install a modern shell such as GNU bash.

rdar://problem/4135857

Chapter 5: Integrating libtool with your package 35

• Some HP-UX sed programs are horribly broken, and cannot handle libtool’s require-
ments, so users may report unusual problems. There is no workaround except to install
a working sed (such as GNU sed) on these systems.

• The vendor-distributed NCR MP-RAS cc programs emits copyright on standard error
that confuse tests on size of conftest.err. The workaround is to specify CC when run
configure with CC='cc -Hnocopyr'.

• Any earlier DG/UX system with ELF executables, such as R3.10 or R4.10, is also likely
to work, but hasn’t been explicitly tested.

• On Reliant Unix libtool has only been tested with the Siemens C-compiler and an old
version of gcc provided by Marco Walther.

• libtool.m4, ltdl.m4 and the configure.ac files are marked to use autoconf-mode,
which is distributed with GNU Emacs 21, Autoconf itself, and all recent releases of
XEmacs.

• When building on some GNU/Linux systems for multilib targets libtool sometimes
guesses the wrong paths that the linker and dynamic linker search by default. If this
occurs for the dynamic library path, you may use the LT_SYS_LIBRARY_PATH envi-
ronment variable to adjust. Otherwise, at configure time you may override libtool’s
guesses by setting the autoconf cache variables lt_cv_sys_lib_search_path_spec

and lt_cv_sys_lib_dlsearch_path_spec respectively.

5.5 Including libtool in your package

In order to use libtool, you need to include the following files with your package:

config.guess

Attempt to guess a canonical system name.

config.sub

Canonical system name validation subroutine script.

install-sh

BSD-compatible install replacement script.

ltmain.sh

A generic script implementing basic libtool functionality.

Note that the libtool script itself should not be included with your package. See Sec-
tion 5.4 [Configuring], page 27.

You should use the libtoolize program, rather than manually copying these files into
your package.

5.5.1 Invoking libtoolize

The libtoolize program provides a standard way to add libtool support to your package.
In the future, it may implement better usage checking, or other features to make libtool
even easier to use.

The libtoolize program has the following synopsis:

libtoolize [option]...

Chapter 5: Integrating libtool with your package 36

and accepts the following options:

--copy

-c Copy files from the libtool data directory rather than creating symlinks.

--debug Dump a trace of shell script execution to standard output. This produces a lot
of output, so you may wish to pipe it to less (or more) or redirect to a file.

--dry-run

-n Don’t run any commands that modify the file system, just print them out.

--force

-f Replace existing libtool files. By default, libtoolize won’t overwrite existing
files.

--help Display a help message and exit.

--ltdl [target-directory-name]

Install libltdl in the target-directory-name subdirectory of your package. Nor-
mally, the directory is extracted from the argument to LT_CONFIG_LTDL_DIR

in configure.ac, though you can also specify a subdirectory name here if you
are not using Autoconf for example. If libtoolize can’t determine the target
directory, ‘libltdl’ is used as the default.

--no-warn

Normally, Libtoolize tries to diagnose use of deprecated libtool macros and
other stylistic issues. If you are deliberately using outdated calling conventions,
this option prevents Libtoolize from explaining how to update your project’s
Libtool conventions.

--nonrecursive

If passed in conjunction with --ltdl, this option will cause the libltdl in-
stalled by ‘libtoolize’ to be set up for use with a non-recursive automake

build. To make use of it, you will need to add the following to the Makefile.am
of the parent project:

libltdl/ltdl.mk appends to the following variables
so we set them here before including it:
BUILT_SOURCES =

AM_CPPFLAGS =

AM_LDFLAGS =

include_HEADERS =

noinst_LTLIBRARIES =

lib_LTLIBRARIES =

EXTRA_LTLIBRARIES =

EXTRA_DIST =

CLEANFILES =

MOSTLYCLEANFILES =

Chapter 5: Integrating libtool with your package 37

include libltdl/ltdl.mk

--quiet

-q Work silently. ‘libtoolize --quiet’ is used by GNU Automake to add libtool
files to your package if necessary.

--recursive

If passed in conjunction with --ltdl, this option will cause the libtoolize

installed ‘libltdl’ to be set up for use with a recursive automake build. To
make use of it, you will need to adjust the parent project’s configure.ac:

AC_CONFIG_FILES([libltdl/Makefile])

and Makefile.am:

SUBDIRS += libltdl

--subproject

If passed in conjunction with --ltdl, this option will cause the libtoolize

installed ‘libltdl’ to be set up for independent configuration and compilation
as a self-contained subproject. To make use of it, you should arrange for your
build to call libltdl/configure, and then run make in the libltdl directory
(or the subdirectory you put libltdl into). If your project uses Autoconf, you
can use the supplied ‘LT_WITH_LTDL’ macro, or else call ‘AC_CONFIG_SUBDIRS’
directly.

Previous releases of ‘libltdl’ built exclusively in this mode, but now it is the
default mode both for backwards compatibility and because, for example, it is
suitable for use in projects that wish to use ‘libltdl’, but not use the Autotools
for their own build process.

--verbose

-v Work noisily! Give a blow by blow account of what libtoolize is doing.

--version

Print libtoolize version information and exit.

Sometimes it can be useful to pass options to libtoolize even though it is called by
another program, such as autoreconf. A limited number of options are parsed from the
environment variable LIBTOOLIZE_OPTIONS: currently --debug, --no-warn, --quiet and
--verbose. Multiple options passed in LIBTOOLIZE_OPTIONS must be separated with a
space, comma or a colon.

By default, a warning is issued for unknown options found in LIBTOOLIZE_OPTIONS

unless the first such option is --no-warn. Where libtoolize has always quit on receipt of
an unknown option at the command line, this and all previous releases of libtoolize will
continue unabated whatever the content of LIBTOOLIZE_OPTIONS (modulo some possible
warning messages).

trick$ LIBTOOLIZE_OPTIONS=--no-warn,--quiet autoreconf --install

If libtoolize detects an explicit call to AC_CONFIG_MACRO_DIRS (see Section “The Au-
toconf Manual” in The Autoconf Manual) in your configure.ac, it will put the Libtool
macros in the specified directory.

Chapter 5: Integrating libtool with your package 38

In the future other Autotools will automatically check the contents of AC_CONFIG_MACRO_
DIRS, but at the moment it is more portable to add the macro directory to ACLOCAL_

AMFLAGS in Makefile.am, which is where the tools currently look. If libtoolize doesn’t
see AC_CONFIG_MACRO_DIRS, it too will honour the first ‘-I’ argument in ACLOCAL_AMFLAGS

when choosing a directory to store libtool configuration macros in. It is perfectly sensible
to use both AC_CONFIG_MACRO_DIRS and ACLOCAL_AMFLAGS, as long as they are kept in
synchronisation.

ACLOCAL_AMFLAGS = -I m4

When you bootstrap your project with aclocal, then you will need to explicitly pass
the same macro directory with aclocal’s ‘-I’ flag:

trick$ aclocal -I m4

If libtoolize detects an explicit call to AC_CONFIG_AUX_DIR (see Section “The Autoconf
Manual” in The Autoconf Manual) in your configure.ac, it will put the other support
files in the specified directory. Otherwise they too end up in the project root directory.

Unless --no-warn is passed, libtoolize displays hints for adding libtool support to
your package, as well.

5.5.2 Autoconf and LTLIBOBJS

People used to add code like the following to their configure.ac:

LTLIBOBJS=`echo "$LIBOBJS" | sed 's/\.[^.]* /.lo /g;s/\.[^.]*$/.lo/'`

AC_SUBST([LTLIBOBJS])

This is no longer required (since Autoconf 2.54), and doesn’t take Automake’s deansification
support into account either, so doesn’t work correctly even with ancient Autoconfs!

Provided you are using a recent (2.54 or better) incarnation of Autoconf, the call to AC_

OUTPUT takes care of setting LTLIBOBJS up correctly, so you can simply delete such snippets
from your configure.ac if you had them.

5.6 Static-only libraries

When you are developing a package, it is often worthwhile to configure your package with
the --disable-shared flag, or to override the defaults for LT_INIT by using the disable-
shared option (see Section 5.4.1 [The LT_INIT macro], page 28). This prevents libtool from
building shared libraries, which has several advantages:

• compilation is twice as fast, which can speed up your development cycle,

• debugging is easier because you don’t need to deal with any complexities added by
shared libraries, and

• you can see how libtool behaves on static-only platforms.

You may want to put a small note in your package README to let other developers know
that --disable-shared can save them time. The following example note is taken from the
GIMP3 distribution README:

The GIMP uses GNU Libtool to build shared libraries on a

3 GNU Image Manipulation Program, for those who haven’t taken the plunge. See http://www.gimp.

org/.

http://www.gimp.org/
http://www.gimp.org/

Chapter 5: Integrating libtool with your package 39

variety of systems. While this is very nice for making usable

binaries, it can be a pain when trying to debug a program. For that

reason, compilation of shared libraries can be turned off by

specifying the --disable-shared option to configure.

40

6 Using libtool with other languages

Libtool was first implemented to add support for writing shared libraries in the C language.
However, over time, libtool is being integrated with other languages, so that programmers
are free to reap the benefits of shared libraries in their favorite programming language.

This chapter describes how libtool interacts with other languages, and what special
considerations you need to make if you do not use C.

6.1 Writing libraries for C++

Creating libraries of C++ code should be a fairly straightforward process, because its object
files differ from C ones in only three ways:

1. Because of name mangling, C++ libraries are only usable by the C++ compiler that
created them. This decision was made by the designers of C++ to protect users from
conflicting implementations of features such as constructors, exception handling, and
RTTI.

2. On some systems, the C++ compiler must take special actions for the dynamic linker to
run dynamic (i.e., run-time) initializers. This means that we should not call ld directly
to link such libraries, and we should use the C++ compiler instead.

3. C++ compilers will link some Standard C++ library in by default, but libtool does
not know what these libraries are, so it cannot even run the inter-library dependence
analyzer to check how to link it in. Therefore, running ld to link a C++ program or
library is deemed to fail.

Because of these three issues, Libtool has been designed to always use the C++ compiler
to compile and link C++ programs and libraries. In some instances the main() function of a
program must also be compiled with the C++ compiler for static C++ objects to be properly
initialized.

6.2 Tags

Libtool supports multiple languages through the use of tags. Technically a tag corresponds
to a set of configuration variables associated with a language. These variables tell libtool
how it should create objects and libraries for each language.

Tags are defined at configure-time for each language activated in the package (see LT_
LANG in Section 5.4.1 [LT INIT], page 28). Here is the correspondence between language
names and tags names.

Language name Tag name
C CC
C++ CXX
Java GCJ
Fortran 77 F77
Fortran FC
Go GO
Windows Resource RC

Chapter 6: Using libtool with other languages 41

libtool tries to automatically infer what tag to use from the compiler command being
used to compile or link. If it can’t infer a tag, then it defaults to the configuration for the
C language.

The tag can also be specified using libtool’s --tag=tag option (see Chapter 4 [Invoking
libtool], page 15). It is a good idea to do so in Makefile rules, because that will allow users
to substitute the compiler without relying on libtool inference heuristics. When no tag is
specified, libtool will default to CC; this tag always exists.

Finally, the set of tags available in a particular project can be retrieved by tracing for
the LT_SUPPORTED_TAG macro (see Chapter 12 [Trace interface], page 75).

42

7 Library interface versions

The most difficult issue introduced by shared libraries is that of creating and resolving
runtime dependencies. Dependencies on programs and libraries are often described in terms
of a single name, such as sed. So, one may say “libtool depends on sed,” and that is good
enough for most purposes.

However, when an interface changes regularly, we need to be more specific: “Gnus 5.1
requires Emacs 19.28 or above.” Here, the description of an interface consists of a name,
and a “version number.”

Even that sort of description is not accurate enough for some purposes. What if Emacs
20 changes enough to break Gnus 5.1?

The same problem exists in shared libraries: we require a formal version system to
describe the sorts of dependencies that programs have on shared libraries, so that the
dynamic linker can guarantee that programs are linked only against libraries that provide
the interface they require.

7.1 What are library interfaces?

Interfaces for libraries may be any of the following (and more):

• global variables: both names and types

• global functions: argument types and number, return types, and function names

• standard input, standard output, standard error, and file formats

• sockets, pipes, and other inter-process communication protocol formats

Note that static functions do not count as interfaces, because they are not directly
available to the user of the library.

7.2 Libtool’s versioning system

Libtool has its own formal versioning system. It is not as flexible as some, but it is definitely
the simplest of the more powerful versioning systems.

Think of a library as exporting several sets of interfaces, arbitrarily represented by
integers. When a program is linked against a library, it may use any subset of those
interfaces.

Libtool’s description of the interfaces that a program uses is simple: it encodes the least
and the greatest interface numbers in the resulting binary (first-interface, last-interface).

The dynamic linker is guaranteed that if a library supports every interface number
between first-interface and last-interface, then the program can be relinked against that
library.

Note that this can cause problems because libtool’s compatibility requirements are ac-
tually stricter than is necessary.

Say libhello supports interfaces 5, 16, 17, 18, and 19, and that libtool is used to link
test against libhello.

Libtool encodes the numbers 5 and 19 in test, and the dynamic linker will only link
test against libraries that support every interface between 5 and 19. So, the dynamic linker
refuses to link test against libhello!

Chapter 7: Library interface versions 43

In order to eliminate this problem, libtool only allows libraries to declare consecutive
interface numbers. So, libhello can declare at most that it supports interfaces 16 through
19. Then, the dynamic linker will link test against libhello.

So, libtool library versions are described by three integers:

current The most recent interface number that this library implements.

revision The implementation number of the current interface.

age The difference between the newest and oldest interfaces that this library imple-
ments. In other words, the library implements all the interface numbers in the
range from number current - age to current.

If two libraries have identical current and age numbers, then the dynamic linker chooses
the library with the greater revision number.

7.3 Updating library version information

If you want to use libtool’s versioning system, then you must specify the version information
to libtool using the -version-info flag during link mode (see Section 4.2 [Link mode],
page 18).

This flag accepts an argument of the form ‘current[:revision[:age]]’. So, passing
-version-info 3:12:1 sets current to 3, revision to 12, and age to 1.

If either revision or age are omitted, they default to 0. Also note that age must be less
than or equal to the current interface number.

Here are a set of rules to help you update your library version information:

1. Start with version information of ‘0:0:0’ for each libtool library.

2. Update the version information only immediately before a public release of your soft-
ware. More frequent updates are unnecessary, and only guarantee that the current
interface number gets larger faster.

3. If the library source code has changed at all since the last update, then increment
revision (‘c:r:a’ becomes ‘c:r + 1:a’).

4. If any interfaces have been added, removed, or changed since the last update, increment
current, and set revision to 0.

5. If any interfaces have been added since the last public release, then increment age.

6. If any interfaces have been removed or changed since the last public release, then set
age to 0.

Never try to set the interface numbers so that they correspond to the release number of
your package. This is an abuse that only fosters misunderstanding of the purpose of library
versions. Instead, use the -release flag (see Section 7.4 [Release numbers], page 44), but
be warned that every release of your package will not be binary compatible with any other
release.

The following explanation may help to understand the above rules a bit better: consider
that there are three possible kinds of reactions from users of your library to changes in a
shared library:

1. Programs using the previous version may use the new version as drop-in replacement,
and programs using the new version can also work with the previous one. In other

Chapter 7: Library interface versions 44

words, no recompiling nor relinking is needed. In this case, bump revision only, don’t
touch current nor age.

2. Programs using the previous version may use the new version as drop-in replacement,
but programs using the new version may use APIs not present in the previous one.
In other words, a program linking against the new version may fail with “unresolved
symbols” if linking against the old version at runtime: set revision to 0, bump current
and age.

3. Programs may need to be changed, recompiled, and relinked in order to use the new
version. Bump current, set revision and age to 0.

In the above description, programs using the library in question may also be replaced by
other libraries using it.

7.4 Managing release information

Often, people want to encode the name of the package release into the shared library so that
it is obvious to the user what package their programs are linked against. This convention
is used especially on GNU/Linux:

trick$ ls /usr/lib/libbfd*

/usr/lib/libbfd.a /usr/lib/libbfd.so.2.7.0.2

/usr/lib/libbfd.so

trick$

On ‘trick’, /usr/lib/libbfd.so is a symbolic link to libbfd.so.2.7.0.2, which was
distributed as a part of ‘binutils-2.7.0.2’.

Unfortunately, this convention conflicts directly with libtool’s idea of library interface
versions, because the library interface rarely changes at the same time that the release
number does, and the library suffix is never the same across all platforms.

So, to accommodate both views, you can use the -release flag to set release information
for libraries for which you do not want to use -version-info. For the libbfd example, the
next release that uses libtool should be built with ‘-release 2.9.0’, which will produce
the following files on GNU/Linux:

trick$ ls /usr/lib/libbfd*

/usr/lib/libbfd-2.9.0.so /usr/lib/libbfd.a

/usr/lib/libbfd.so

trick$

In this case, /usr/lib/libbfd.so is a symbolic link to libbfd-2.9.0.so. This makes
it obvious that the user is dealing with ‘binutils-2.9.0’, without compromising libtool’s
idea of interface versions.

Note that this option causes a modification of the library name, so do not use it unless
you want to break binary compatibility with any past library releases. In general, you
should only use -release for package-internal libraries or for ones whose interfaces change
very frequently.

45

8 Tips for interface design

Writing a good library interface takes a lot of practice and thorough understanding of the
problem that the library is intended to solve.

If you design a good interface, it won’t have to change often, you won’t have to keep
updating documentation, and users won’t have to keep relearning how to use the library.

Here is a brief list of tips for library interface design that may help you in your exploits:

Plan ahead
Try to make every interface truly minimal, so that you won’t need to delete
entry points very often.

Avoid interface changes
Some people love redesigning and changing entry points just for the heck of
it (note: renaming a function is considered changing an entry point). Don’t
be one of those people. If you must redesign an interface, then try to leave
compatibility functions behind so that users don’t need to rewrite their existing
code.

Use opaque data types
The fewer data type definitions a library user has access to, the better. If
possible, design your functions to accept a generic pointer (that you can cast to
an internal data type), and provide access functions rather than allowing the
library user to directly manipulate the data. That way, you have the freedom
to change the data structures without changing the interface.

This is essentially the same thing as using abstract data types and inheritance
in an object-oriented system.

Use header files
If you are careful to document each of your library’s global functions and vari-
ables in header files, and include them in your library source files, then the
compiler will let you know if you make any interface changes by accident (see
Section 8.1 [C header files], page 46).

Use the static keyword (or equivalent) whenever possible
The fewer global functions your library has, the more flexibility you’ll have in
changing them. Static functions and variables may change forms as often as
you like. . . your users cannot access them, so they aren’t interface changes.

Be careful with array dimensions
The number of elements in a global array is part of an interface, even if the
header just declares extern int foo[];. This is because on i386 and some
other SVR4/ELF systems, when an application references data in a shared
library the size of that data (whatever its type) is included in the application
executable. If you might want to change the size of an array or string then
provide a pointer not the actual array.

Chapter 8: Tips for interface design 46

8.1 Writing C header files

Writing portable C header files can be difficult, since they may be read by different types
of compilers:

C++ compilers
C++ compilers require that functions be declared with full prototypes, since
C++ is more strongly typed than C. C functions and variables also need to be
declared with the extern "C" directive, so that the names aren’t mangled. See
Section 6.1 [C++ libraries], page 40, for other issues relevant to using C++ with
libtool.

ANSI C compilers
ANSI C compilers are not as strict as C++ compilers, but functions should be
prototyped to avoid unnecessary warnings when the header file is #included.

non-ANSI C compilers
Non-ANSI compilers will report errors if functions are prototyped.

These complications mean that your library interface headers must use some C prepro-
cessor magic to be usable by each of the above compilers.

foo.h in the tests/demo subdirectory of the libtool distribution serves as an example
for how to write a header file that can be safely installed in a system directory.

Here are the relevant portions of that file:

/* BEGIN_C_DECLS should be used at the beginning of your declarations,

so that C++ compilers don't mangle their names. Use END_C_DECLS at

the end of C declarations. */

#undef BEGIN_C_DECLS

#undef END_C_DECLS

#ifdef __cplusplus

define BEGIN_C_DECLS extern "C" {

define END_C_DECLS }

#else

define BEGIN_C_DECLS /* empty */

define END_C_DECLS /* empty */

#endif

/* PARAMS is a macro used to wrap function prototypes, so that

compilers that don't understand ANSI C prototypes still work,

and ANSI C compilers can issue warnings about type mismatches. */

#undef PARAMS

#if defined __STDC__ || defined _AIX \

|| (defined __mips && defined _SYSTYPE_SVR4) \

|| defined WIN32 || defined __cplusplus

define PARAMS(protos) protos

#else

define PARAMS(protos) ()

#endif

Chapter 8: Tips for interface design 47

These macros are used in foo.h as follows:

#ifndef FOO_H

#define FOO_H 1

/* The above macro definitions. */

#include "..."

BEGIN_C_DECLS

int foo PARAMS((void));

int hello PARAMS((void));

END_C_DECLS

#endif /* !FOO_H */

Note that the #ifndef FOO_H prevents the body of foo.h from being read more than
once in a given compilation.

Also the only thing that must go outside the BEGIN_C_DECLS/END_C_DECLS pair are
#include lines. Strictly speaking it is only C symbol names that need to be protected, but
your header files will be more maintainable if you have a single pair of these macros around
the majority of the header contents.

You should use these definitions of PARAMS, BEGIN_C_DECLS, and END_C_DECLS into your
own headers. Then, you may use them to create header files that are valid for C++, ANSI,
and non-ANSI compilers1.

Do not be naive about writing portable code. Following the tips given above will help
you miss the most obvious problems, but there are definitely other subtle portability issues.
You may need to cope with some of the following issues:

• Pre-ANSI compilers do not always support the void * generic pointer type, and so
need to use char * in its place.

• The const, inline and signed keywords are not supported by some compilers, espe-
cially pre-ANSI compilers.

• The long double type is not supported by many compilers.

1 We used to recommend __P, __BEGIN_DECLS and __END_DECLS. This was bad advice since symbols (even
preprocessor macro names) that begin with an underscore are reserved for the use of the compiler.

48

9 Inter-library dependencies

By definition, every shared library system provides a way for executables to depend on
libraries, so that symbol resolution is deferred until runtime.

An inter-library dependency is where a library depends on other libraries. For example,
if the libtool library libhello uses the cos function, then it has an inter-library dependency
on libm, the math library that implements cos.

Some shared library systems provide this feature in an internally-consistent way: these
systems allow chains of dependencies of potentially infinite length.

However, most shared library systems are restricted in that they only allow a single level
of dependencies. In these systems, programs may depend on shared libraries, but shared
libraries may not depend on other shared libraries.

In any event, libtool provides a simple mechanism for you to declare inter-library de-
pendencies: for every library libname that your own library depends on, simply add a
corresponding -lname option to the link line when you create your library. To make an
example of our libhello that depends on libm:

burger$ libtool --mode=link gcc -g -O -o libhello.la foo.lo hello.lo \

-rpath /usr/local/lib -lm

burger$

When you link a program against libhello, you don’t need to specify the same ‘-l’
options again: libtool will do that for you, to guarantee that all the required libraries
are found. This restriction is only necessary to preserve compatibility with static library
systems and simple dynamic library systems.

Some platforms, such as Windows, do not even allow you this flexibility. In order to
build a shared library, it must be entirely self-contained or it must have dependencies known
at link time (that is, have references only to symbols that are found in the .lo files or the
specified ‘-l’ libraries), and you need to specify the -no-undefined flag. By default, libtool
builds only static libraries on these kinds of platforms.

The simple-minded inter-library dependency tracking code of libtool releases prior to 1.2
was disabled because it was not clear when it was possible to link one library with another,
and complex failures would occur. A more complex implementation of this concept was
re-introduced before release 1.3, but it has not been ported to all platforms that libtool
supports. The default, conservative behavior is to avoid linking one library with another,
introducing their inter-dependencies only when a program is linked with them.

49

10 Dlopened modules

It can sometimes be confusing to discuss dynamic linking, because the term is used to refer
to two different concepts:

1. Compiling and linking a program against a shared library, which is resolved automati-
cally at run time by the dynamic linker. In this process, dynamic linking is transparent
to the application.

2. The application calling functions such as dlopen that load arbitrary, user-specified
modules at runtime. This type of dynamic linking is explicitly controlled by the appli-
cation.

To mitigate confusion, this manual refers to the second type of dynamic linking as
dlopening a module.

The main benefit to dlopening object modules is the ability to access compiled object
code to extend your program, rather than using an interpreted language. In fact, dlopen
calls are frequently used in language interpreters to provide an efficient way to extend the
language.

Libtool provides support for dlopened modules. However, you should indicate that
your package is willing to use such support, by using the LT_INIT option ‘dlopen’ in
configure.ac. If this option is not given, libtool will assume no dlopening mechanism
is available, and will try to simulate it.

This chapter discusses how you as a dlopen application developer might use libtool to
generate dlopen-accessible modules.

10.1 Building modules to dlopen

On some operating systems, a program symbol must be specially declared in order to
be dynamically resolved with the dlsym (or equivalent) function. Libtool provides the
-export-dynamic and -module link flags (see Section 4.2 [Link mode], page 18), for you to
make that declaration. You need to use these flags if you are linking an application program
that dlopens other modules or a libtool library that will also be dlopened.

For example, if we wanted to build a shared library, hello, that would later be dlopened
by an application, we would add -module to the other link flags:

burger$ libtool --mode=link gcc -module -o hello.la foo.lo \

hello.lo -rpath /usr/local/lib -lm

burger$

If symbols from your executable are needed to satisfy unresolved references in a li-
brary you want to dlopen you will have to use the flag -export-dynamic. You should
use -export-dynamic while linking the executable that calls dlopen:

burger$ libtool --mode=link gcc -export-dynamic -o helldl main.o

burger$

Chapter 10: Dlopened modules 50

10.2 Dlpreopening

Libtool provides special support for dlopening libtool object and libtool library files, so that
their symbols can be resolved even on platforms without any dlopen and dlsym functions.

Consider the following alternative ways of loading code into your program, in order of
increasing “laziness”:

1. Linking against object files that become part of the program executable, whether or
not they are referenced. If an object file cannot be found, then the compile time linker
refuses to create the executable.

2. Declaring a static library to the linker, so that it is searched at link time to satisfy any
undefined references in the above object files. If the static library cannot be found,
then the compile time linker refuses to create the executable.

3. Declaring a shared library to the runtime linker, so that it is searched at runtime to
satisfy any undefined references in the above files. If the shared library cannot be
found, then the dynamic linker aborts the program before it runs.

4. Dlopening a module, so that the application can resolve its own, dynamically-computed
references. If there is an error opening the module, or the module is not found, then
the application can recover without crashing.

Libtool emulates -dlopen on static platforms by linking objects into the program at
compile time, and creating data structures that represent the program’s symbol table. In
order to use this feature, you must declare the objects you want your application to dlopen
by using the -dlopen or -dlpreopen flags when you link your program (see Section 4.2
[Link mode], page 18).

[Data Type]lt_dlsymlist typedef struct { const char *name; void *address; }
lt dlsymlist

The name attribute is a null-terminated character string of the symbol name, such
as "fprintf". The address attribute is a generic pointer to the appropriate object,
such as &fprintf.

[Variable]const lt_dlsymlist lt_preloaded_symbols[]
An array of lt_dlsymlist structures, representing all the preloaded symbols linked
into the program proper. For each module -dlpreopened by the Libtool linked pro-
gram there is an element with the name of the module and an address of 0, followed
by all symbols exported from this file. For the executable itself the special name
‘@PROGRAM@’ is used. The last element of all has a name and address of 0.

To facilitate inclusion of symbol lists into libraries, lt_preloaded_symbols is
‘#define’d to a suitably unique name in ltdl.h.

This variable may not be declared const on some systems due to relocation issues.

Some compilers may allow identifiers that are not valid in ANSI C, such as dollar signs.
Libtool only recognizes valid ANSI C symbols (an initial ASCII letter or underscore, followed
by zero or more ASCII letters, digits, and underscores), so non-ANSI symbols will not appear
in lt_preloaded_symbols.

Chapter 10: Dlopened modules 51

[Function]int lt_dlpreload (const lt_dlsymlist *preloaded)
Register the list of preloaded modules preloaded. If preloaded is NULL, then all pre-
viously registered symbol lists, except the list set by lt_dlpreload_default, are
deleted. Return 0 on success.

[Function]int lt_dlpreload_default (const lt_dlsymlist *preloaded)
Set the default list of preloaded modules to preloaded, which won’t be deleted by
lt_dlpreload. Note that this function does not require libltdl to be initialized using
lt_dlinit and can be used in the program to register the default preloaded modules.
Instead of calling this function directly, most programs will use the macro LTDL_SET_

PRELOADED_SYMBOLS.

Return 0 on success.

[Macro]LTDL_SET_PRELOADED_SYMBOLS
Set the default list of preloaded symbols. Should be used in your program to initialize
libltdl’s list of preloaded modules.

#include <ltdl.h>

int main() {

/* ... */

LTDL_SET_PRELOADED_SYMBOLS();

/* ... */

}

[Function Type]int lt_dlpreload_callback_func (lt_dlhandle handle)
Functions of this type can be passed to lt_dlpreload_open, which in turn will call
back into a function thus passed for each preloaded module that it opens.

[Function]int lt_dlpreload_open (const char *originator,
lt_dlpreload_callback_func *func)

Load all of the preloaded modules for originator. For every module opened in this
way, call func.

To open all of the modules preloaded into libhell.la (presumably from within the
libhell.a initialisation code):

#define preloaded_symbols lt_libhell_LTX_preloaded_symbols

static int hell_preload_callback (lt_dlhandle handle);

int

hell_init (void)

{

...

if (lt_dlpreload (&preloaded_symbols) == 0)

{

lt_dlpreload_open ("libhell", preload_callback);

}

...

Chapter 10: Dlopened modules 52

}

Note that to prevent clashes between multiple preloaded modules, the preloaded sym-
bols are accessed via a mangled symbol name: to get the symbols preloaded into
‘libhell’, you must prefix ‘preloaded_symbols’ with ‘lt_’; the originator name,
‘libhell’ in this case; and ‘_LTX_’. That is, ‘lt_libhell_LTX_preloaded_symbols’
here.

10.3 Linking with dlopened modules

When, say, an interpreter application uses dlopened modules to extend the list of methods it
provides, an obvious abstraction for the maintainers of the interpreter is to have all methods
(including the built in ones supplied with the interpreter) accessed through dlopen. For
one thing, the dlopening functionality will be tested even during routine invocations. For
another, only one subsystem has to be written for getting methods into the interpreter.

The downside of this abstraction is, of course, that environments that provide only static
linkage can’t even load the intrinsic interpreter methods. Not so! We can statically link
those methods by dlpreopening them.

Unfortunately, since platforms such as AIX and cygwin require that all library symbols
must be resolved at compile time, the interpreter maintainers will need to provide a library to
both its own dlpreopened modules, and third-party modules loaded by dlopen. In itself, that
is not so bad, except that the interpreter too must provide those same symbols otherwise
it will be impossible to resolve all the symbols required by the modules as they are loaded.
Things are even worse if the code that loads the modules for the interpreter is itself in a
library – and that is usually the case for any non-trivial application. Modern platforms take
care of this by automatically loading all of a module’s dependency libraries as the module
is loaded (libltdl can do this even on platforms that can’t do it by themselves). In the end,
this leads to problems with duplicated symbols and prevents modules from loading, and
prevents the application from compiling when modules are preloaded.

,-------------. ,------------------. ,-----------------.

| Interpreter |----> Module------------> Third-party |

`-------------' | Loader | |Dlopened Modules |

| | | `-----------------'

|,-------v--------.| |

|| Dlpreopened || |

|| Modules || |

|`----------------'| |

| | | |

|,-------v--------.| ,--------v--------.

||Module Interface|| |Module Interface |

|| Library || | Library |

|`----------------'| `-----------------'

`------------------'

Libtool has the concept of weak library interfaces to circumvent this problem. Recall
that the code that dlopens method-provider modules for the interpreter application resides
in a library: All of the modules and the dlopener library itself should be linked against
the common library that resolves the module symbols at compile time. To guard against

Chapter 10: Dlopened modules 53

duplicate symbol definitions, and for dlpreopened modules to work at all in this scenario,
the dlopener library must declare that it provides a weak library interface to the common
symbols in the library it shares with the modules. That way, when libtool links the
Module Loader library with some Dlpreopened Modules that were in turn linked against
the Module Interface Library, it knows that the Module Loader provides an already loaded
Module Interface Library to resolve symbols for the Dlpreopened Modules, and doesn’t ask
the compiler driver to link an identical Module Interface Library dependency library too.

In conjunction with Automake, the Makefile.am for the Module Loader might look like
this:

lib_LTLIBRARIES = libinterface.la libloader.la

libinterface_la_SOURCES = interface.c interface.h

libinterface_la_LDFLAGS = -version-info 3:2:1

libloader_la_SOURCES = loader.c

libloader_la_LDFLAGS = -weak libinterface.la \

-version-info 3:2:1 \

-dlpreopen ../modules/intrinsics.la

libloader_la_LIBADD = $(libinterface_la_OBJECTS)

And the Makefile.am for the intrinsics.la module in a sibling modules directory
might look like this:

AM_CPPFLAGS = -I$(srcdir)/../libloader

AM_LDFLAGS = -no-undefined -module -avoid-version \

-export-dynamic

noinst_LTLIBRARIES = intrinsics.la

intrinsics_la_LIBADD = ../libloader/libinterface.la

../libloader/libinterface.la:

cd ../libloader && $(MAKE) $(AM_MAKEFLAGS) libinterface.la

For a more complex example, see the sources of libltdl in the Libtool distribution,
which is built with the help of the -weak option.

10.4 Finding the correct name to dlopen

After a library has been linked with -module, it can be dlopened. Unfortunately, because of
the variation in library names, your package needs to determine the correct file to dlopen.

The most straightforward and flexible implementation is to determine the name at run-
time, by finding the installed .la file, and searching it for the following lines:

The name that we can dlopen.

dlname='dlname'

If dlname is empty, then the library cannot be dlopened. Otherwise, it gives the dlname
of the library. So, if the library was installed as /usr/local/lib/libhello.la, and the
dlname was libhello.so.3, then /usr/local/lib/libhello.so.3 should be dlopened.

Chapter 10: Dlopened modules 54

If your program uses this approach, then it should search the directories listed in the LD_
LIBRARY_PATH1 environment variable, as well as the directory where libraries will eventually
be installed. Searching this variable (or equivalent) will guarantee that your program can
find its dlopened modules, even before installation, provided you have linked them using
libtool.

10.5 Unresolved dlopen issues

The following problems are not solved by using libtool’s dlopen support:

• Dlopen functions are generally only available on shared library platforms. If you want
your package to be portable to static platforms, you have to use either libltdl (see
Chapter 11 [Using libltdl], page 55) or develop your own alternatives to dlopening
dynamic code. Most reasonable solutions involve writing wrapper functions for the
dlopen family, which do package-specific tricks when dlopening is unsupported or not
available on a given platform.

• There are major differences in implementations of the dlopen family of functions. Some
platforms do not even use the same function names (notably HP-UX, with its shl_load
family).

• The application developer must write a custom search function to discover the correct
module filename to supply to dlopen.

1 LIBPATH on AIX, and SHLIB_PATH on HP-UX.

55

11 Using libltdl

Libtool provides a small library, called libltdl, that aims at hiding the various difficulties
of dlopening libraries from programmers. It consists of a few headers and small C source
files that can be distributed with applications that need dlopening functionality. On some
platforms, whose dynamic linkers are too limited for a simple implementation of libltdl
services, it requires GNU DLD, or it will only emulate dynamic linking with libtool’s dlpre-
opening mechanism.

libltdl supports currently the following dynamic linking mechanisms:

• dlopen (POSIX compliant systems, GNU/Linux, etc.)

• shl_load (HP-UX)

• LoadLibrary (Win16 and Win32)

• load_add_on (BeOS)

• NSAddImage or NSLinkModule (Darwin and Mac OS X)

• GNU DLD (emulates dynamic linking for static libraries)

• libtool’s dlpreopen (see Section 10.2 [Dlpreopening], page 50)

libltdl is licensed under the terms of the GNU Lesser General Public License, with the
following exception:

As a special exception to the GNU Lesser General Public License, if you dis-
tribute this file as part of a program or library that is built using GNU Libtool,
you may include it under the same distribution terms that you use for the rest
of that program.

11.1 How to use libltdl in your programs

The libltdl API is similar to the POSIX dlopen interface, which is very simple but powerful.

To use libltdl in your program you have to include the header file ltdl.h:

#include <ltdl.h>

The early releases of libltdl used some symbols that violated the POSIX namespace
conventions. These symbols are now deprecated, and have been replaced by those
described here. If you have code that relies on the old deprecated symbol names, defining
‘LT_NON_POSIX_NAMESPACE’ before you include ltdl.h provides conversion macros.
Whichever set of symbols you use, the new API is not binary compatible with the last, so
you will need to recompile your application to use this version of libltdl.

Note that libltdl is not well tested in a multithreaded environment, though the intention
is that it should work (see Section 11.3 [Using libltdl in a multi threaded environment],
page 62). If there are any issues, working around them is left as an exercise for the reader;
contributions are certainly welcome.

The following macros are defined by including ltdl.h:

[Macro]LT_PATHSEP_CHAR
LT_PATHSEP_CHAR is the system-dependent path separator, that is, ‘;’ on Windows
and ‘:’ everywhere else.

Chapter 11: Using libltdl 56

[Macro]LT_DIRSEP_CHAR
If LT_DIRSEP_CHAR is defined, it can be used as directory separator in addition to ‘/’.
On Windows, this contains ‘\’.

The following types are defined in ltdl.h:

[Type]lt_dlhandle
lt_dlhandle is a module “handle”. Every lt dlopened module has a handle associ-
ated with it.

[Type]lt_dladvise
lt_dladvise is used to control optional module loading modes. If it is not used, the
default mode of the underlying system module loader is used.

[Type]lt_dlsymlist
lt_dlsymlist is a symbol list for dlpreopened modules (see Section 10.2 [Dlpreopen-
ing], page 50).

Chapter 11: Using libltdl 57

libltdl provides the following functions:

[Function]int lt_dlinit (void)
Initialize libltdl. This function must be called before using libltdl and may be called
several times. Return 0 on success, otherwise the number of errors.

[Function]int lt_dlexit (void)
Shut down libltdl and close all modules. This function will only then shut down libltdl
when it was called as many times as lt_dlinit has been successfully called. Return
0 on success, otherwise the number of errors.

[Function]lt_dlhandle lt_dlopen (const char *filename)
Open the module with the file name filename and return a handle for it. lt_dlopen
is able to open libtool dynamic modules, preloaded static modules, the program itself
and native dynamic modules1.

Unresolved symbols in the module are resolved using its dependency libraries and
previously dlopened modules. If the executable using this module was linked with
the -export-dynamic flag, then the global symbols in the executable will also be used
to resolve references in the module.

If filename is NULL and the program was linked with -export-dynamic or -dlopen
self, lt_dlopen will return a handle for the program itself, which can be used to
access its symbols.

If libltdl cannot find the library and the file name filename does not have a directory
component it will additionally look in the following search paths for the module (in
the following order):

1. user-defined search path: This search path can be changed by the pro-
gram using the functions lt_dlsetsearchpath, lt_dladdsearchdir and
lt_dlinsertsearchdir.

2. libltdl’s search path: This search path is the value of the environment variable
LTDL_LIBRARY_PATH.

3. system library search path: The system dependent library search path (e.g. on
GNU/Linux it is LD_LIBRARY_PATH).

Each search path must be a list of absolute directories separated by LT_PATHSEP_

CHAR, for example, "/usr/lib/mypkg:/lib/foo". The directory names may not
contain the path separator.

If the same module is loaded several times, the same handle is returned. If lt_dlopen
fails for any reason, it returns NULL.

[Function]lt_dlhandle lt_dlopenext (const char *filename)
The same as lt_dlopen, except that it tries to append different file name extensions
to the file name. If the file with the file name filename cannot be found libltdl tries
to append the following extensions:

1. the libtool archive extension .la

1 Some platforms, notably Mac OS X, differentiate between a runtime library that cannot be opened by
lt_dlopen and a dynamic module that can. For maximum portability you should try to ensure that you
only pass lt_dlopen objects that have been compiled with libtool’s -module flag.

Chapter 11: Using libltdl 58

2. the extension used for native dynamically loadable modules on the host platform,
e.g., .so, .sl, etc.

This lookup strategy was designed to allow programs that don’t have knowledge about
native dynamic libraries naming conventions to be able to dlopen such libraries as
well as libtool modules transparently.

[Function]lt_dlhandle lt_dlopenadvise (const char *filename,
lt_dladvise advise)

The same as lt_dlopen, except that it also requires an additional argument that
may contain additional hints to the underlying system module loader. The advise
parameter is opaque and can only be accessed with the functions documented below.

Note that this function does not change the content of advise, so unlike the other
calls in this API takes a direct lt_dladvise type, and not a pointer to the same.

[Function]int lt_dladvise_init (lt_dladvise *advise)
The advise parameter can be used to pass hints to the module loader when using lt_

dlopenadvise to perform the loading. The advise parameter needs to be initialised
by this function before it can be used. Any memory used by advise needs to be
recycled with lt_dladvise_destroy when it is no longer needed.

On failure, lt_dladvise_init returns non-zero and sets an error message that can
be retrieved with lt_dlerror.

[Function]int lt_dladvise_destroy (lt_dladvise *advise)
Recycle the memory used by advise. For an example, see the documentation for
lt_dladvise_ext.

On failure, lt_dladvise_destroy returns non-zero and sets an error message that
can be retrieved with lt_dlerror.

[Function]int lt_dladvise_ext (lt_dladvise *advise)
Set the ext hint on advise. Passing an advise parameter to lt_dlopenadvise

with this hint set causes it to try to append different file name extensions like
lt_dlopenext.

The following example is equivalent to calling lt_dlopenext (filename):

lt_dlhandle

my_dlopenext (const char *filename)

{

lt_dlhandle handle = 0;

lt_dladvise advise;

if (!lt_dladvise_init (&advise) && !lt_dladvise_ext (&advise))

handle = lt_dlopenadvise (filename, advise);

lt_dladvise_destroy (&advise);

return handle;

}

Chapter 11: Using libltdl 59

On failure, lt_dladvise_ext returns non-zero and sets an error message that can be
retrieved with lt_dlerror.

[Function]int lt_dladvise_global (lt_dladvise *advise)
Set the symglobal hint on advise. Passing an advise parameter to lt_dlopenadvise

with this hint set causes it to try to make the loaded module’s symbols globally
available for resolving unresolved symbols in subsequently loaded modules.

If neither the symglobal nor the symlocal hints are set, or if a module is loaded
without using the lt_dlopenadvise call in any case, then the visibility of the module’s
symbols will be as per the default for the underlying module loader and OS. Even
if a suitable hint is passed, not all loaders are able to act upon it in which case
lt_dlgetinfo will reveal whether the hint was actually followed.

On failure, lt_dladvise_global returns non-zero and sets an error message that can
be retrieved with lt_dlerror.

[Function]int lt_dladvise_local (lt_dladvise *advise)
Set the symlocal hint on advise. Passing an advise parameter to lt_dlopenadvise

with this hint set causes it to try to keep the loaded module’s symbols hidden so that
they are not visible to subsequently loaded modules.

If neither the symglobal nor the symlocal hints are set, or if a module is loaded
without using the lt_dlopenadvise call in any case, then the visibility of the module’s
symbols will be as per the default for the underlying module loader and OS. Even
if a suitable hint is passed, not all loaders are able to act upon it in which case
lt_dlgetinfo will reveal whether the hint was actually followed.

On failure, lt_dladvise_local returns non-zero and sets an error message that can
be retrieved with lt_dlerror.

[Function]int lt_dladvise_resident (lt_dladvise *advise)
Set the resident hint on advise. Passing an advise parameter to lt_dlopenadvise

with this hint set causes it to try to make the loaded module resident in memory, so
that it cannot be unloaded with a later call to lt_dlclose.

On failure, lt_dladvise_resident returns non-zero and sets an error message that
can be retrieved with lt_dlerror.

[Function]int lt_dladvise_preload (lt_dladvise *advise)
Set the preload hint on advise. Passing an advise parameter to lt_dlopenadvise

with this hint set causes it to load only preloaded modules, so that if a suitable
preloaded module is not found, lt_dlopenadvise will return NULL.

[Function]int lt_dlclose (lt_dlhandle handle)
Decrement the reference count on the module handle. If it drops to zero and no other
module depends on this module, then the module is unloaded. Return 0 on success.

[Function]void * lt_dlsym (lt_dlhandle handle, const char *name)
Return the address in the module handle, where the symbol given by the null-
terminated string name is loaded. If the symbol cannot be found, NULL is returned.

Chapter 11: Using libltdl 60

[Function]const char * lt_dlerror (void)
Return a human readable string describing the most recent error that occurred from
any of libltdl’s functions. Return NULL if no errors have occurred since initialization
or since it was last called.

[Function]int lt_dladdsearchdir (const char *search_dir)
Append the search directory search dir to the current user-defined library search
path. Return 0 on success.

[Function]int lt_dlinsertsearchdir (const char *before,
const char *search_dir)

Insert the search directory search dir into the user-defined library search path, im-
mediately before the element starting at address before. If before is ‘NULL’, then
search dir is appending as if lt_dladdsearchdir had been called. Return 0 on suc-
cess.

[Function]int lt_dlsetsearchpath (const char *search_path)
Replace the current user-defined library search path with search path, which must be
a list of absolute directories separated by LT_PATHSEP_CHAR. Return 0 on success.

[Function]const char * lt_dlgetsearchpath (void)
Return the current user-defined library search path.

[Function]int lt_dlforeachfile (const char *search_path,
int (*func) (const char *filename, void * data), void * data)

In some applications you may not want to load individual modules with known names,
but rather find all of the modules in a set of directories and load them all during
initialisation. With this function you can have libltdl scan the LT_PATHSEP_CHAR-
delimited directory list in search path for candidates, and pass them, along with data
to your own callback function, func. If search path is ‘NULL’, then search all of the
standard locations that lt_dlopen would examine. This function will continue to
make calls to func for each file that it discovers in search path until one of these calls
returns non-zero, or until the files are exhausted. ‘lt_dlforeachfile’ returns the
value returned by the last call made to func.

For example you could define func to build an ordered argv-like vector of files using
data to hold the address of the start of the vector.

[Function]int lt_dlmakeresident (lt_dlhandle handle)
Mark a module so that it cannot be ‘lt_dlclose’d. This can be useful if a module
implements some core functionality in your project that would cause your code to
crash if removed. Return 0 on success.

If you use ‘lt_dlopen (NULL)’ to get a handle for the running binary, that handle will
always be marked as resident, and consequently cannot be successfully ‘lt_dlclose’d.

[Function]int lt_dlisresident (lt_dlhandle handle)
Check whether a particular module has been marked as resident, returning 1 if it has
or 0 otherwise. If there is an error while executing this function, return -1 and set an
error message for retrieval with lt_dlerror.

Chapter 11: Using libltdl 61

11.2 Creating modules that can be dlopened

Libtool modules are created like normal libtool libraries with a few exceptions:

You have to link the module with libtool’s -module switch, and you should link any pro-
gram that is intended to dlopen the module with -dlopen modulename.la where possible,
so that libtool can dlpreopen the module on platforms that do not support dlopening. If
the module depends on any other libraries, make sure you specify them either when you
link the module or when you link programs that dlopen it. If you want to disable ver-
sioning (see Chapter 7 [Versioning], page 42) for a specific module you should link it with
the -avoid-version switch. Note that libtool modules don’t need to have a "lib" prefix.
However, Automake 1.4 or higher is required to build such modules.

Usually a set of modules provide the same interface, i.e. exports the same symbols, so that
a program can dlopen them without having to know more about their internals: In order
to avoid symbol conflicts all exported symbols must be prefixed with "modulename LTX "

(modulename is the name of the module). Internal symbols must be named in such a
way that they won’t conflict with other modules, for example, by prefixing them with
" modulename ". Although some platforms support having the same symbols defined more
than once it is generally not portable and it makes it impossible to dlpreopen such modules.

libltdl will automatically cut the prefix off to get the real name of the symbol. Addition-
ally, it supports modules that do not use a prefix so that you can also dlopen non-libtool
modules.

foo1.c gives an example of a portable libtool module. Exported symbols are prefixed
with "foo1 LTX ", internal symbols with " foo1 ". Aliases are defined at the beginning so
that the code is more readable.

/* aliases for the exported symbols */

#define foo foo1_LTX_foo

#define bar foo1_LTX_bar

/* a global variable definition */

int bar = 1;

/* a private function */

int _foo1_helper() {

return bar;

}

/* an exported function */

int foo() {

return _foo1_helper();

}

The Makefile.am contains the necessary rules to build the module foo1.la:

...

lib_LTLIBRARIES = foo1.la

foo1_la_SOURCES = foo1.c

foo1_la_LDFLAGS = -module

Chapter 11: Using libltdl 62

...

11.3 Using libltdl in a multi threaded environment

Libltdl provides a wrapper around whatever dynamic run-time object loading mechanisms
are provided by the host system, many of which are themselves not thread safe. Conse-
quently libltdl cannot itself be consistently thread safe.

If you wish to use libltdl in a multithreaded environment, then you must mutex lock
around libltdl calls, since they may in turn be calling non-thread-safe system calls on some
target hosts.

Some old releases of libtool provided a mutex locking API that was unusable with POSIX
threads, so callers were forced to lock around all libltdl API calls anyway. That mutex
locking API was next to useless, and is not present in current releases.

Some future release of libtool may provide a new POSIX thread compliant mutex locking
API.

11.4 Data associated with loaded modules

Some of the internal information about each loaded module that is maintained by libltdl is
available to the user, in the form of this structure:

[Type]struct lt_dlinfo { char *filename; char *name; int ref_count;
int is_resident; int is_symglobal; int is_symlocal;}

lt_dlinfo is used to store information about a module. The filename attribute is
a null-terminated character string of the real module file name. If the module is a
libtool module then name is its module name (e.g. "libfoo" for "dir/libfoo.la"),
otherwise it is set to NULL. The ref count attribute is a reference counter that de-
scribes how often the same module is currently loaded. The remaining fields can be
compared to any hints that were passed to lt_dlopenadvise to determine whether
the underlying loader was able to follow them.

The following function will return a pointer to libltdl’s internal copy of this structure for
the given handle:

[Function]const lt_dlinfo * lt_dlgetinfo (lt_dlhandle handle)
Return a pointer to a struct that contains some information about the module handle.
The contents of the struct must not be modified. Return NULL on failure.

Furthermore, to save you from having to keep a list of the handles of all the modules
you have loaded, these functions allow you to iterate over libltdl’s list of loaded modules:

[Type]lt_dlinterface_id
The opaque type used to hold the module interface details for each registered libltdl
client.

[Type]int lt_dlhandle_interface (lt_dlhandle handle,
const char *id_string)

Functions of this type are called to check that a handle conforms to a library’s ex-
pected module interface when iterating over the global handle list. You should be

Chapter 11: Using libltdl 63

careful to write a callback function of this type that can correctly identify modules
that belong to this client, both to prevent other clients from accidentally finding your
loaded modules with the iterator functions below, and vice versa. The best way to
do this is to check that module handle conforms to the interface specification of your
loader using lt_dlsym.

The callback may be given every module loaded by all the libltdl module clients in
the current address space, including any modules loaded by other libraries such as
libltdl itself, and should return non-zero if that module does not fulfill the interface
requirements of your loader.

int

my_interface_cb (lt_dlhandle handle, const char *id_string)

{

char *(*module_id) (void) = NULL;

/* A valid my module must provide all of these symbols. */

if (!((module_id = (char*(*)(void)) lt_dlsym ("module_version"))

&& lt_dlsym ("my_module_entrypoint")))

return 1;

if (strcmp (id_string, module_id()) != 0)

return 1;

return 0;

}

[Function]lt_dlinterface_id lt_dlinterface_register
(const char *id_string, lt_dlhandle_interface *iface)

Use this function to register your interface validator with libltdl, and in return obtain
a unique key to store and retrieve per-module data. You supply an id string and iface
so that the resulting lt_dlinterface_id can be used to filter the module handles
returned by the iteration functions below. If iface is NULL, all modules will be matched.

[Function]void lt_dlinterface_free (lt_dlinterface_id iface)
Release the data associated with iface.

[Function]int lt_dlhandle_map (lt_dlinterface_id iface,
int (*func) (lt_dlhandle handle, void * data), void * data)

For each module that matches iface, call the function func. When writing the func
callback function, the argument handle is the handle of a loaded module, and data is
the last argument passed to lt_dlhandle_map. As soon as func returns a non-zero
value for one of the handles, lt_dlhandle_map will stop calling func and immediately
return that non-zero value. Otherwise 0 is eventually returned when func has been
successfully called for all matching modules.

Chapter 11: Using libltdl 64

[Function]lt_dlhandle lt_dlhandle_iterate (lt_dlinterface_id iface,
lt_dlhandle place)

Iterate over the module handles loaded by iface, returning the first matching handle
in the list if place is NULL, and the next one on subsequent calls. If place is the last
element in the list of eligible modules, this function returns NULL.

lt_dlhandle handle = 0;

lt_dlinterface_id iface = my_interface_id;

while ((handle = lt_dlhandle_iterate (iface, handle)))

{

...

}

[Function]lt_dlhandle lt_dlhandle_fetch (lt_dlinterface_id iface,
const char *module_name)

Search through the module handles loaded by iface for a module namedmodule name,
returning its handle if found or else NULL if no such named module has been loaded
by iface.

However, you might still need to maintain your own list of loaded module handles (in
parallel with the list maintained inside libltdl) if there were any other data that your
application wanted to associate with each open module. Instead, you can use the following
API calls to do that for you. You must first obtain a unique interface id from libltdl as
described above, and subsequently always use it to retrieve the data you stored earlier.
This allows different libraries to each store their own data against loaded modules, without
interfering with one another.

[Function]void * lt_dlcaller_set_data (lt_dlinterface_id key,
lt_dlhandle handle, void * data)

Set data as the set of data uniquely associated with key and handle for later retrieval.
This function returns the data previously associated with key and handle if any. A
result of 0, may indicate that a diagnostic for the last error (if any) is available from
lt_dlerror().

For example, to correctly remove some associated data:

void *stale = lt_dlcaller_set_data (key, handle, 0);

if (stale != NULL)

{

free (stale);

}

else

{

char *error_msg = lt_dlerror ();

if (error_msg != NULL)

{

my_error_handler (error_msg);

return STATUS_FAILED;

Chapter 11: Using libltdl 65

}

}

[Function]void * lt_dlcaller_get_data (lt_dlinterface_id key,
lt_dlhandle handle)

Return the address of the data associated with key and handle, or else NULL if there
is none.

Old versions of libltdl also provided a simpler, but similar, API based around lt_

dlcaller_id. Unfortunately, it had no provision for detecting whether a module belonged
to a particular interface as libltdl didn’t support multiple loaders in the same address space
at that time. Those APIs are no longer supported as there would be no way to stop clients
of the old APIs from seeing (and accidentally altering) modules loaded by other libraries.

11.5 How to create and register new module loaders

Sometimes libltdl’s many ways of gaining access to modules are not sufficient for the pur-
poses of a project. You can write your own loader, and register it with libltdl so that
lt_dlopen will be able to use it.

Writing a loader involves writing at least three functions that can be called by lt_dlopen,
lt_dlsym and lt_dlclose. Optionally, you can provide a finalisation function to perform
any cleanup operations when lt_dlexit executes, and a symbol prefix string that will be
prepended to any symbols passed to lt_dlsym. These functions must match the function
pointer types below, after which they can be allocated to an instance of lt_user_dlloader
and registered.

Registering the loader requires that you choose a name for it, so that it can be recognised
by lt_dlloader_find and removed with lt_dlloader_remove. The name you choose must
be unique, and not already in use by libltdl’s builtin loaders:

"dlopen" The system dynamic library loader, if one exists.

"dld" The GNU dld loader, if libdld was installed when libltdl was built.

"dlpreload"
The loader for lt_dlopening of preloaded static modules.

The prefix "dl" is reserved for loaders supplied with future versions of libltdl, so you
should not use that for your own loader names.

The following types are defined in ltdl.h:

[Type]lt_module
lt_module is a dlloader dependent module. The dynamic module loader extensions
communicate using these low level types.

[Type]lt_dlloader
lt_dlloader is a handle for module loader types.

[Type]lt_user_data
lt_user_data is used for specifying loader instance data.

Chapter 11: Using libltdl 66

[Type]struct lt_user_dlloader {const char *sym_prefix;
lt_module_open *module_open; lt_module_close *module_close;
lt_find_sym *find_sym; lt_dlloader_exit *dlloader_exit; }

If you want to define a new way to open dynamic modules, and have the lt_dlopen
API use it, you need to instantiate one of these structures and pass it to lt_dlloader_
add. You can pass whatever you like in the dlloader data field, and it will be passed
back as the value of the first parameter to each of the functions specified in the
function pointer fields.

[Type]lt_module lt_module_open (const char *filename)
The type of the loader function for an lt_dlloader module loader. The value set in
the dlloader data field of the struct lt_user_dlloader structure will be passed into
this function in the loader data parameter. Implementation of such a function should
attempt to load the named module, and return an lt_module suitable for passing
in to the associated lt_module_close and lt_sym_find function pointers. If the
function fails it should return NULL, and set the error message with lt_dlseterror.

[Type]int lt_module_close (lt_user_data loader_data,
lt_module module)

The type of the unloader function for a user defined module loader. Implementation
of such a function should attempt to release any resources tied up by the module
module, and then unload it from memory. If the function fails for some reason, set
the error message with lt_dlseterror and return non-zero.

[Type]void * lt_find_sym (lt_module module, const char *symbol)
The type of the symbol lookup function for a user defined module loader. Imple-
mentation of such a function should return the address of the named symbol in the
module module, or else set the error message with lt_dlseterror and return NULL

if lookup fails.

[Type]int lt_dlloader_exit (lt_user_data loader_data)
The type of the finalisation function for a user defined module loader. Implementation
of such a function should free any resources associated with the loader, including any
user specified data in the dlloader_data field of the lt_user_dlloader. If non-NULL,
the function will be called by lt_dlexit, and lt_dlloader_remove.

For example:

int

register_myloader (void)

{

lt_user_dlloader dlloader;

/* User modules are responsible for their own initialisation. */

if (myloader_init () != 0)

return MYLOADER_INIT_ERROR;

dlloader.sym_prefix = NULL;

dlloader.module_open = myloader_open;

Chapter 11: Using libltdl 67

dlloader.module_close = myloader_close;

dlloader.find_sym = myloader_find_sym;

dlloader.dlloader_exit = myloader_exit;

dlloader.dlloader_data = (lt_user_data)myloader_function;

/* Add my loader as the default module loader. */

if (lt_dlloader_add (lt_dlloader_next (NULL), &dlloader,

"myloader") != 0)

return ERROR;

return OK;

}

Note that if there is any initialisation required for the loader, it must be performed
manually before the loader is registered – libltdl doesn’t handle user loader initialisation.

Finalisation is handled by libltdl however, and it is important to ensure the dlloader_
exit callback releases any resources claimed during the initialisation phase.

Chapter 11: Using libltdl 68

libltdl provides the following functions for writing your own module loaders:

[Function]int lt_dlloader_add (lt_dlloader *place,
lt_user_dlloader *dlloader, const char *loader_name)

Add a new module loader to the list of all loaders, either as the last loader (if place
is NULL), else immediately before the loader passed as place. loader name will be
returned by lt_dlloader_name if it is subsequently passed a newly registered loader.
These loader names must be unique, or lt_dlloader_remove and lt_dlloader_

find cannot work. Returns 0 for success.

/* Make myloader be the last one. */

if (lt_dlloader_add (NULL, myloader) != 0)

perror (lt_dlerror ());

[Function]int lt_dlloader_remove (const char *loader_name)
Remove the loader identified by the unique name, loader name. Before this can
succeed, all modules opened by the named loader must have been closed. Returns 0
for success, otherwise an error message can be obtained from lt_dlerror.

/* Remove myloader. */

if (lt_dlloader_remove ("myloader") != 0)

perror (lt_dlerror ());

[Function]lt_dlloader * lt_dlloader_next (lt_dlloader *place)
Iterate over the module loaders, returning the first loader if place is NULL, and the
next one on subsequent calls. The handle is for use with lt_dlloader_add.

/* Make myloader be the first one. */

if (lt_dlloader_add (lt_dlloader_next (NULL), myloader) != 0)

return ERROR;

[Function]lt_dlloader * lt_dlloader_find (const char *loader_name)
Return the first loader with a matching loader name identifier, or else NULL, if the
identifier is not found.

The identifiers that may be used by libltdl itself, if the host architecture supports
them are dlopen1, dld and dlpreload.

/* Add a user loader as the next module loader to be tried if

the standard dlopen loader were to fail when lt_dlopening. */

if (lt_dlloader_add (lt_dlloader_find ("dlopen"), myloader) != 0)

return ERROR;

[Function]const char * lt_dlloader_name (lt_dlloader *place)
Return the identifying name of place, as obtained from lt_dlloader_next or lt_

dlloader_find. If this function fails, it will return NULL and set an error for retrieval
with lt_dlerror.

[Function]lt_user_data * lt_dlloader_data (lt_dlloader *place)
Return the address of the dlloader_data of place, as obtained from lt_dlloader_

next or lt_dlloader_find. If this function fails, it will return NULL and set an error
for retrieval with lt_dlerror.

1 This is used for the host dependent module loading API – shl_load and LoadLibrary for example

Chapter 11: Using libltdl 69

11.5.1 Error handling within user module loaders

[Function]int lt_dladderror (const char *diagnostic)
This function allows you to integrate your own error messages into lt_dlerror. Pass
in a suitable diagnostic message for return by lt_dlerror, and an error identifier for
use with lt_dlseterror is returned.

If the allocation of an identifier fails, this function returns -1.

int myerror = lt_dladderror ("doh!");

if (myerror < 0)

perror (lt_dlerror ());

[Function]int lt_dlseterror (int errorcode)
When writing your own module loaders, you should use this function to raise errors
so that they are propagated through the lt_dlerror interface. All of the standard
errors used by libltdl are declared in ltdl.h, or you can add more of your own with
lt_dladderror. This function returns 0 on success.

if (lt_dlseterror (LTDL_ERROR_NO_MEMORY) != 0)

perror (lt_dlerror ());

11.6 How to distribute libltdl with your package

Even though libltdl is installed together with libtool, you may wish to include libltdl in the
distribution of your package, for the convenience of users of your package that don’t have
libtool or libltdl installed, or if you are using features of a very new version of libltdl that
you don’t expect your users to have yet. In such cases, you must decide what flavor of
libltdl you want to use: a convenience library or an installable libtool library.

The most simplistic way to add libltdl to your package is to copy all the libltdl

source files to a subdirectory within your package and to build and link them along with
the rest of your sources. To help you do this, the m4 macros for Autoconf are available in
ltdl.m4. You must ensure that they are available in aclocal.m4 before you run Autoconf2.
Having made the macros available, you must add a call to the ‘LTDL_INIT’ macro (after
the call to ‘LT_INIT’) to your package’s configure.ac to perform the configure time checks
required to build the library correctly. Unfortunately, this method has problems if you
then try to link the package binaries with an installed libltdl, or a library that depends on
libltdl, because of the duplicate symbol definitions. For example, ultimately linking against
two different versions of libltdl, or against both a local convenience library and an installed
libltdl is bad. Ensuring that only one copy of the libltdl sources are linked into any program
is left as an exercise for the reader.

[Macro]LT_CONFIG_LTDL_DIR (directory)
Declare directory to be the location of the libltdl source files, for libtoolize

--ltdl to place them. See Section 5.5.1 [Invoking libtoolize], page 35, for more
details. Provided that you add an appropriate LT_CONFIG_LTDL_DIR call in your
configure.ac before calling libtoolize, the appropriate libltdl files will be in-
stalled automatically.

2 We used to recommend adding the contents of ltdl.m4 to acinclude.m4, but with aclocal from a
modern Automake (1.8 or newer) and this release of libltdl that is not only unnecessary but makes it
easy to forget to upgrade acinclude.m4 if you move to a different release of libltdl.

Chapter 11: Using libltdl 70

[Macro]LTDL_INIT (options)
[Macro]LT_WITH_LTDL
[Macro]AC_WITH_LTDL

AC_WITH_LTDL and LT_WITH_LTDL are deprecated names for older versions of this
macro; autoupdate will update your configure.ac file.

This macro adds the following options to the configure script:

--with-ltdl-include installed-ltdl-header-dir

The LTDL_INIT macro will look in the standard header file locations to
find the installed libltdl headers. If LTDL_INIT can’t find them by itself,
the person who builds your package can use this option to tell configure
where the installed libltdl headers are.

--with-ltdl-lib installed-ltdl-library-dir

Similarly, the person building your package can use this option to help
configure find the installed libltdl.la.

--with-included-ltdl

If there is no installed libltdl, or in any case if the person building your
package would rather use the libltdl sources shipped with the package
in the subdirectory named by LT_CONFIG_LTDL_DIR, they should pass
this option to configure.

If the --with-included-ltdl is not passed at configure time, and an installed
libltdl is not found3, then configure will exit immediately with an error that
asks the user to either specify the location of an installed libltdl using the
--with-ltdl-include and --with-ltdl-lib options, or to build with the libltdl

sources shipped with the package by passing --with-included-ltdl.

If an installed libltdl is found, then LIBLTDL is set to the link flags needed to use
it, and LTDLINCL to the preprocessor flags needed to find the installed headers, and
LTDLDEPS will be empty. Note, however, that no version checking is performed. You
should manually check for the libltdl features you need in configure.ac:

LT_INIT([dlopen])

LTDL_INIT

The lt_dladvise_init symbol was added with libtool-2.2

if test yes != "$with_included_ltdl"; then

save_CFLAGS=$CFLAGS

save_LDFLAGS=$LDFLAGS

CFLAGS="$CFLAGS $LTDLINCL"

LDFLAGS="$LDFLAGS $LIBLTDL"

AC_CHECK_LIB([ltdl], [lt_dladvise_init],

[],

[AC_MSG_ERROR([installed libltdl is too old])])

LDFLAGS=$save_LDFLAGS

CFLAGS=$save_CFLAGS

3 Even if libltdl is installed, ‘LTDL_INIT’ may fail to detect it if libltdl depends on symbols provided by
libraries other than the C library.

Chapter 11: Using libltdl 71

fi

options may include no more than one of the following build modes depending on
how you want your project to build libltdl: ‘nonrecursive’, ‘recursive’, or
‘subproject’. In order for libtoolize to detect this option correctly, if you supply
one of these arguments, they must be given literally (i.e., macros or shell variables
that expand to the correct ltdl mode will not work).

‘nonrecursive’
This is how the Libtool project distribution builds the libltdl we ship
and install. If you wish to use Automake to build libltdl without in-
voking a recursive make to descend into the libltdl subdirectory, then
use this option. You will need to set your configuration up carefully to
make this work properly, and you will need releases of Autoconf and Au-
tomake that support subdir-objects and LIBOBJDIR properly. In your
configure.ac, add:

AM_INIT_AUTOMAKE([subdir-objects])

AC_CONFIG_HEADERS([config.h])

LT_CONFIG_LTDL_DIR([libltdl])

LT_INIT([dlopen])

LTDL_INIT([nonrecursive])

You have to use a config header, but it may have a name different than
config.h.

Also, add the following near the top of your Makefile.am:

AM_CPPFLAGS =

AM_LDFLAGS =

BUILT_SOURCES =

EXTRA_DIST =

CLEANFILES =

MOSTLYCLEANFILES =

include_HEADERS =

noinst_LTLIBRARIES =

lib_LTLIBRARIES =

EXTRA_LTLIBRARIES =

include libltdl/ltdl.mk

Unless you build no other libraries from this Makefile.am, you will also
need to change lib_LTLIBRARIES to assign with ‘+=’ so that the libltdl
targets declared in ltdl.mk are not overwritten.

‘recursive’
This build mode still requires that you use Automake, but (in contrast
with ‘nonrecursive’) uses the more usual device of starting another make
process in the libltdl subdirectory. To use this mode, you should add
to your configure.ac:

AM_INIT_AUTOMAKE

Chapter 11: Using libltdl 72

AC_CONFIG_HEADERS([config.h])

LT_CONFIG_LTDL_DIR([libltdl])

LT_INIT([dlopen])

LTDL_INIT([recursive])

AC_CONFIG_FILES([libltdl/Makefile])

Again, you have to use a config header, but it may have a name different
than config.h if you like.

Also, add this to your Makefile.am:

SUBDIRS = libltdl

‘subproject’
This mode is the default unless you explicitly add recursive or
nonrecursive to your LTDL_INIT options; subproject is the only mode
supported by previous releases of libltdl. Even if you do not use Autoconf
in the parent project, then, in ‘subproject’ mode, still libltdl

contains all the necessary files to configure and build itself – you just
need to arrange for your build system to call libltdl/configure with
appropriate options, and then run make in the libltdl subdirectory.

If you are using Autoconf and Automake, then you will need to add the
following to your configure.ac:

LT_CONFIG_LTDL_DIR([libltdl])

LTDL_INIT

and to Makefile.am:

SUBDIRS = libltdl

Aside from setting the libltdl build mode, there are other keywords that you can pass
to LTDL_INIT to modify its behavior when --with-included-ltdl has been given:

‘convenience’
This is the default unless you explicitly add installable to your LTDL_
INIT options.

This keyword will cause options to be passed to the configure script in
the subdirectory named by LT_CONFIG_LTDL_DIR to cause it to be built
as a convenience library. If you’re not using automake, you will need
to define top_build_prefix, top_builddir, and top_srcdir in your
makefile so that LIBLTDL, LTDLDEPS, and LTDLINCL expand correctly.

One advantage of the convenience library is that it is not installed, so
the fact that you use libltdl will not be apparent to the user, and it
won’t overwrite a pre-installed version of libltdl the system might al-
ready have in the installation directory. On the other hand, if you want
to upgrade libltdl for any reason (e.g. a bugfix) you’ll have to recom-
pile your package instead of just replacing the shared installed version of
libltdl. However, if your programs or libraries are linked with other
libraries that use such a pre-installed version of libltdl, you may get
linker errors or run-time crashes. Another problem is that you cannot
link the convenience library into more than one libtool library, then link

Chapter 11: Using libltdl 73

a single program with those libraries, because you may get duplicate sym-
bols. In general you can safely use the convenience library in programs
that don’t depend on other libraries that might use libltdl too.

‘installable’
This keyword will pass options to the configure script in the subdi-
rectory named by LT_CONFIG_LTDL_DIR to cause it to be built as an
installable library. If you’re not using automake, you will need to define
top_build_prefix, top_builddir and top_srcdir in your makefile so
that LIBLTDL, LTDLDEPS, and LTDLINCL are expanded properly.

Be aware that you could overwrite another libltdl already installed to
the same directory if you use this option.

Whatever method you use, ‘LTDL_INIT’ will define the shell variable LIBLTDL to the link
flag that you should use to link with libltdl, the shell variable LTDLDEPS to the files that
can be used as a dependency in Makefile rules, and the shell variable LTDLINCL to the
preprocessor flag that you should use to compile programs that include ltdl.h. So, when
you want to link a program with libltdl, be it a convenience, installed or installable library,
just use ‘$(LTDLINCL)’ for preprocessing and compilation, and ‘$(LIBLTDL)’ for linking.

• If your package is built using an installed version of libltdl, LIBLTDL will be set to
the compiler flags needed to link against the installed library, LTDLDEPS will be empty,
and LTDLINCL will be set to the compiler flags needed to find the libltdl header files.

• If your package is built using the convenience libltdl, LIBLTDL and LTDLDEPS will be
the pathname for the convenience version of libltdl (starting with ‘${top_builddir}/’
or ‘${top_build_prefix}’) and LTDLINCL will be -I followed by the directory that
contains ltdl.h (starting with ‘${top_srcdir}/’).

• If an installable version of the included libltdl is being built, its pathname starting
with ‘${top_builddir}/’ or ‘${top_build_prefix}’, will be stored in LIBLTDL and
LTDLDEPS, and LTDLINCL will be set just like in the case of convenience library.

You should probably also use the ‘dlopen’ option to LT_INIT in your configure.ac, oth-
erwise libtool will assume no dlopening mechanism is supported, and revert to dlpreopening,
which is probably not what you want. Avoid using the -static, -static-libtool-libs,
or -all-static switches when linking programs with libltdl. This will not work on all
platforms, because the dlopening functions may not be available for static linking.

The following example shows you how to embed an installable libltdl in your package.
In order to use the convenience variant, just replace the LTDL_INIT option ‘installable’
with ‘convenience’. We assume that libltdl was embedded using ‘libtoolize --ltdl’.

configure.ac:

...

Name the subdirectory that contains libltdl sources

LT_CONFIG_LTDL_DIR([libltdl])

Configure libtool with dlopen support if possible

LT_INIT([dlopen])

Enable building of the installable libltdl library

Chapter 11: Using libltdl 74

LTDL_INIT([installable])

...

Makefile.am:

...

SUBDIRS = libltdl

AM_CPPFLAGS = $(LTDLINCL)

myprog_LDFLAGS = -export-dynamic

myprog_LDADD = $(LIBLTDL) -dlopen self -dlopen foo1.la

myprog_DEPENDENCIES = $(LTDLDEPS) foo1.la

...

[Macro]LTDL_INSTALLABLE
[Macro]AC_LIBLTDL_INSTALLABLE

These macros are deprecated, the ‘installable’ option to LTDL_INIT should be used
instead.

[Macro]LTDL_CONVENIENCE
[Macro]AC_LIBLTDL_CONVENIENCE

These macros are deprecated, the ‘convenience’ option to LTDL_INIT should be used
instead.

75

12 Libtool’s trace interface

This section describes macros whose sole purpose is to be traced using Autoconf’s --trace
option (see Section “The Autoconf Manual” in The Autoconf Manual) to query the Libtool
configuration of a project. These macros are called by Libtool internals and should never
be called by user code; they should only be traced.

[Macro]LT_SUPPORTED_TAG (tag)
This macro is called once for each language enabled in the package. Its only argument,
tag, is the tag-name corresponding to the language (see Section 6.2 [Tags], page 40).

You can therefore retrieve the list of all tags enabled in a project using the following
command:

autoconf --trace 'LT_SUPPORTED_TAG:$1'

76

13 Frequently Asked Questions about libtool

This chapter covers some questions that often come up on the mailing lists.

13.1 Why does libtool strip link flags when creating a
library?

When creating a shared library, but not when compiling or creating a program, libtool
drops some flags from the command line provided by the user. This is done because flags
unknown to libtool may interfere with library creation or require additional support from
libtool, and because omitting flags is usually the conservative choice for a successful build.

If you encounter flags that you think are useful to pass, as a work-around you can prepend
flags with -Wc, or -Xcompiler to allow them to be passed through to the compiler driver
(see Section 4.2 [Link mode], page 18). Another possibility is to add flags already to the
compiler command at configure run time:

./configure CC='gcc -m64'

If you think libtool should let some flag through by default, here’s how you can
test such an inclusion: grab the Libtool development tree, edit the ltmain.in file in the
libltdl/config subdirectory to pass through the flag (search for ‘Flags to be passed

through’), re-bootstrap and build with the flags in question added to LDFLAGS, CFLAGS,
CXXFLAGS, etc. on the configure command line as appropriate. Run the testsuite as
described in the README file and report results to the Libtool bug reporting address bug-
libtool@gnu.org.

mailto:bug-libtool@gnu.org
mailto:bug-libtool@gnu.org

77

14 Troubleshooting

Libtool is under constant development, changing to remain up-to-date with modern oper-
ating systems. If libtool doesn’t work the way you think it should on your platform, you
should read this chapter to help determine what the problem is, and how to resolve it.

14.1 The libtool test suite

Libtool comes with an integrated set of tests to check that your build is sane, that test
its capabilities, and report obvious bugs in the libtool program. The test suite is based
on Autotest from Autoconf (see Section “Generating Test Suites with Autotest” in The
Autoconf Manual). These tests, too, are constantly evolving, based on past problems with
libtool, and known deficiencies in other operating systems.

As described in the README file, you may run make -k check after you have built libtool
(possibly before you install it) to make sure that it meets basic functional requirements.

14.1.1 Description of test suite

The test suite uses keywords to classify certain test groups:

‘CXX’
‘F77’
‘FC’
‘GCJ’ The test group exercises one of these libtool language tags.

‘autoconf’
‘automake’

These keywords denote that the respective external program is needed by the
test group. The tests are typically skipped if the program is not installed. The
‘automake’ keyword may also denote use of the aclocal program.

‘interactive’
This test group may require user interaction on some systems. Typically, this
means closing a popup window about a DLL load error on Windows.

‘libltdl’ Denote that the libltdl library is exercised by the test group.

‘libtool’
‘libtoolize’

Denote that the libtool or libtoolize scripts are exercised by the test group,
respectively.

‘recursive’
Denote that this test group may recursively re-invoke the test suite itself, with
changed settings and maybe a changed libtool script. You may use the INNER_
TESTSUITEFLAGS variable to pass additional settings to this recursive invoca-
tion. Typically, recursive invocations delimit the set of tests with another key-
word, for example by passing -k libtool right before the expansion of the
INNER_TESTSUITEFLAGS variable (without an intervening space, so you get the
chance for further delimitation).

Chapter 14: Troubleshooting 78

Test groups with the keyword ‘recursive’ should not be denoted with key-
words, in order to avoid infinite recursion. As a consequence, recursive test
groups themselves should never require user interaction, while the test groups
they invoke may do so.

There is a convenience target ‘check-noninteractive’ that runs all tests from
both test suites that do not cause user interaction on Windows. Conversely, the target
‘check-interactive’ runs the complement of tests and might require closing popup
windows about DLL load errors on Windows.

Here is a list of the some of the current files in the test suite, and what they test for:

tests/am-subdirs.at

Tests that a binary can be built and ran from outside of the sub-directory that
it is built and ran in.

tests/archive-in-archive.at

Tests convenience archive within another convenience archive. Compiles foo()
in libfoo, then compiles libfoo (and bar() function) into libbar.

tests/bindir.at

Tests include a demonstration of various scenarios related to using the -bindir
option with libtool, verifying that installed files are correctly linked and exe-
cuted, and demonstrating flexibility in handling different installation paths and
adapting to changing directory structures.

tests/bug_42313.at

Tests that there are no conflicting warnings about AC PROG RANLIB
by verifying no autoscan AC PROG RANLIB warning and checking that
AC PROG RANLIB declaration has a warning.

tests/bug_62343.at

Tests that the -no-canonical-prefixes flag is not removed from the linking
command, but it is instead passed through to the linker.

tests/bug_71489.at

Tests that the local version of an installed program is used both with and
without an external library.

tests/cdemo.at

Tests include a demonstration of libtool convenience libraries, a mechanism
that allows build-time static libraries to be created, in a way that their compo-
nents can be later linked into programs or other libraries, even shared ones.

tests/cmdline_wrap.at

Tests include a verification that libtool operates properly when the maximum
command line length is very small.

tests/configure-funcs.at

Tests creation of shell functions shared with configure and libtool.

tests/configure-iface.at

Tests that exercise the configure interface to libltdl.

Chapter 14: Troubleshooting 79

tests/convenience.at

Tests demonstrate libtool’s convenience archive capabilities for C, C++, For-
tran, and Java languages.

tests/ctor.at

Test that libtool can handle code with C++ constructors.

tests/cwrapper.at

Test cwrapper compliance with standards for uninstalled executables, string
length, and installed shared libraries.

tests/darwin.at

Tests for macOS X including compilation, concurrent library extraction, GDB
debug information, ld warnings, and verifying .dylib and .so files can be used
with lt_dlopen.

tests/demo.at

Tests include a demonstration of a trivial package that uses libtool. The
tests include scenarios to build both static and shared libraries, only static
libraries, only shared libraries, disabling fast-install mode, building PIC code,
and building non-PIC code.

tests/depdemo.at

Tests include a demonstration of inter-library dependencies with libtool. The
test programs link some interdependent libraries under different scenarios.

tests/deplib-in-subdir.at

Tests building and linking various libraries within various directories and sub-
directories while changing directories as well. It should be possible to use a
nontrivial relative path to the output file name when creating libraries and
programs. The deplibs of these might have relative paths as well. When
executing uninstalled programs, the paths relative to $PWD at build time needs
to be translated to a path valid at execution time. Also test installing these
libraries and programs; however, use consistent relative paths between libtool

--mode=link and libtool --mode=install in this test.

tests/deplibs-ident.at

Tests the correct detection and handling of identical dependency libraries when
using libtool.

tests/deplibs-mingw.at

Tests include various scenarios related to detecting deplibs correctly, including
cases where there is no file command installed as well as the host OS being
MinGW.

tests/destdir.at

Installs some libs in $DESTDIR, moves them to a different dir, then installs some
false libraries in $DESTDIR that should not be linked against. If the program
refers to these false libraries, there is a bug.

Chapter 14: Troubleshooting 80

tests/dlloader-api.at

Tests that lt_dlopen can open a shared library and call a function from the
library, verifies that lt_dlsym can find a symbol in the opened library, and
make sure that lt_dlclose can properly close the library.

tests/dumpbin-symbols.at

Tests whether on Windows a convenience symbol in a section of a .lib file is
present even if that section is hidden in the .obj file.

tests/duplicate_conv.at

Tests two convenience archives with the same name, and also containing an
object with the same name.

tests/duplicate_deps.at

Tests circular call of dependencies between two libraries, liba and libb. Func-
tion a1() from liba calls b1() from libb and function b1() from libb calls
a2() from liba.

tests/duplicate_members.at

Tests a library with multiple files of the same name (from different directories),
such as 1/a.c, 2/a.c, 3/a.c, etc.

tests/early-libtool.at

Tests building binaries using libtool using two configure approaches.

tests/exceptions.at

Tests C++ exception handling with libtool.

tests/execute-mode.at

Tests the --mode=execute feature of libtool.

tests/exeext.at

Tests ensure that $EXEEXT handling works by linking and installing an exe-
cutable.

tests/export.at

Tests symbol exports if shared libraries are enabled.

tests/export-def.at

Test exporting from a DLL with module definition (.def files). This test only
runs if shared libraries are enabled and building a DLL is supported.

tests/f77demo.at

Tests test Fortran 77 support in libtool by creating libraries from Fortran 77
sources, and mixed Fortran and C sources, and a Fortran 77 program to use
the former library, and a C program to use the latter library.

tests/fail.at

Tests to ensure that libtool really fails when it should, including after compile
failure, program creation failure, and shared library creation failure.

tests/fcdemo.at

Tests are similar to the tests/f77demo.at tests, except that Fortran 90 is used
in combination with the ‘FC’ interface provided by Autoconf and Automake.

Chapter 14: Troubleshooting 81

tests/flags.at

Tests include checks that compile and linker flags get passed through libtool.
Tests flags for C, C++, Fortran 77, and Fortran 90.

tests/help.at

Tests a variety of mode commands, including mode short-hands, to ensure
basic command line functionality. Also verify that the --debug flag is handled
correctly in each mode.

tests/indirect_deps.at

Tests indirect dependencies (or nested dependencies). libd depends on
libconv, which depends on libb, which depends on liba.

tests/infer-tag.at

Tests that func_infer_tag works by compiling various code snippets in various
languages (C, C++, Fortran, Java) without a --tag flag.

tests/inherited_flags.at

Tests the functionality of the inherited_linker_flags variable in libtool

library files.

tests/install.at

Tests install mode and ensures that install_override_mode overrides the
mode of the shared library (and only the shared library).

tests/lalib-syntax.at

Tests parsing of .la files including both correctly formed .la files and mal-
formed or bogus .la files.

tests/libtool.at

Tests basic libtool functionality including shell meta-character removal, lack
of supplied mode option, file extension handling, simple linking, objectlist
flag usage, and LT_SUPPORTED_TAG usage.

tests/libtoolize.at

Tests that errors and warnings are reported for invalid and unknown
LIBTOOLIZE_OPTIONS as well as checking the --no-warn flag suppresses
libtoolize warnings.

tests/link-order2.at

Tests to make sure that depdepls are added right after the libraries that pull
them in which is necessary at least for static linking and on systems where
libraries do not link against other libraries.

tests/link-order.at

Tests for problems with linking libraries in different order.

tests/loadlibrary.at

Tests libltdl (a libdl API for dlopen) support of LoadLibrary for dynami-
cally linking DLLs in Windows environments.

tests/localization.at

Tests to verify that invoking C compiler language localization options do not
cause problems with libtool.

Chapter 14: Troubleshooting 82

tests/lt_dladvise.at

Tests libltdl (a libdl API for dlopen) module loading advisor functions.

tests/lt_dlexit.at

Tests libltdl (a libdl API for dlopen) for a memory use after free bug in
lt_dlexit.

tests/lt_dlopen_a.at

Tests lt_dlopen with an archive file. Verifies that lt_dlopen can load an
archive file and successfully return a handle to it.

tests/lt_dlopen.at

Tests libltdl (a libdl API for dlopen) with a basic C example.

tests/lt_dlopenext.at

Tests libltdl (a libdl API for dlopen) with an extern C++ function.

tests/ltdl-api.at

Tests that libtool doesn’t mangle gnulib argv names.

tests/ltdl-libdir.at

Tests if ltdl can find an installed module using the libdir variable in the
.la file. Tests also include a MinGW test which uses a Windows-style libdir
name.

tests/mdemo.at

Tests include a demonstration of a package that uses libtool and the system
independent dlopen wrapper libltdl to load modules. The library libltdl

provides a dlopen wrapper for various platforms (POSIX) including support
for dlpreopened modules (see Section 10.2 [Dlpreopening], page 50).

tests/need_lib_prefix.at

Tests to check for failures on systems that require libraries to be prefixed with
lib.

tests/nocase.at

Tests the want_nocaseglob configuration option to search for libraries regard-
less of case.

tests/no-executables.at

Tests AC_NO_EXECUTABLES macro with gcc.

tests/nonrecursive.at

Tests non-recursive DLL libraries with nonrecursive Automake libltdl (a
libdl API for dlopen) build.

tests/old-m4-iface.at

Tests various aspects of libtool’s old m4 interface.

tests/pic_flag.at

Tests the -fpic flag with gcc and g++.

tests/recursive.at

Tests recursive DLL libraries with recursive Automake libltdl (a libdl API
for dlopen) build.

Chapter 14: Troubleshooting 83

tests/resident.at

Tests that resident modules are not unloaded at program exit, as they need to
be able to invoke atexit handlers. A module being a resident module means
it is prevented from being lt_dlclosed.

tests/runpath-in-lalib.at

Tests the runpath configuration options in libtool (-R and -rpath) and that
the resulting .la files are installed in the directory appended to their respective
library’s dependency_libs by -R.

tests/search-path.at

Tests sys_lib_search_path_spec, which is an expression to get the compile-
time system library search path. Tests include determining if it is possible to
link an executable to system libraries and if sys_lib_search_path_spec also
works on MSVC (Microsoft Visual C++).

tests/shlibpath.at

Tests include verifying proper behaviour of the shlibpath_var, which is the
variable responsible for telling the linker where to find shared libraries. Addi-
tionally, this tests the behaviour of the shlibpath_overrides_runpath vari-
able, which determines if it possible to override an executable’s hardcoded li-
brary search path with an environment variable.

tests/slist.at

Tests the functionality of the SList datastructure, which is an implementation
of singly linked lists. Tests include verifying the usual linked list functions such
as finding, removing, deleting, reversing, and sorting the element(s) in SLists.

tests/standalone.at

Tests libltdl functionality as a standalone tool. Tests include compiling a
symlinked version of libltdl and a copied version of libltdl. Next libltdl
is installed locally and linked in a project without the use of Autoconf or Au-
tomake.

tests/static.at

Tests various flags related to static and dynamic linking including -Bstatic

and -Bdynamic.

tests/stresstest.at

Tests various libtool flag and option combinations, tests linking various types
of objects in different sections, and tests regular expressions to cover edge cases
and unusual configurations over multiple iterations.

tests/subproject.at

Tests the libltdl flag for building subprojects in individual directories. Tests
cover soft-linked libltdl trees, copied libltdl trees, and linking libltdl with-
out Autotools.

tests/sysroot.at

Tests that libtool runs properly in sandboxed sysroot directories.

Chapter 14: Troubleshooting 84

tests/tagdemo.at

Tests include a demonstration of a package that uses libtool’s multi-language
support through configuration tags. It generates a library from C++ sources,
which is then linked to a C++ program.

tests/template.at

Tests that libtool can handle C++ code utilizing templates.

tests/testsuite.at

Main testsuite framework file processed by autom4te processes enable running
the libtool test cases.

tests/versioning.at

Tests libtool’s versioning system. Tests begin with verifying the behaviour
of libtool versioning flags -version-info and -version-number. Next, this
tests installing a library, then updating the library with a new revision, a com-
patible update, and an incompatible update. In each case, the tests verify that
the original library will link and install as expected.

tests/with_pic.at

Tests the function of the --enable-pic flag. The --enable-pic flag is used
to specify whether or not libtool uses PIC objects. This includes tests for
setting --enable-pic to no, yes, or a comma delimited list of package names.

14.1.2 When tests fail

The Autotest-based test suite produces as output a file tests/testsuite.log that contains
information about failed tests.

You can pass options to the test suite through the make variable TESTSUITEFLAGS (see
Section “Making testsuite Scripts” in The Autoconf Manual).

14.2 Reporting bugs

If you think you have discovered a bug in libtool, you should think twice: the libtool
maintainer is notorious for passing the buck (or maybe that should be “passing the bug”).
Libtool was invented to fix known deficiencies in shared library implementations, so, in a
way, most of the bugs in libtool are actually bugs in other operating systems. However,
the libtool maintainer would definitely be happy to add support for somebody else’s buggy
operating system. [I wish there was a good way to do winking smiley-faces in Texinfo.]

Genuine bugs in libtool include problems with shell script portability, documentation
errors, and failures in the test suite (see Section 14.1 [Libtool test suite], page 77).

First, check the documentation and help screens to make sure that the behaviour you
think is a problem is not already mentioned as a feature.

Then, you should read the Emacs guide to reporting bugs (see Section “Reporting Bugs”
in The Emacs Manual). Some of the details listed there are specific to Emacs, but the
principle behind them is a general one.

Finally, send a bug report to the Libtool bug reporting address bug-libtool@gnu.org
with any appropriate facts, such as test suite output (see Section 14.1.2 [When tests fail],
page 84), all the details needed to reproduce the bug, and a brief description of why you

mailto:bug-libtool@gnu.org

Chapter 14: Troubleshooting 85

think the behaviour is a bug. Be sure to include the word “libtool” in the subject line, as well
as the version number you are using (which can be found by typing libtool --version).

86

15 Maintenance notes for libtool

This chapter contains information that the libtool maintainer finds important. It will be
of no use to you unless you are considering porting libtool to new systems, or writing your
own libtool.

15.1 Porting libtool to new systems

Before you embark on porting libtool to an unsupported system, it is worthwhile to send e-
mail to the Libtool mailing list libtool@gnu.org, to make sure that you are not duplicating
existing work.

If you find that any porting documentation is missing, please complain! Complaints
with patches and improvements to the documentation, or to libtool itself, are more than
welcome.

15.1.1 Information sources

Once it is clear that a new port is necessary, you’ll generally need the following information:

canonical system name
You need the output of config.guess for this system, so that you can make
changes to the libtool configuration process without affecting other systems.

man pages for ld and cc

These generally describe what flags are used to generate PIC, to create shared
libraries, and to link against only static libraries. You may need to follow some
cross references to find the information that is required.

man pages for ld.so, rtld, or equivalent
These are a valuable resource for understanding how shared libraries are loaded
on the system.

man page for ldconfig, or equivalent
This page usually describes how to install shared libraries.

output from ls -l /lib /usr/lib

This shows the naming convention for shared libraries on the system, including
what names should be symbolic links.

any additional documentation
Some systems have special documentation on how to build and install shared
libraries.

If you know how to program the Bourne shell, then you can complete the port yourself;
otherwise, you’ll have to find somebody with the relevant skills who will do the work. People
on the libtool mailing list are usually willing to volunteer to help you with new ports, so
you can send the information to them.

To do the port yourself, you’ll definitely need to modify the libtool.m4 macros to make
platform-specific changes to the configuration process. You should search that file for the
PORTME keyword, which will give you some hints on what you’ll need to change. In general,
all that is involved is modifying the appropriate configuration variables (see Section 15.4
[libtool script contents], page 102).

mailto:libtool@gnu.org

Chapter 15: Maintenance notes for libtool 87

Your best bet is to find an already-supported system that is similar to yours, and make
your changes based on that. In some cases, however, your system will differ significantly
from every other supported system, and it may be necessary to add new configuration
variables, and modify the ltmain.in script accordingly. Be sure to write to the mailing list
before you make changes to ltmain.in, since they may have advice on the most effective
way of accomplishing what you want.

15.1.2 Porting inter-library dependencies support

Since version 1.2c, libtool has re-introduced the ability to do inter-library dependency on
some platforms, thanks to a patch by Toshio Kuratomi badger@prtr-13.ucsc.edu. Here’s
a shortened version of the message that contained his patch:

The basic architecture is this: in libtool.m4, the person who writes libtool makes
sure ‘$deplibs’ is included in ‘$archive_cmds’ somewhere and also sets the variable
‘$deplibs_check_method’, and maybe ‘$file_magic_cmd’ when ‘deplibs_check_method’
is file magic.

‘deplibs_check_method’ can be one of five things:

‘file_magic [regex]’
looks in the library link path for libraries that have the right libname. Then
it runs ‘$file_magic_cmd’ on the library and checks for a match against the
extended regular expression regex. When file_magic_test_file is set by
libtool.m4, it is used as an argument to ‘$file_magic_cmd’ to verify whether
the regular expression matches its output, and warn the user otherwise.

‘pass_all’
will pass everything without any checking. This may work on platforms where
code is position-independent by default and inter-library dependencies are prop-
erly supported by the dynamic linker, for example, on DEC OSF/1 3 and 4.

‘none’ It causes deplibs to be reassigned ‘deplibs=""’. That way ‘archive_cmds’ can
contain deplibs on all platforms, but not have deplibs used unless needed.

‘unknown’ is the default for all systems unless overridden in libtool.m4. It is the same
as ‘none’, but it documents that we really don’t know what the correct value
should be, and we welcome patches that improve it.

Then in ltmain.in we have the real workhorse: a little initialization and postprocessing
(to setup/release variables for use with eval echo libname spec etc.) and a case statement
that decides the method that is being used. This is the real code. . . I wish I could condense
it a little more, but I don’t think I can without function calls. I’ve mostly optimized it
(moved things out of loops, etc.) but there is probably some fat left. I thought I should
stop while I was ahead, work on whatever bugs you discover, etc. before thinking about
more than obvious optimizations.

15.2 Tested platforms

This table describes when libtool was last known to be tested on platforms where it claims
to support shared libraries:

mailto:badger@prtr-13.ucsc.edu

Chapter 15: Maintenance notes for libtool 88

canonical host name compiler libtool results

(tools versions) release

alpha-dec-osf5.1 cc 1.3e ok (1.910)

alpha-dec-osf4.0f gcc 1.3e ok (1.910)

alpha-dec-osf4.0f cc 1.3e ok (1.910)

alpha-dec-osf3.2 gcc 0.8 ok

alpha-dec-osf3.2 cc 0.8 ok

alpha-dec-osf2.1 gcc 1.2f NS

alpha*-unknown-linux-gnu gcc 1.3b ok

(egcs-1.1.2, GNU ld 2.9.1.0.23)

hppa2.0w-hp-hpux11.00 cc 1.2f ok

hppa2.0-hp-hpux10.20 cc 1.3.2 ok

hppa1.1-hp-hpux10.20 gcc 1.2f ok

hppa1.1-hp-hpux10.20 cc 1.3c ok (1.821)

hppa1.1-hp-hpux10.10 gcc 1.2f ok

hppa1.1-hp-hpux10.10 cc 1.2f ok

hppa1.1-hp-hpux9.07 gcc 1.2f ok

hppa1.1-hp-hpux9.07 cc 1.2f ok

hppa1.1-hp-hpux9.05 gcc 1.2f ok

hppa1.1-hp-hpux9.05 cc 1.2f ok

hppa1.1-hp-hpux9.01 gcc 1.2f ok

hppa1.1-hp-hpux9.01 cc 1.2f ok

i*86-*-beos gcc 1.2f ok

i*86-*-bsdi4.0.1 gcc 1.3c ok

(gcc-2.7.2.1)

i*86-*-bsdi4.0 gcc 1.2f ok

i*86-*-bsdi3.1 gcc 1.2e NS

i*86-*-bsdi3.0 gcc 1.2e NS

i*86-*-bsdi2.1 gcc 1.2e NS

i*86-pc-cygwin gcc 1.3b NS

(egcs-1.1 stock b20.1 compiler)

i*86-*-dguxR4.20MU01 gcc 1.2 ok

i*86-*-freebsd4.3 gcc 1.3e ok (1.912)

i*86-*-freebsdelf4.0 gcc 1.3c ok

(egcs-1.1.2)

i*86-*-freebsdelf3.2 gcc 1.3c ok

(gcc-2.7.2.1)

i*86-*-freebsdelf3.1 gcc 1.3c ok

(gcc-2.7.2.1)

i*86-*-freebsdelf3.0 gcc 1.3c ok

i*86-*-freebsd3.0 gcc 1.2e ok

i*86-*-freebsd2.2.8 gcc 1.3c ok

(gcc-2.7.2.1)

i*86-*-freebsd2.2.6 gcc 1.3b ok

(egcs-1.1 & gcc-2.7.2.1, native ld)

i*86-*-freebsd2.1.5 gcc 0.5 ok

Chapter 15: Maintenance notes for libtool 89

i*86-*-netbsd1.5 gcc 1.3e ok (1.901)

(egcs-1.1.2)

i*86-*-netbsd1.4 gcc 1.3c ok

(egcs-1.1.1)

i*86-*-netbsd1.4.3A gcc 1.3e ok (1.901)

i*86-*-netbsd1.3.3 gcc 1.3c ok

(gcc-2.7.2.2+myc2)

i*86-*-netbsd1.3.2 gcc 1.2e ok

i*86-*-netbsd1.3I gcc 1.2e ok

(egcs 1.1?)

i*86-*-netbsd1.2 gcc 0.9g ok

i*86-*-linux-gnu gcc 1.3e ok (1.901)

(Red Hat 7.0, gcc "2.96")

i*86-*-linux-gnu gcc 1.3e ok (1.911)

(SuSE 7.0, gcc 2.95.2)

i*86-*-linux-gnulibc1 gcc 1.2f ok

i*86-*-openbsd2.5 gcc 1.3c ok

(gcc-2.8.1)

i*86-*-openbsd2.4 gcc 1.3c ok

(gcc-2.8.1)

i*86-*-solaris2.7 gcc 1.3b ok

(egcs-1.1.2, native ld)

i*86-*-solaris2.6 gcc 1.2f ok

i*86-*-solaris2.5.1 gcc 1.2f ok

i*86-ncr-sysv4.3.03 gcc 1.2f ok

i*86-ncr-sysv4.3.03 cc 1.2e ok

(cc -Hnocopyr)

i*86-pc-sco3.2v5.0.5 cc 1.3c ok

i*86-pc-sco3.2v5.0.5 gcc 1.3c ok

(gcc 95q4c)

i*86-pc-sco3.2v5.0.5 gcc 1.3c ok

(egcs-1.1.2)

i*86-sco-sysv5uw7.1.1 gcc 1.3e ok (1.901)

(gcc-2.95.2, SCO linker)

i*86-UnixWare7.1.0-sysv5 cc 1.3c ok

i*86-UnixWare7.1.0-sysv5 gcc 1.3c ok

(egcs-1.1.1)

m68k-next-nextstep3 gcc 1.2f NS

m68k-sun-sunos4.1.1 gcc 1.2f NS

(gcc-2.5.7)

m88k-dg-dguxR4.12TMU01 gcc 1.2 ok

m88k-motorola-sysv4 gcc 1.3 ok

(egcs-1.1.2)

mips-sgi-irix6.5 gcc 1.2f ok

(gcc-2.8.1)

mips-sgi-irix6.4 gcc 1.2f ok

mips-sgi-irix6.3 gcc 1.3b ok

Chapter 15: Maintenance notes for libtool 90

(egcs-1.1.2, native ld)

mips-sgi-irix6.3 cc 1.3b ok

(cc 7.0)

mips-sgi-irix6.2 gcc 1.2f ok

mips-sgi-irix6.2 cc 0.9 ok

mips-sgi-irix5.3 gcc 1.2f ok

(egcs-1.1.1)

mips-sgi-irix5.3 gcc 1.2f NS

(gcc-2.6.3)

mips-sgi-irix5.3 cc 0.8 ok

mips-sgi-irix5.2 gcc 1.3b ok

(egcs-1.1.2, native ld)

mips-sgi-irix5.2 cc 1.3b ok

(cc 3.18)

mips-sni-sysv4 cc 1.3.5 ok

(Siemens C-compiler)

mips-sni-sysv4 gcc 1.3.5 ok

(gcc-2.7.2.3, GNU assembler 2.8.1, native ld)

mipsel-unknown-openbsd2.1 gcc 1.0 ok

powerpc-apple-darwin6.4 gcc 1.5 ok

(apple dev tools released 12/2002)

powerpc-ibm-aix4.3.1.0 gcc 1.2f ok

(egcs-1.1.1)

powerpc-ibm-aix4.2.1.0 gcc 1.2f ok

(egcs-1.1.1)

powerpc-ibm-aix4.1.5.0 gcc 1.2f ok

(egcs-1.1.1)

powerpc-ibm-aix4.1.5.0 gcc 1.2f NS

(gcc-2.8.1)

powerpc-ibm-aix4.1.4.0 gcc 1.0 ok

powerpc-ibm-aix4.1.4.0 xlc 1.0i ok

rs6000-ibm-aix4.1.5.0 gcc 1.2f ok

(gcc-2.7.2)

rs6000-ibm-aix4.1.4.0 gcc 1.2f ok

(gcc-2.7.2)

rs6000-ibm-aix3.2.5 gcc 1.0i ok

rs6000-ibm-aix3.2.5 xlc 1.0i ok

sparc-sun-solaris2.8 gcc 1.3e ok (1.913)

(gcc-2.95.3 & native ld)

sparc-sun-solaris2.7 gcc 1.3e ok (1.913)

(gcc-2.95.3 & native ld)

sparc-sun-solaris2.6 gcc 1.3e ok (1.913)

(gcc-2.95.3 & native ld)

sparc-sun-solaris2.5.1 gcc 1.3e ok (1.911)

sparc-sun-solaris2.5 gcc 1.3b ok

(egcs-1.1.2, GNU ld 2.9.1 & native ld)

sparc-sun-solaris2.5 cc 1.3b ok

Chapter 15: Maintenance notes for libtool 91

(SC 3.0.1)

sparc-sun-solaris2.4 gcc 1.0a ok

sparc-sun-solaris2.4 cc 1.0a ok

sparc-sun-solaris2.3 gcc 1.2f ok

sparc-sun-sunos4.1.4 gcc 1.2f ok

sparc-sun-sunos4.1.4 cc 1.0f ok

sparc-sun-sunos4.1.3_U1 gcc 1.2f ok

sparc-sun-sunos4.1.3C gcc 1.2f ok

sparc-sun-sunos4.1.3 gcc 1.3b ok

(egcs-1.1.2, GNU ld 2.9.1 & native ld)

sparc-sun-sunos4.1.3 cc 1.3b ok

sparc-unknown-bsdi4.0 gcc 1.2c ok

sparc-unknown-linux-gnulibc1 gcc 1.2f ok

sparc-unknown-linux-gnu gcc 1.3b ok

(egcs-1.1.2, GNU ld 2.9.1.0.23)

sparc64-unknown-linux-gnu gcc 1.2f ok

Notes:

- "ok" means "all tests passed".

- "NS" means "Not Shared", but OK for static libraries

Note: The vendor-distributed HP-UX sed(1) programs are horribly broken, and can-
not handle libtool’s requirements, so users may report unusual problems. There is no
workaround except to install a working sed (such as GNU sed) on these systems.

Note: The vendor-distributed NCR MP-RAS cc programs emits copyright on standard
error that confuse tests on size of conftest.err. The workaround is to specify CC when
run configure with CC='cc -Hnocopyr'.

15.3 Platform quirks

This section is dedicated to the sanity of the libtool maintainers. It describes the programs
that libtool uses, how they vary from system to system, and how to test for them.

Because libtool is a shell script, it can be difficult to understand just by reading it from
top to bottom. This section helps show why libtool does things a certain way. Combined
with the scripts themselves, you should have a better sense of how to improve libtool, or
write your own.

15.3.1 References

The following is a list of valuable documentation references:

• SGI’s IRIX Manual Pages can be found at
http://techpubs.sgi.com/cgi-bin/infosrch.cgi?cmd=browse&db=man.

• Sun’s free service area (http://www.sun.com/service/online/free.html) and doc-
umentation server (http://docs.sun.com/).

• Compaq’s Tru64 UNIX online documentation is at
(http://tru64unix.compaq.com/faqs/publications/pub_page/doc_list.html)
with C++ documentation at
(http://tru64unix.compaq.com/cplus/docs/index.htm).

http://techpubs.sgi.com/cgi-bin/infosrch.cgi?cmd=browse&db=man
http://www.sun.com/service/online/free.html
http://docs.sun.com/
http://tru64unix.compaq.com/faqs/publications/pub_page/doc_list.html
http://tru64unix.compaq.com/cplus/docs/index.htm

Chapter 15: Maintenance notes for libtool 92

• Hewlett-Packard has online documentation at (http://docs.hp.com/index.html).

• IBM has online documentation at (http://www.rs6000.ibm.com/resource/
aix_resource/Pubs/).

15.3.2 Compilers

The only compiler characteristics that affect libtool are the flags needed (if any) to generate
PIC objects. In general, if a C compiler supports certain PIC flags, then any derivative
compilers support the same flags. Until there are some noteworthy exceptions to this rule,
this section will document only C compilers.

The following C compilers have standard command line options, regardless of the plat-
form:

gcc

This is the GNU C compiler, which is also the system compiler for many free
operating systems (FreeBSD, GNU/Hurd, GNU/Linux, Lites, NetBSD, and
OpenBSD, to name a few).

The -fpic or -fPIC flags can be used to generate position-independent code.
-fPIC is guaranteed to generate working code, but the code is slower on m68k,
m88k, and SPARC chips. However, using -fpic on those chips imposes arbi-
trary size limits on the shared libraries.

The rest of this subsection lists compilers by the operating system that they are bundled
with:

aix3*

aix4* Most AIX compilers have no PIC flags, since AIX (with the exception of AIX
for IA-64) runs on PowerPC and RS/6000 chips.1

hpux10* Use ‘+Z’ to generate PIC.

osf3* Digital/UNIX 3.x does not have PIC flags, at least not on the PowerPC plat-
form.

solaris2*

Use -KPIC to generate PIC.

sunos4* Use -PIC to generate PIC.

15.3.3 Reloadable objects

On all known systems, a reloadable object can be created by running ld -r -o output.o

input1.o input2.o. This reloadable object may be treated as exactly equivalent to other
objects.

15.3.4 Multiple dependencies

On most modern platforms the order where dependent libraries are listed has no effect on
object generation. In theory, there are platforms that require libraries that provide missing
symbols to other libraries to be listed after those libraries whose symbols they provide.

1 All code compiled for the PowerPC and RS/6000 chips (powerpc-*-*, powerpcle-*-*, and rs6000-*-*)
is position-independent, regardless of the operating system or compiler suite. So, “regular objects” can
be used to build shared libraries on these systems and no special PIC compiler flags are required.

http://docs.hp.com/index.html
http://www.rs6000.ibm.com/resource/aix_resource/Pubs/
http://www.rs6000.ibm.com/resource/aix_resource/Pubs/

Chapter 15: Maintenance notes for libtool 93

Particularly, if a pair of static archives each resolve some of the other’s symbols, it might
be necessary to list one of those archives both before and after the other one. Libtool does
not currently cope with this situation well, since duplicate libraries are removed from the
link line by default. Libtool provides the command line option --preserve-dup-deps to
preserve all duplicate dependencies in cases where it is necessary.

15.3.5 Archivers

On all known systems, building a static library can be accomplished by running ar cr

libname.a obj1.o obj2.o ..., where the .a file is the output library, and each .o file is
an object file.

On all known systems, if there is a program named ranlib, then it must be used to
“bless” the created library before linking against it, with the ranlib libname.a command.
Some systems, like Irix, use the ar ts command, instead.

15.3.6 Cross compiling

Most build systems support the ability to compile libraries and applications on one platform
for use on a different platform, provided a compiler capable of generating the appropriate
output is available. In such cross compiling scenarios, the platform where the libraries or
applications are compiled is called the build platform, while the platform where the libraries
or applications are intended to be used or executed is called the host platform. Section “The
GNU Build System” in The Automake Manual, of which libtool is a part, supports cross
compiling via arguments passed to the configure script: --build=... and --host=....
However, when the build platform and host platform are very different, libtool is required
to make certain accommodations to support these scenarios.

In most cases, because the build platform and host platform differ, the cross-compiled
libraries and executables can’t be executed or tested on the build platform where they
were compiled. The testsuites of most build systems will often skip any tests that involve
executing such foreign executables when cross-compiling. However, if the build platform and
host platform are sufficiently similar, it is often possible to run cross-compiled applications.
Libtool’s own testsuite often attempts to execute cross-compiled tests, but will mark any
failures as skipped since the failure might simply be due to the differences between the two
platforms.

In addition to cases where the host platform and build platform are extremely similar
(e.g. ‘i586-pc-linux-gnu’ and ‘i686-pc-linux-gnu’), there is another case where cross-
compiled host applications may be executed on the build platform. This is possible when
the build platform supports an emulation or API-enhanced environment for the host plat-
form. One example of this situation would be if the build platform were MinGW, and the
host platform were Cygwin (or vice versa). Both of these platforms can actually operate
within a single Windows instance, so Cygwin applications can be launched from a MinGW
context, and vice versa—provided certain care is taken. Another example would be if the
build platform were GNU/Linux on an x86 32bit processor, and the host platform were
MinGW. In this situation, the Wine (http://www.winehq.org/) environment can be used
to launch Windows applications from the GNU/Linux operating system; again, provided
certain care is taken.

One particular issue occurs when a Windows platform such as MinGW, Cygwin, or
MSYS is the host or build platform, while the other platform is a Unix-style system. In

http://www.winehq.org/

Chapter 15: Maintenance notes for libtool 94

these cases, there are often conflicts between the format of the file names and paths expected
within host platform libraries and executables, and those employed on the build platform.

This situation is best described using a concrete example: suppose the build platform
is GNU/Linux with canonical triplet ‘i686-pc-linux-gnu’. Suppose further that the host
platform is MinGW with canonical triplet ‘i586-pc-mingw32’. On the GNU/Linux plat-
form there is a cross compiler following the usual naming conventions of such compilers,
where the compiler name is prefixed by the host canonical triplet (or suitable alias). (For
more information concerning canonical triplets and platform aliases, see Section “Specifying
Target Triplets” in The Autoconf Manual and Section “Canonicalizing” in The Autoconf
Manual) In this case, the C compiler is named ‘i586-pc-mingw32-gcc’.

As described in Section 3.3.1 [Wrapper executables], page 9, for the MinGW host plat-
form libtool uses a wrapper executable to set various environment variables before launch-
ing the actual program executable. Like the program executable, the wrapper executable
is cross-compiled for the host platform (that is, for MinGW). As described above, ordinar-
ily a host platform executable cannot be executed on the build platform, but in this case
the Wine environment could be used to launch the MinGW application from GNU/Linux.
However, the wrapper executable, as a host platform (MinGW) application, must set the
PATH variable so that the true application’s dependent libraries can be located—but the
contents of the PATH variable must be structured for MinGW. Libtool must use the Wine
file name mapping facilities to determine the correct value so that the wrapper executable
can set the PATH variable to point to the correct location.

For example, suppose we are compiling an application in /var/tmp on GNU/Linux, using
separate source code and build directories:

/var/tmp/foo-1.2.3/app/ (application source code)

/var/tmp/foo-1.2.3/lib/ (library source code)

/var/tmp/BUILD/app/ (application build objects here)

/var/tmp/BUILD/lib/ (library build objects here)

Since the library will be built in /var/tmp/BUILD/lib, the wrapper executable (which
will be in /var/tmp/BUILD/app) must add that directory to PATH (actually, it must add the
directory named objdir under /var/tmp/BUILD/lib, but we’ll ignore that detail for now).
However, Windows does not have a concept of Unix-style file or directory names such as
/var/tmp/BUILD/lib. Therefore, Wine provides a mapping from Windows file names such
as C:\Program Files to specific Unix-style file names. Wine also provides a utility that
can be used to map Unix-style file names to Windows file names.

In this case, the wrapper executable should actually add the value

Z:\var\tmp\BUILD\lib

to the PATH. libtool contains support for path conversions of this type, for a certain lim-
ited set of build and host platform combinations. In this case, libtool will invoke Wine’s
winepath utility to ensure that the correct PATH value is used. See Section 15.3.7 [File name
conversion], page 95.

Chapter 15: Maintenance notes for libtool 95

15.3.7 File name conversion

In certain situations, libtool must convert file names and paths between formats appropriate
to different platforms. Usually this occurs when cross-compiling, and affects only the ability
to launch host platform executables on the build platform using an emulation or API-
enhancement environment such as Wine. Failure to convert paths (see Section 15.3.7.1 [File
Name Conversion Failure], page 95) will cause a warning to be issued, but rarely causes the
build to fail—and should have no effect on the compiled products, once installed properly
on the host platform. For more information, see Section 15.3.6 [Cross compiling], page 93.

However, file name conversion may also occur in another scenario: when using a Unix
emulation system on Windows (such as Cygwin or MSYS), combined with a native Windows
compiler such as MinGW or MSVC. Only a limited set of such scenarios are currently
supported; in other cases file name conversion is skipped. The lack of file name conversion
usually means that uninstalled executables can’t be launched, but only rarely causes the
build to fail (see Section 15.3.7.1 [File Name Conversion Failure], page 95).

libtool supports file name conversion in the following scenarios:

build platform host platform Notes
MinGW (MSYS) MinGW (Windows) see Section 15.3.7.2 [Native MinGW File

Name Conversion], page 96,

Cygwin MinGW (Windows) see Section 15.3.7.3 [Cygwin/Windows File
Name Conversion], page 96,

Unix + Wine MinGW (Windows) Requires Wine. See Section 15.3.7.4
[Unix/Windows File Name Conversion],
page 97.

MinGW (MSYS) Cygwin Requires LT_CYGPATH. See Section 15.3.7.5
[LT CYGPATH], page 97. Provided for
testing purposes only.

Unix + Wine Cygwin Requires both Wine and LT_CYGPATH,
but does not yet work with Cygwin
1.7.7 and Wine-1.2. See Section 15.3.7.4
[Unix/Windows File Name Conver-
sion], page 97, and Section 15.3.7.5
[LT CYGPATH], page 97.

15.3.7.1 File Name Conversion Failure

In most cases, file name conversion is not needed or attempted. However, when libtool
detects that a specific combination of build and host platform does require file name con-
version, it is possible that the conversion may fail. In these cases, you may see a warning
such as the following:

Could not determine the host file name corresponding to

`... a file name ...'

Continuing, but uninstalled executables may not work.

Chapter 15: Maintenance notes for libtool 96

or

Could not determine the host path corresponding to

`... a path ...'

Continuing, but uninstalled executables may not work.

This should not cause the build to fail. At worst, it means that the wrapper executable will
specify file names or paths appropriate for the build platform. Since those are not appropri-
ate for the host platform, the uninstalled executables would not operate correctly, even when
the wrapper executable is launched via the appropriate emulation or API-enhancement (e.g.
Wine). Simply install the executables on the host platform, and execute them there.

15.3.7.2 Native MinGW File Name Conversion

MSYS is a Unix emulation environment for Windows, and is specifically designed such that
in normal usage it pretends to be MinGW or native Windows, but understands Unix-style
file names and paths, and supports standard Unix tools and shells. Thus, “native” MinGW
builds are actually an odd sort of cross-compile, from an MSYS Unix emulation environment
“pretending” to be MinGW, to actual native Windows.

When an MSYS shell launches a native Windows executable (as opposed to other MSYS
executables), it uses a system of heuristics to detect any command-line arguments that
contain file names or paths. It automatically converts these file names from the MSYS
(Unix-like) format, to the corresponding Windows file name, before launching the exe-
cutable. However, this auto-conversion facility is only available when using the MSYS
runtime library. The wrapper executable itself is a MinGW application (that is, it does
not use the MSYS runtime library). The wrapper executable must set PATH to, and call
_spawnv with, values that have already been converted from MSYS format to Windows.
Thus, when libtool writes the source code for the wrapper executable, it must manually
convert MSYS paths to Windows format, so that the Windows values can be hard-coded
into the wrapper executable.

15.3.7.3 Cygwin/Windows File Name Conversion

Cygwin provides a Unix emulation environment for Windows. As part of that emulation, it
provides a file system mapping that presents the Windows file system in a Unix-compatible
manner. Cygwin also provides a utility cygpath that can be used to convert file names
and paths between the two representations. In a correctly configured Cygwin installation,
cygpath is always present, and is in the PATH.

Libtool uses cygpath to convert from Cygwin (Unix-style) file names and paths to Win-
dows format when the build platform is Cygwin and the host platform is MinGW.

When the host platform is Cygwin, but the build platform is MSYS or some Unix
system, libtool also uses cygpath to convert from Windows to Cygwin format (after first
converting from the build platform format to Windows format; See Section 15.3.7.2 [Native
MinGW File Name Conversion], page 96, and Section 15.3.7.4 [Unix/Windows File Name
Conversion], page 97.) Because the build platform is not Cygwin, cygpath is not (and
should not be) in the PATH. Therefore, in this configuration the environment variable LT_

CYGPATH is required. See Section 15.3.7.5 [LT CYGPATH], page 97.

Chapter 15: Maintenance notes for libtool 97

15.3.7.4 Unix/Windows File Name Conversion

Wine (http://www.winehq.org/) provides an interpretation environment for some Unix
platforms where Windows applications can be executed. It provides a mapping between the
Unix file system and a virtual Windows file system used by the Windows programs. For the
file name conversion to work, Wine must be installed and properly configured on the build
platform, and the winepath application must be in the build platform’s PATH. In addition,
on 32bit GNU/Linux it is usually helpful if the binfmt extension is enabled.

15.3.7.5 LT CYGPATH

For some cross-compile configurations (where the host platform is Cygwin), the cygpath

program is used to convert file names from the build platform notation to the Cygwin form
(technically, this conversion is from Windows notation to Cygwin notation; the conversion
from the build platform format to Windows notation is performed via other means). How-
ever, because the cygpath program is not (and should not be) in the PATH on the build
platform, LT_CYGPATH must specify the full build platform file name (that is, the full Unix
or MSYS file name) of the cygpath program.

The reason cygpath should not be in the build platform PATH is twofold: first, cygpath
is usually installed in the same directory as many other Cygwin executables, such as sed,
cp, etc. If the build platform environment had this directory in its PATH, then these Cygwin
versions of common Unix utilities might be used in preference to the ones provided by
the build platform itself, with deleterious effects. Second, especially when Cygwin-1.7 or
later is used, multiple Cygwin installations can coexist within the same Windows instance.
Each installation will have separate “mount tables” specified in CYGROOT-N/etc/fstab.
These mount tables control how that instance of Cygwin will map Windows file names
and paths to Cygwin form. Each installation’s cygpath utility automatically deduces the
appropriate /etc/fstab file. Since each CYGROOT-N/etc/fstab mount table may specify
different mappings, it matters what cygpath is used.

Note that cygpath is a Cygwin application; to execute this tool from Unix requires a
working and properly configured Wine installation, as well as enabling the GNU/Linux
binfmt extension. Furthermore, the Cygwin setup.exe tool should have been used, via
Wine, to properly install Cygwin into the Wine file system (and registry).

Unfortunately, Wine support for Cygwin is intermittent. Recent releases of Cygwin
(1.7 and above) appear to require more Windows API support than Wine provides (as
of Wine version 1.2); most Cygwin applications fail to execute. This includes cygpath

itself. Hence, it is best not to use the LT CYGPATH machinery in libtool when performing
Unix to Cygwin cross-compiles. Similarly, it is best not to enable the GNU/Linux binfmt
support in this configuration, because while Wine will fail to execute the compiled Cygwin
applications, it will still exit with status zero. This tends to confuse build systems and
test suites (including libtool’s own testsuite, resulting in spurious reported failures). Wine
support for the older Cygwin-1.5 series appears satisfactory, but the Cygwin team no longer
supports Cygwin-1.5. It is hoped that Wine will eventually be improved such that Cygwin-
1.7 will again operate correctly under Wine. Until then, libtool will report warnings as
described in see Section 15.3.7.1 [File Name Conversion Failure], page 95, in these scenarios.

However, LT_CYGPATH is also used for the MSYS to Cygwin cross compile scenario, and
operates as expected.

http://www.winehq.org/

Chapter 15: Maintenance notes for libtool 98

15.3.7.6 Cygwin to MinGW Cross

There are actually three different scenarios that could all legitimately be called a “Cygwin to
MinGW” cross compile. The current (and standard) definition is when there is a compiler
that produces native Windows libraries and applications, but which itself is a Cygwin
application, just as would be expected in any other cross compile setup.

However, historically there were two other definitions, which we will refer to as the fake
one, and the lying one.

In the fake Cygwin to MinGW cross compile case, you actually use a native MinGW
compiler, but you do so from within a Cygwin environment:

export PATH="/c/MinGW/bin:${PATH}"
configure --build=i686-pc-cygwin \

--host=mingw32 \

NM=/c/MinGW/bin/nm.exe

In this way, the build system “knows” that you are cross compiling, and the file name
conversion logic will be used. However, because the tools (mingw32-gcc, nm, ar) used are
actually native Windows applications, they will not understand any Cygwin (that is, Unix-
like) absolute file names passed as command line arguments (and, unlike MSYS, Cygwin
does not automatically convert such arguments). However, so long as only relative file names
are used in the build system, and non-Windows-supported Unix idioms such as symlinks
and mount points are avoided, this scenario should work.

If you must use absolute file names, you will have to force Libtool to convert file names
for the toolchain in this case, by doing the following before you run configure:

export lt_cv_to_tool_file_cmd=func_convert_file_cygwin_to_w32

In the lying Cygwin to MinGW cross compile case, you lie to the build system:

export PATH="/c/MinGW/bin:${PATH}"
configure --build=i686-pc-mingw32 \

--host=i686-pc-mingw32 \

--disable-dependency-tracking

and claim that the build platform is MinGW, even though you are actually running under
Cygwin and not MinGW. In this case, libtool does not know that you are performing a cross
compile, and thinks instead that you are performing a native MinGW build. However, as
described in (see Section 15.3.7.2 [Native MinGW File Name Conversion], page 96), that
scenario triggers an “MSYS to Windows” file name conversion. This, of course, is the wrong
conversion since we are actually running under Cygwin. Also, the toolchain is expecting
Windows file names (not Cygwin) but unless told so Libtool will feed Cygwin file names to
the toolchain in this case. To force the correct file name conversions in this situation, you
should do the following before running configure:

export lt_cv_to_host_file_cmd=func_convert_file_cygwin_to_w32

export lt_cv_to_tool_file_cmd=func_convert_file_cygwin_to_w32

Note that this relies on internal implementation details of libtool, and is subject
to change. Also, --disable-dependency-tracking is required, because otherwise the
MinGW GCC will generate dependency files that contain Windows file names. This, in
turn, will confuse the Cygwin make program, which does not accept Windows file names:

Makefile:1: *** target pattern contains no `%'. Stop.

Chapter 15: Maintenance notes for libtool 99

There have also always been a number of other details required for the lying case to
operate correctly, such as the use of so-called identity mounts:

cygwin-root/etc/fstab

D:/foo /foo some_fs binary 0 0

D:/bar /bar some_fs binary 0 0

E:/grill /grill some_fs binary 0 0

In this way, top-level directories of each drive are available using identical names within
Cygwin.

Note that you also need to ensure that the standard Unix directories (like /bin, /lib,
/usr, /etc) appear in the root of a drive. This means that you must install Cygwin itself
into the C:/ root directory (or D:/, or E:/, etc)—instead of the recommended installation
into C:/cygwin/. In addition, all file names used in the build system must be relative,
symlinks should not be used within the source or build directory trees, and all -M* options
to gcc except -MMD must be avoided.

This is quite a fragile setup, but it has been in historical use, and so is documented here.

15.3.8 Windows DLLs

This topic describes a couple of ways to portably create Windows Dynamic Link Libraries
(DLLs). Libtool knows how to create DLLs using GNU tools and using Microsoft tools.

A typical library has a “hidden” implementation with an interface described in a header
file. On just about every system, the interface could be something like this:

Example foo.h:

#ifndef FOO_H

#define FOO_H

int one (void);

int two (void);

extern int three;

#endif /* FOO_H */

And the implementation could be something like this:

Example foo.c:

#include "foo.h"

int one (void)

{

return 1;

}

int two (void)

{

return three - one ();

}

Chapter 15: Maintenance notes for libtool 100

int three = 3;

When using contemporary GNU tools to create the Windows DLL, the above code will
work there too, thanks to its auto-import/auto-export features. But that is not the case
when using older GNU tools or perhaps more interestingly when using proprietary tools.
In those cases the code will need additional decorations on the interface symbols with _

_declspec(dllimport) and __declspec(dllexport) depending on whether the library
is built or it’s consumed and how it’s built and consumed. However, it should be noted
that it would have worked also with Microsoft tools, if only the variable three hadn’t been
there, due to the fact the Microsoft tools will automatically import functions (but sadly not
variables) and Libtool will automatically export non-static symbols as described next.

With Microsoft tools, Libtool digs through the object files that make up the library,
looking for non-static symbols to automatically export. I.e., Libtool with Microsoft tools
tries to mimic the auto-export feature of contemporary GNU tools. It should be noted that
the GNU auto-export feature is turned off when an explicit __declspec(dllexport) is seen.
The GNU tools do this to not make more symbols visible for projects that have already taken
the trouble to decorate symbols. There is no similar way to limit what symbols are visible
in the code when Libtool is using Microsoft tools. In order to limit symbol visibility in that
case you need to use one of the options -export-symbols or -export-symbols-regex.

No matching help with auto-import is provided by Libtool, which is why variables must
be decorated to import them from a DLL for everything but contemporary GNU tools.
As stated above, functions are automatically imported by both contemporary GNU tools
and Microsoft tools, but for other proprietary tools the auto-import status of functions is
unknown.

When the objects that form the library are built, there are generally two copies built
for each object. One copy is used when linking the DLL and one copy is used for the
static library. On Windows systems, a pair of defines are commonly used to discriminate
how the interface symbols should be decorated. The first define is ‘-DDLL_EXPORT’, which
is automatically provided by Libtool when libtool builds the copy of the object that is
destined for the DLL. The second define is ‘-DLIBFOO_BUILD’ (or similar), which is often
added by the package providing the library and is used when building the library, but not
when consuming the library.

However, the matching double compile is not performed when consuming libraries. It is
therefore not possible to reliably distinguish if the consumer is importing from a DLL or if
it is going to use a static library.

With contemporary GNU tools, auto-import often saves the day, but see the GNU ld
documentation and its --enable-auto-import option for some corner cases when it does
not (see Section “Options specific to i386 PE targets” in Using ld, the GNU linker).

With Microsoft tools you typically get away with always compiling the code such that
variables are expected to be imported from a DLL and functions are expected to be found
in a static library. The tools will then automatically import the function from a DLL if that
is where they are found. If the variables are not imported from a DLL as expected, but are
found in a static library that is otherwise pulled in by some function, the linker will issue a
warning (LNK4217) that a locally defined symbol is imported, but it still works. In other
words, this scheme will not work to only consume variables from a library. There is also a
price connected to this liberal use of imports in that an extra indirection is introduced when

Chapter 15: Maintenance notes for libtool 101

you are consuming the static version of the library. That extra indirection is unavoidable
when the DLL is consumed, but it is not needed when consuming the static library.

For older GNU tools and other proprietary tools there is no generic way to make it
possible to consume either of the DLL or the static library without user intervention, the
tools need to be told what is intended. One common assumption is that if a DLL is being
built (‘DLL_EXPORT’ is defined) then that DLL is going to consume any dependent libraries
as DLLs. If that assumption is made everywhere, it is possible to select how an end-user
application is consuming libraries by adding a single flag ‘-DDLL_EXPORT’ when a DLL build
is required. This is of course an all or nothing deal, either everything as DLLs or everything
as static libraries.

To sum up the above, the header file of the foo library needs to be changed into something
like this:

Modified foo.h:

#ifndef FOO_H

#define FOO_H

#if defined _WIN32 && !defined __GNUC__

ifdef LIBFOO_BUILD

ifdef DLL_EXPORT

define LIBFOO_SCOPE __declspec (dllexport)

define LIBFOO_SCOPE_VAR extern __declspec (dllexport)

endif

elif defined _MSC_VER

define LIBFOO_SCOPE

define LIBFOO_SCOPE_VAR extern __declspec (dllimport)

elif defined DLL_EXPORT

define LIBFOO_SCOPE __declspec (dllimport)

define LIBFOO_SCOPE_VAR extern __declspec (dllimport)

endif

#endif

#ifndef LIBFOO_SCOPE

define LIBFOO_SCOPE

define LIBFOO_SCOPE_VAR extern

#endif

LIBFOO_SCOPE int one (void);

LIBFOO_SCOPE int two (void);

LIBFOO_SCOPE_VAR int three;

#endif /* FOO_H */

When the targets are limited to contemporary GNU tools and Microsoft tools, the above
can be simplified to the following:

Simplified foo.h:

#ifndef FOO_H

#define FOO_H

Chapter 15: Maintenance notes for libtool 102

#if defined _WIN32 && !defined __GNUC__ && !defined LIBFOO_BUILD

define LIBFOO_SCOPE_VAR extern __declspec (dllimport)

#else

define LIBFOO_SCOPE_VAR extern

#endif

int one (void);

int two (void);

LIBFOO_SCOPE_VAR int three;

#endif /* FOO_H */

This last simplified version can of course only work when Libtool is used to build the
DLL, as no symbols would be exported otherwise (i.e., when using Microsoft tools).

It should be noted that there are various projects that attempt to relax these require-
ments by various low level tricks, but they are not discussed here. Examples are FlexDLL
(https://github.com/ocaml/flexdll) and edll (https://edll.sourceforge.net/).

15.4 libtool script contents

Since version 1.4, the libtool script is generated by configure (see Section 5.4 [Configur-
ing], page 27). In earlier versions, configure achieved this by calling a helper script called
ltconfig. From libtool version 0.7 to 1.0, this script simply set shell variables, then sourced
the libtool backend, ltmain.sh. ltconfig from libtool version 1.1 through 1.3 inlined the
contents of ltmain.sh into the generated libtool, which improved performance on many
systems. The tests that ltconfig used to perform are now kept in libtool.m4 where
they can be written using Autoconf. This has the runtime performance benefits of inlined
ltmain.sh, and improves the build time a little while considerably easing the amount of
raw shell code that used to need maintaining.

The convention used for naming variables that hold shell commands for delayed eval-
uation, is to use the suffix _cmd where a single line of valid shell script is needed, and
the suffix _cmds where multiple lines of shell script may be delayed for later evaluation.
By convention, _cmds variables delimit the evaluation units with the ~ character where
necessary.

Here is a listing of each of the configuration variables, and how they are used within
ltmain.sh (see Section 5.4 [Configuring], page 27):

[Variable]AR
The name of the system library archiver.

[Variable]CC
The name of the compiler used to configure libtool. This will always contain the
compiler for the current language (see Section 6.2 [Tags], page 40).

[Variable]ECHO
An echo program that does not interpret backslashes as an escape character. It may
be given only one argument, so due quoting is necessary.

https://github.com/ocaml/flexdll
https://github.com/ocaml/flexdll
https://edll.sourceforge.net/

Chapter 15: Maintenance notes for libtool 103

[Variable]LD
The name of the linker that libtool should use internally for reloadable linking and
possibly shared libraries.

[Variable]LTCC
[Variable]LTCFLAGS

The name of the C compiler and C compiler flags used to configure libtool.

[Variable]NM
The name of a BSD- or MS-compatible program that produces listings of global
symbols. For BSD nm, the symbols should be in one the following formats:

address C global-variable-name

address D global-variable-name

address T global-function-name

For MS dumpbin, the symbols should be in one of the following formats:

counter size UNDEF notype External | global-var

counter address section notype External | global-var

counter address section notype () External | global-func

The size of the global variables are not zero and the section of the global functions are
not "UNDEF". Symbols in "pick any" sections ("pick any" appears in the section
header) are not global either.

[Variable]RANLIB
Set to the name of the ranlib program, if any.

[Variable]allow_undefined_flag
The flag that is used by ‘archive_cmds’ to declare that there will be unresolved
symbols in the resulting shared library. Empty, if no such flag is required. Set
to ‘unsupported’ if there is no way to generate a shared library with references to
symbols that aren’t defined in that library.

[Variable]always_export_symbols
Whether libtool should automatically generate a list of exported symbols using
export_symbols_cmds before linking an archive. Set to ‘yes’ or ‘no’. Default is ‘no’.

[Variable]archive_cmds
[Variable]archive_expsym_cmds
[Variable]old_archive_cmds

Commands used to create shared libraries, shared libraries with -export-symbols

and static libraries, respectively.

[Variable]archiver_list_spec
Specify filename containing input files for AR.

[Variable]old_archive_from_new_cmds
If the shared library depends on a static library, ‘old_archive_from_new_cmds’ con-
tains the commands used to create that static library. If this variable is not empty,
‘old_archive_cmds’ is not used.

Chapter 15: Maintenance notes for libtool 104

[Variable]old_archive_from_expsyms_cmds
If a static library must be created from the export symbol list to correctly link with a
shared library, ‘old_archive_from_expsyms_cmds’ contains the commands needed to
create that static library. When these commands are executed, the variable soname

contains the name of the shared library in question, and the ‘$objdir/$newlib’
contains the path of the static library these commands should build. After executing
these commands, libtool will proceed to link against ‘$objdir/$newlib’ instead of
soname.

[Variable]lock_old_archive_extraction
Set to ‘yes’ if the extraction of a static library requires locking the library file. This
is required on Darwin.

[Variable]build
[Variable]build_alias
[Variable]build_os

Set to the specified and canonical names of the system that libtool was built on.

[Variable]build_libtool_libs
Whether libtool should build shared libraries on this system. Set to ‘yes’ or ‘no’.

[Variable]build_old_libs
Whether libtool should build static libraries on this system. Set to ‘yes’ or ‘no’.

[Variable]compiler_c_o
Whether the compiler supports the -c and -o options simultaneously. Set to ‘yes’ or
‘no’.

[Variable]compiler_needs_object
Whether the compiler has to see an object listed on the command line in order to
successfully invoke the linker. If ‘no’, then a set of convenience archives or a set of
object file names can be passed via linker-specific options or linker scripts.

[Variable]dlopen_support
Whether dlopen is supported on the platform. Set to ‘yes’ or ‘no’.

[Variable]dlopen_self
Whether it is possible to dlopen the executable itself. Set to ‘yes’ or ‘no’.

[Variable]dlopen_self_static
Whether it is possible to dlopen the executable itself, when it is linked statically
(-all-static). Set to ‘yes’ or ‘no’.

[Variable]exclude_expsyms
List of symbols that should not be listed in the preloaded symbols.

[Variable]export_dynamic_flag_spec
Compiler link flag that allows a dlopened shared library to reference symbols that are
defined in the program.

[Variable]export_symbols_cmds
Commands to extract exported symbols from libobjs to the file export_symbols.

Chapter 15: Maintenance notes for libtool 105

[Variable]extract_expsyms_cmds
Commands to extract the exported symbols list from a shared library. These
commands are executed if there is no file ‘$objdir/$soname-def’, and
should write the names of the exported symbols to that file, for the use of
‘old_archive_from_expsyms_cmds’.

[Variable]fast_install
Determines whether libtool will privilege the installer or the developer. The assump-
tion is that installers will seldom run programs in the build tree, and the developer will
seldom install. This is only meaningful on platforms where shlibpath_overrides_

runpath is not ‘yes’, so fast_install will be set to ‘needless’ in this case. If
fast_install set to ‘yes’, libtool will create programs that search for installed li-
braries, and, if a program is run in the build tree, a new copy will be linked on-demand
to use the yet-to-be-installed libraries. If set to ‘no’, libtool will create programs that
use the yet-to-be-installed libraries, and will link a new copy of the program at in-
stall time. The default value is ‘yes’ or ‘needless’, depending on platform and
configuration flags, and it can be turned from ‘yes’ to ‘no’ with the configure flag
--disable-fast-install.

On some systems, the linker always hardcodes paths to dependent libraries into the
output. In this case, fast_install is never set to ‘yes’, and relinking at install time
is triggered. This also means that DESTDIR installation does not work as expected.

[Variable]file_magic_glob
How to find potential files when deplibs_check_method is ‘file_magic’. file_

magic_glob is a sed expression, and the sed instance is fed potential file names that
are transformed by the file_magic_glob expression. Useful when the shell does
not support the shell option nocaseglob, making want_nocaseglob inappropriate.
Normally disabled (i.e. file_magic_glob is empty).

[Variable]finish_cmds
Commands to tell the dynamic linker how to find shared libraries in a specific direc-
tory.

[Variable]finish_eval
Same as finish_cmds, except the commands are not displayed.

[Variable]global_symbol_pipe
A pipeline that takes the output of NM, and produces a listing of raw symbols followed
by their C names. For example:

$ eval "$NM progname | $global_symbol_pipe"
D symbol1 C-symbol1

T symbol2 C-symbol2

C symbol3 C-symbol3

...

$

The first column contains the symbol type (used to tell data from code) but its
meaning is system dependent.

Chapter 15: Maintenance notes for libtool 106

[Variable]global_symbol_to_cdecl
A pipeline that translates the output of global_symbol_pipe into proper C declara-
tions. Since some platforms, such as HP/UX, have linkers that differentiate code from
data, data symbols are declared as data, and code symbols are declared as functions.

[Variable]hardcode_action
Either ‘immediate’ or ‘relink’, depending on whether shared library paths can be
hardcoded into executables before they are installed, or if they need to be relinked.

[Variable]hardcode_direct
Set to ‘yes’ or ‘no’, depending on whether the linker hardcodes directories if a library
is directly specified on the command line (such as ‘dir/libname.a’) when hardcode_

libdir_flag_spec is specified.

[Variable]hardcode_direct_absolute
Some architectures hardcode "absolute" library directories that cannot be overridden
by shlibpath_var when hardcode_direct is ‘yes’. In that case set hardcode_

direct_absolute to ‘yes’, or otherwise ‘no’.

[Variable]hardcode_into_libs
Whether the platform supports hardcoding of run-paths into libraries. If enabled,
linking of programs will be much simpler but libraries will need to be relinked during
installation. Set to ‘yes’ or ‘no’.

[Variable]hardcode_libdir_flag_spec
Flag to hardcode a libdir variable into a binary, so that the dynamic linker searches
libdir for shared libraries at runtime. If it is empty, libtool will try to use some
other hardcoding mechanism.

[Variable]hardcode_libdir_separator
If the compiler only accepts a single hardcode_libdir_flag, then this variable con-
tains the string that should separate multiple arguments to that flag.

[Variable]hardcode_minus_L
Set to ‘yes’ or ‘no’, depending on whether the linker hardcodes directories specified by
-L flags into the resulting executable when hardcode_libdir_flag_spec is specified.

[Variable]hardcode_shlibpath_var
Set to ‘yes’ or ‘no’, depending on whether the linker hardcodes directories by
writing the contents of ‘$shlibpath_var’ into the resulting executable when
hardcode_libdir_flag_spec is specified. Set to ‘unsupported’ if directories
specified by ‘$shlibpath_var’ are searched at run time, but not at link time.

[Variable]host
[Variable]host_alias
[Variable]host_os

Set to the specified and canonical names of the system that libtool was configured
for.

[Variable]include_expsyms
List of symbols that must always be exported when using export_symbols.

Chapter 15: Maintenance notes for libtool 107

[Variable]inherit_rpath
Whether the linker adds runtime paths of dependency libraries to the runtime path
list, requiring libtool to relink the output when installing. Set to ‘yes’ or ‘no’. Default
is ‘no’.

[Variable]install_override_mode
Permission mode override for installation of shared libraries. If the runtime linker
fails to load libraries with wrong permissions, then it may fail to execute programs
that are needed during installation, because these need the library that has just been
installed. In this case, it is necessary to pass the mode to install with -m install_

override_mode.

[Variable]libext
The standard old archive suffix (normally ‘a’).

[Variable]libname_spec
The format of a library name prefix. On all Unix systems, static libraries are called
‘libname.a’, but on some systems (such as OS/2 or MS-DOS), the library is just
called ‘name.a’.

[Variable]library_names_spec
A list of shared library names. The first is the name of the file, the rest are symbolic
links to the file. The name in the list is the file name that the linker finds when given
-lname.

[Variable]link_all_deplibs
Whether libtool must link a program against all its dependency libraries. Set to ‘yes’
or ‘no’. Default is ‘unknown’, which is a synonym for ‘yes’.

[Variable]link_static_flag
Linker flag (passed through the C compiler) used to prevent dynamic linking.

[Variable]macro_version
[Variable]macro_revision

The release and revision from which the libtool.m4 macros were taken. This is used
to ensure that macros and ltmain.sh correspond to the same Libtool version.

[Variable]max_cmd_len
The approximate longest command line that can be passed to ‘$SHELL’ without being
truncated, as computed by ‘LT_CMD_MAX_LEN’.

[Variable]need_lib_prefix
Whether we can dlopen modules without a ‘lib’ prefix. Set to ‘yes’ or ‘no’. By
default, it is ‘unknown’, which means the same as ‘yes’, but documents that we are
not really sure about it. ‘no’ means that it is possible to dlopen a module without
the ‘lib’ prefix.

[Variable]need_version
Whether versioning is required for libraries, i.e. whether the dynamic linker requires
a version suffix for all libraries. Set to ‘yes’ or ‘no’. By default, it is ‘unknown’, which
means the same as ‘yes’, but documents that we are not really sure about it.

Chapter 15: Maintenance notes for libtool 108

[Variable]need_locks
Whether files must be locked to prevent conflicts when compiling simultaneously. Set
to ‘yes’ or ‘no’.

[Variable]nm_file_list_spec
Specify filename containing input files for NM.

[Variable]no_builtin_flag
Compiler flag to disable builtin functions that conflict with declaring external global
symbols as char.

[Variable]no_undefined_flag
The flag that is used by ‘archive_cmds’ to declare that there will be no unresolved
symbols in the resulting shared library. Empty, if no such flag is required.

[Variable]objdir
The name of the directory that contains temporary libtool files.

[Variable]objext
The standard object file suffix (normally ‘o’).

[Variable]pic_flag
Any additional compiler flags for building library object files.

[Variable]postinstall_cmds
[Variable]old_postinstall_cmds

Commands run after installing a shared or static library, respectively.

[Variable]postuninstall_cmds
[Variable]old_postuninstall_cmds

Commands run after uninstalling a shared or static library, respectively.

[Variable]postlink_cmds
Commands necessary for finishing linking programs. postlink_cmds are executed
immediately after the program is linked. Any occurrence of the string @OUTPUT@

in postlink_cmds is replaced by the name of the created executable (i.e. not the
wrapper, if a wrapper is generated) prior to execution. Similarly, @TOOL_OUTPUT@ is
replaced by the toolchain format of @OUTPUT@. Normally disabled (i.e. postlink_cmds
empty).

[Variable]reload_cmds
[Variable]reload_flag

Commands to create a reloadable object. Set reload_cmds to ‘false’ on systems
that cannot create reloadable objects.

[Variable]runpath_var
The environment variable that tells the linker what directories to hardcode in the
resulting executable.

Chapter 15: Maintenance notes for libtool 109

[Variable]shlibpath_overrides_runpath
Indicates whether it is possible to override the hard-coded library search path of a
program with an environment variable. If this is set to no, libtool may have to create
two copies of a program in the build tree, one to be installed and one to be run in
the build tree only. When each of these copies is created depends on the value of
fast_install. The default value is ‘unknown’, which is equivalent to ‘no’.

[Variable]shlibpath_var
The environment variable that tells the dynamic linker where to find shared libraries.

[Variable]soname_spec
The name coded into shared libraries, if different from the real name of the file.

[Variable]striplib
[Variable]old_striplib

Command to strip a shared (striplib) or static (old_striplib) library, respectively.
If these variables are empty, the strip flag in the install mode will be ignored for
libraries (see Section 4.4 [Install mode], page 22).

[Variable]sys_lib_dlsearch_path_spec
Expression to get the run-time system library search path. Directories that appear
in this list are never hard-coded into executables.

[Variable]sys_lib_search_path_spec
Expression to get the compile-time system library search path. This variable is used by
libtool when it has to test whether a certain library is shared or static. The directories
listed in shlibpath_var are automatically appended to this list, every time libtool
runs (i.e., not at configuration time), because some linkers use this variable to extend
the library search path. Linker switches such as -L also augment the search path.

[Variable]thread_safe_flag_spec
Linker flag (passed through the C compiler) used to generate thread-safe libraries.

[Variable]to_host_file_cmd
If the toolchain is not native to the build platform (e.g. if you are using MSYS to
drive the scripting, but are using the MinGW native Windows compiler) this variable
describes how to convert file names from the format used by the build platform to the
format used by host platform. Normally set to ‘func_convert_file_noop’, libtool
will autodetect most cases where other values should be used. On rare occasions, it
may be necessary to override the autodetected value (see Section 15.3.7.6 [Cygwin to
MinGW Cross], page 98).

[Variable]to_tool_file_cmd
If the toolchain is not native to the build platform (e.g. if you are using some Unix to
drive the scripting together with a Windows toolchain running in Wine) this variable
describes how to convert file names from the format used by the build platform to
the format used by the toolchain. Normally set to ‘func_convert_file_noop’.

[Variable]version_type
The library version numbering type. One of ‘libtool’, ‘freebsd-aout’,
‘freebsd-elf’, ‘irix’, ‘linux’, ‘osf’, ‘sunos’, ‘windows’, or ‘none’.

Chapter 15: Maintenance notes for libtool 110

[Variable]want_nocaseglob
Find potential files using the shell option nocaseglob, when deplibs_check_method

is ‘file_magic’. Normally set to ‘no’. Set to ‘yes’ to enable the nocaseglob shell
option when looking for potential file names in a case-insensitive manner.

[Variable]whole_archive_flag_spec
Compiler flag to generate shared objects from convenience archives.

[Variable]wl
The C compiler flag that allows libtool to pass a flag directly to the linker. Used as:
${wl}some-flag.

Variables ending in ‘_cmds’ or ‘_eval’ contain a ‘~’-separated list of commands that are
evaled one after another. If any of the commands return a nonzero exit status, libtool
generally exits with an error message.

Variables ending in ‘_spec’ are evaled before being used by libtool.

15.5 Cheap tricks

Here are a few tricks that you can use to make maintainership easier:

• When people report bugs, ask them to use the --config, --debug, or --features

flags, if you think they will help you. These flags are there to help you get information
directly, rather than having to trust second-hand observation.

• Rather than reconfiguring libtool every time I make a change to ltmain.in, I keep a
permanent libtool script in my PATH, which sources ltmain.in directly.

The following steps describe how to create such a script, where /home/src/libtool

is the directory containing the libtool source tree, /home/src/libtool/libtool is a
libtool script that has been configured for your platform, and ~/bin is a directory in
your PATH:

trick$ cd ~/bin

trick$ sed 's%^\(macro_version=\).*$%\1@VERSION@%;

s%^\(macro_revision=\).*$%\1@package_revision@%;

/^# ltmain\.sh/q' /home/src/libtool/libtool > libtool

trick$ echo '. /home/src/libtool/ltmain.in' >> libtool

trick$ chmod +x libtool

trick$ libtool --version

ltmain.sh (GNU @PACKAGE@@TIMESTAMP@) @VERSION@

Copyright (C) 2014 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

trick$

The output of the final ‘libtool --version’ command shows that the ltmain.in script
is being used directly. Now, modify ~/bin/libtool or /home/src/libtool/ltmain.in

directly in order to test new changes without having to rerun configure.

111

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

https://fsf.org/

Appendix A: GNU Free Documentation License 112

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: GNU Free Documentation License 113

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix A: GNU Free Documentation License 114

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: GNU Free Documentation License 115

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: GNU Free Documentation License 116

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix A: GNU Free Documentation License 117

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

https://www.gnu.org/licenses/

Appendix A: GNU Free Documentation License 118

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

119

Combined Index

–
-no-suppress, libtool compile mode option 6
-weak option . 53

.

.la files . 6

.libs subdirectory . 7

.lo files . 4

A
AC_CONFIG_AUX_DIR . 38
AC_CONFIG_MACRO_DIRS . 37
AC_DISABLE_FAST_INSTALL . 31
AC_DISABLE_SHARED . 31
AC_DISABLE_STATIC . 31
AC_ENABLE_SHARED . 31
AC_ENABLE_STATIC . 32
AC_LIBLTDL_CONVENIENCE . 74
AC_LIBLTDL_INSTALLABLE . 74
AC_LIBTOOL_DLOPEN . 31
AC_LIBTOOL_WIN32_DLL . 31
AC_PROG_LIBTOOL . 28
AC_WITH_LTDL . 70
aclocal . 34
allow_undefined_flag . 103
always_export_symbols . 103
AM_DISABLE_SHARED . 31
AM_DISABLE_STATIC . 31
AM_ENABLE_SHARED . 31
AM_ENABLE_STATIC . 32
AM_PROG_LIBTOOL . 28
application-level dynamic linking 49, 55
ar . 6
archive_cmds . 103
archive_expsym_cmds . 103
archiver_list_spec . 103
AR . 102
AS . 33
autoconf traces . 75
avoiding shared libraries . 38

B
bug reports . 84
buggy system linkers . 7
bugs, subtle ones caused by buggy linkers 7
build . 104
build_alias . 104
build_libtool_libs . 104
build_old_libs . 104
build_os . 104

C
C header files, portable . 46
C++, pitfalls . 40
C++, using . 40
C, not using . 40
CC . 32, 102
CFLAGS . 32
‘check-interactive’ . 78
‘check-noninteractive’ . 78
clean mode . 23
command options, libtool . 15
command options, libtoolize . 35
compile mode . 17
compiler_c_o . 104
compiler_needs_object . 104
compiling object files . 4
complexity of library systems . 2
config.guess . 35
config.sub . 35
configuring libtool . 27
convenience libraries . 13
CPPFLAGS . 32
cross compile . 93
Cygwin to MinGW Cross . 98

D
debugging libraries . 38
definition of libraries . 3
dependencies between libraries 48
dependency versioning . 42
deplibs_check_method . 87
design issues . 1
design of library interfaces . 45
design philosophy . 1
developing libraries . 38
dlclose . 49, 55
dlerror . 55
DLLTOOL . 32
dlopen . 49, 55
dlopen_self . 104
dlopen_self_static . 104
dlopen_support . 104
dlopening modules . 49, 55
dlopening, pitfalls . 54
dlsym . 49, 55
double-compilation, avoiding 38
dynamic dependencies . 42
dynamic linking, applications 49, 55
dynamic modules, names . 53

Combined Index 120

E
ECHO . 102
eliding shared libraries . 38
examples of using libtool . 4
exclude_expsyms . 104
execute mode . 22
export_dynamic_flag_spec 104
export_symbols_cmds . 104
extract_expsyms_cmds . 105

F
failed tests . 84
fast_install . 105
FDL, GNU Free Documentation License 111
file name conversion . 95
File Name Conversion - Cygwin to Windows . . . 96
File Name Conversion - Failure 95
File Name Conversion - MinGW 96
File Name Conversion - Unix to Windows 97
file_magic . 87
file_magic_cmd . 87
file_magic_glob . 105
file_magic_test_file . 87
finish mode . 23
finish_cmds . 105
finish_eval . 105
formal versioning . 42
func convert file cygwin to w32 98

G
global functions . 45
global_symbol_pipe . 105
global_symbol_to_cdecl . 106

H
hardcode_action . 106
hardcode_direct . 106
hardcode_direct_absolute 106
hardcode_into_libs . 106
hardcode_libdir_flag_spec 106
hardcode_libdir_separator 106
hardcode_minus_L . 106
hardcode_shlibpath_var . 106
header files . 45
host . 106
host_alias . 106
host_os . 106

I
implementation of libtool . 102
include files, portable . 46
include_expsyms . 106
inferring tags . 40
inherit_rpath . 107
install . 11
install mode . 22
install-sh . 35
install_override_mode . 107
installation, finishing . 12
inter-library dependencies . 48
inter-library dependency . 87

L
language names . 40
languages, non-C . 40
LD . 32, 103
LDFLAGS . 32
libext . 107
libltdl . 55
libname_spec . 107
libraries, definition of . 3
libraries, finishing installation 12
libraries, stripping . 12
library interfaces . 42
library interfaces, design . 45
library object file . 4
library_names_spec . 107
LIBS . 32
libtool . 15
libtool command options . 15
libtool examples . 4
libtool implementation . 102
libtool libraries . 6
libtool library versions . 42
libtool specifications . 1
libtoolize . 35
libtoolize command options . 35
LIBTOOLIZE OPTIONS . 37
link mode . 18
link_all_deplibs . 107
link_static_flag . 107
linking against installed libraries 7
linking against uninstalled libraries 7
linking with installed libtool libraries 8
linking, dlopen . 52
linking, dlpreopen . 52
linking, partial . 21
LN_S . 32
lock_old_archive_extraction 104
lt cv to host file cmd . 98
lt cv to tool file cmd . 98
lt_dladderror . 69
lt_dladdsearchdir . 60
lt_dladvise . 56
lt_dladvise_destroy . 58

Combined Index 121

lt_dladvise_ext . 58
lt_dladvise_global . 59
lt_dladvise_init . 58
lt_dladvise_local . 59
lt_dladvise_preload . 59
lt_dladvise_resident . 59
lt_dlcaller_get_data . 65
lt_dlcaller_set_data . 64
lt_dlclose . 59
lt_dlerror . 60
lt_dlexit . 57
lt_dlforeachfile . 60
lt_dlgetinfo . 62
lt_dlgetsearchpath . 60
lt_dlhandle . 56
lt_dlhandle_fetch . 64
lt_dlhandle_interface . 62
lt_dlhandle_iterate . 64
lt_dlhandle_map . 63
lt_dlinfo . 62
lt_dlinit . 57
lt_dlinsertsearchdir . 60
lt_dlinterface_free . 63
lt_dlinterface_id . 62
lt_dlinterface_register . 63
lt_dlisresident . 60
lt_dlloader . 65
lt_dlloader_add . 68
lt_dlloader_data . 68
lt_dlloader_exit . 66
lt_dlloader_find . 68
lt_dlloader_name . 68
lt_dlloader_next . 68
lt_dlloader_remove . 68
lt_dlmakeresident . 60
lt_dlopen . 57
lt_dlopenadvise . 58
lt_dlopenext . 57
lt_dlpreload . 51
lt_dlpreload_callback_func 51
lt_dlpreload_default . 51
lt_dlpreload_open . 51
lt_dlseterror . 69
lt_dlsetsearchpath . 60
lt_dlsym . 59
lt_dlsymlist . 50, 56
lt_find_sym . 66
lt_module . 65
lt_module_close . 66
lt_module_open . 66
lt_preloaded_symbols[] . 50
lt_user_data . 65
lt_user_dlloader . 66
LT_CMD_MAX_LEN . 25
LT_CONFIG_LTDL_DIR . 69
LT CYGPATH . 97
LT_DIRSEP_CHAR . 56
LT_FUNC_DLSYM_USCORE . 25

LT_INIT . 28
LT_LANG . 31
LT_LIB_DLLOAD . 25
LT_LIB_M . 25
LT_OUTPUT . 33
LT_PATH_LD . 25
LT_PATH_NM . 25
LT_PATHSEP_CHAR . 55
LT_PREREQ . 28
LT_SUPPORTED_TAG . 75
LT_SYS_DLOPEN_DEPLIBS . 25
LT_SYS_DLOPEN_SELF . 25
LT_SYS_DLSEARCH_PATH . 25
LT_SYS_LIBRARY_PATH . 33
LT_SYS_MODULE_EXT . 26
LT_SYS_MODULE_PATH . 26
LT_SYS_SYMBOL_USCORE . 26
LT_WITH_LTDL . 70
LTCC . 103
LTCFLAGS . 103
LTDL_CONVENIENCE . 74
LTDL_INIT . 70
LTDL_INSTALLABLE . 74
LTDL_SET_PRELOADED_SYMBOLS 51
LTLIBOBJS . 38
LTLIBRARIES . 26
ltmain.sh . 35

M
macro_revision . 107
macro_version . 107
Makefile . 26
Makefile.am . 26
Makefile.in . 26
MANIFEST_TOOL . 33
max_cmd_len . 107
mode, clean . 23
mode, compile . 17
mode, execute . 22
mode, finish . 23
mode, install . 22
mode, link . 18
mode, uninstall . 23
modules, dynamic . 49, 55
motivation for writing libtool . 1
MSYS . 96

Combined Index 122

N
names of dynamic modules . 53
need_lib_prefix . 107
need_locks . 108
need_version . 107
nm_file_list_spec . 108
NM . 32, 103
no_builtin_flag . 108
no_undefined_flag . 108
none . 87

O
objdir . 108
OBJDUMP . 33
object files, compiling . 4
object files, library . 4
objext . 108
old_archive_cmds . 103
old_archive_from_expsyms_cmds 104
old_archive_from_new_cmds 103
old_postinstall_cmds . 108
old_postuninstall_cmds . 108
old_striplib . 109
opaque data types . 45
options, libtool command . 15
options, libtoolize command . 35
other implementations, flaws in 2

P
partial linking . 21
pass_all . 87
path conversion . 95
Path Conversion - Cygwin to Windows 96
Path Conversion - Failure . 95
Path Conversion - MinGW . 96
Path Conversion - Unix to Windows 97
pic_flag . 108
PIC (position-independent code) 4
pitfalls using C++ . 40
pitfalls with dlopen . 54
portable C headers . 46
position-independent code . 4
postinstall_cmds . 108
postinstallation . 12
postlink_cmds . 108
postuninstall_cmds . 108
problem reports . 84
problems, blaming somebody else for 77
problems, solving . 77
program wrapper executables 9
program wrapper scripts . 8

R
ranlib . 6
RANLIB . 32, 103
reload_cmds . 108
reload_flag . 108
renaming interface functions 45
reporting bugs . 84
reusability of library systems . 2
runpath_var . 108

S
saving time . 38
security problems with buggy linkers 7
shared libraries, not using . 38
shared library versions . 42
shl_load . 49, 55
shlibpath_overrides_runpath 109
shlibpath_var . 109
solving problems . 77
soname_spec . 109
specifications for libtool . 1
standalone binaries . 14
static linking . 13
strip . 11
striplib . 109
stripping libraries . 12
su . 11
sys_lib_dlsearch_path_spec 109
sys_lib_search_path_spec 109

T
tag names . 40
test suite . 77
tests, failed . 84
thread_safe_flag_spec . 109
time, saving . 38
to_host_file_cmd . 109
to_tool_file_cmd . 109
trace interface . 75
tricky design issues . 1
trouble with C++ . 40
trouble with dlopen . 54
troubleshooting . 77

U
undefined symbols, allowing . 18
uninstall mode . 23
unknown . 87
unresolved symbols, allowing 18
using shared libraries, not . 38

Combined Index 123

V

version_type . 109

versioning, formal . 42

W
want_nocaseglob . 110
whole_archive_flag_spec . 110
Windows DLLs . 99
wl . 110
wrapper executables for uninstalled programs 9
wrapper scripts for programs . 8

	1 Introduction
	Motivation for writing libtool
	Implementation issues
	Other implementations
	A postmortem analysis of other implementations

	2 The libtool paradigm
	3 Using libtool
	Creating object files
	Linking libraries
	Linking executables
	Wrapper executables for uninstalled programs

	Debugging executables
	Installing libraries
	Installing executables
	Linking static libraries

	4 Invoking libtool
	Compile mode
	Link mode
	Execute mode
	Install mode
	Finish mode
	Uninstall mode
	Clean mode

	5 Integrating libtool with your package
	Autoconf macros exported by libtool
	Writing Makefile rules for libtool
	Using Automake with libtool
	Configuring libtool
	The LT_INIT macro
	Platform-specific configuration notes

	Including libtool in your package
	Invoking libtoolize
	Autoconf and LTLIBOBJS

	Static-only libraries

	6 Using libtool with other languages
	Writing libraries for C++
	Tags

	7 Library interface versions
	What are library interfaces?
	Libtool's versioning system
	Updating library version information
	Managing release information

	8 Tips for interface design
	Writing C header files

	9 Inter-library dependencies
	10 Dlopened modules
	Building modules to dlopen
	Dlpreopening
	Linking with dlopened modules
	Finding the correct name to dlopen
	Unresolved dlopen issues

	11 Using libltdl
	How to use libltdl in your programs
	Creating modules that can be dlopened
	Using libltdl in a multi threaded environment
	Data associated with loaded modules
	How to create and register new module loaders
	Error handling within user module loaders

	How to distribute libltdl with your package

	12 Libtool's trace interface
	13 Frequently Asked Questions about libtool
	Why does libtool strip link flags when creating a library?

	14 Troubleshooting
	The libtool test suite
	Description of test suite
	When tests fail

	Reporting bugs

	15 Maintenance notes for libtool
	Porting libtool to new systems
	Information sources
	Porting inter-library dependencies support

	Tested platforms
	Platform quirks
	References
	Compilers
	Reloadable objects
	Multiple dependencies
	Archivers
	Cross compiling
	File name conversion
	File Name Conversion Failure
	Native MinGW File Name Conversion
	Cygwin/Windows File Name Conversion
	Unix/Windows File Name Conversion
	LT_CYGPATH
	Cygwin to MinGW Cross

	Windows DLLs

	libtool script contents
	Cheap tricks

	A GNU Free Documentation License
	Combined Index

