1 Introduction to GNU lightning

This document describes installing and using the GNU lightning library for dynamic code
generation.

Dynamic code generation is the generation of machine code at runtime. It is typically
used to strip a layer of interpretation by allowing compilation to occur at runtime. One of
the most well-known applications of dynamic code generation is perhaps that of interpreters
that compile source code to an intermediate bytecode form, which is then recompiled to
machine code at run-time: this approach effectively combines the portability of bytecode
representations with the speed of machine code. Another common application of dynamic
code generation is in the field of hardware simulators and binary emulators, which can use
the same techniques to translate simulated instructions to the instructions of the underlying
machine.

Yet other applications come to mind: for example, windowing bitblt operations, matrix
manipulations, and network packet filters. Albeit very powerful and relatively well known
within the compiler community, dynamic code generation techniques are rarely exploited
to their full potential and, with the exception of the two applications described above,
have remained curiosities because of their portability and functionality barriers: binary
instructions are generated, so programs using dynamic code generation must be retargeted
for each machine; in addition, coding a run-time code generator is a tedious and error-prone
task more than a difficult one.

GNU lightning provides a portable, fast and easily retargetable dynamic code generation
system.

To be portable, GNU lightning abstracts over current architectures’ quirks and unorthog-
onalities. The interface that it exposes to is that of a standardized RISC architecture loosely
based on the SPARC and MIPS chips. There are a few general-purpose registers (six, not
including those used to receive and pass parameters between subroutines), and arithmetic
operations involve three operands—either three registers or two registers and an arbitrarily
sized immediate value.

On one hand, this architecture is general enough that it is possible to generate pretty
efficient code even on CISC architectures such as the Intel x86 or the Motorola 68k families.
On the other hand, it matches real architectures closely enough that, most of the time,
the compiler’s constant folding pass ends up generating code which assembles machine
instructions without further tests.

2 Configuring and installing GNU lightning

Here we will assume that your system already has the dependencies necessary to build GNU
lightning. For more on dependencies, see GNU lightning’s README-hacking file.

The first thing to do to build GNU lightning is to configure the program, picking the set
of macros to be used on the host architecture; this configuration is automatically performed
by the configure shell script; to run it, merely type:

./configure

The configure accepts the -—enable-disassembler option, hat enables linking to GNU
binutils and optionally print human readable disassembly of the jit code. This option can
be disabled by the --disable-disassembler option.

configure also accepts the ——enable-devel-disassembler, option useful to check ex-
actly hat machine instructions were generated for a GNU lightning instrction. Basically
mixing jit_print and jit_disassembly.

The --enable-assertions option, which enables several consistency hecks in the run-
time assemblers. These are not usually needed, so you can decide to simply forget about it;
also remember that these consistency checks tend to slow down your code generator.

The --enable-devel-strong-type-checking option that does extra type checking us-
ing assert. This option also enables the —--enable-assertions unless it is explicitly

disabled.

The option --enable-devel-get-jit-size should only be used when doing updates or
maintenance to lightning. It regenerates the jit_$ARCH] -sz.c creating a table or maximum
bytes usage when translating a GNU lightning instruction to machine code.

After you've configured GNU lightning, run make as usual.

GNU lightning has an extensive set of tests to validate it is working correctly in the build
host. To test it run:

make check
The next important step is:
make install

This ends the process of installing GNU lightning.

3 GNU lightning’s instruction set

GNU lightning’s instruction set was designed by deriving instructions that closely match
those of most existing RISC architectures, or that can be easily syntesized if absent. Each
instruction is composed of:

e an operation, like sub or mul
e most times, a register/immediate flag (r or i)
e an unsigned modifier (u), a type identifier or two, when applicable.
Examples of legal mnemonics are addr (integer add, with three register operands) and
muli (integer multiply, with two register operands and an immediate operand). Each in-

struction takes two or three operands; in most cases, one of them can be an immediate
value instead of a register.

Most GNU lightning integer operations are signed wordsize operations, with the exception
of operations that convert types, or load or store values to/from memory. When applicable,
the types and C types are as follow:

e signed char
_uc unsigned char
_s short
_us unsigned short
_i int
_ui unsigned int
21 long
_f float

d double

Most integer operations do not need a type modifier, and when loading or storing values
to memory there is an alias to the proper operation using wordsize operands, that is, if
ommited, the type is int on 32-bit architectures and long on 64-bit architectures. Note that
lightning also expects sizeof (void*) to match the wordsize.

When an unsigned operation result differs from the equivalent signed operation, there is
a the _u modifier.

There are at least seven integer registers, of which six are general-purpose, while the last
is used to contain the frame pointer (FP). The frame pointer can be used to allocate and
access local variables on the stack, using the allocai or allocar instruction.

Of the general-purpose registers, at least three are guaranteed to be preserved across
function calls (VO, V1 and V2) and at least three are not (RO, R1 and R2). Six registers are
not very much, but this restriction was forced by the need to target CISC architectures
which, like the x86, are poor of registers; anyway, backends can specify the actual number
of available registers with the calls JIT_R_NUM (for caller-save registers) and JIT_V_NUM (for
callee-save registers).

There are at least six floating-point registers, named FO to F5. These are usually caller-
save and are separate from the integer registers on the supported architectures; on Intel
architectures, in 32 bit mode if SSE2 is not available or use of X87 is forced, the register
stack is mapped to a flat register file. As for the integer registers, the macro JIT_F_NUM
yields the number of floating-point registers.

The complete instruction set follows; as you can see, most non-memory operations only
take integers (either signed or unsigned) as operands; this was done in order to reduce the
instruction set, and because most architectures only provide word and long word operations
on registers. There are instructions that allow operands to be extended to fit a larger data
type, both in a signed and in an unsigned way.

Binary ALU operations
These accept three operands; the last one can be an immediate. addx operations
must directly follow addc, and subx must follow subc; otherwise, results are
undefined. Most, if not all, architectures do not support float or double imme-
diate operands; lightning emulates those operations by moving the immediate
to a temporary register and emiting the call with only register operands.

addr _f _d 01 =02+ 03

addi _f _d 01 =02+ 03

addxr 01 = 02 + (03 + carry)
addxi 01 = 02 + (03 + carry)
addcr 01 = 02 + 03, set carry
addci 01 = 02 + 03, set carry
subr _f _d 01 =202-2083

subi _f _d 01 =02-083

subxr 01 = 02 - (03 + carry)
subxi 01 = 02 - (03 + carry)
subcr 01 = 02 - 03, set carry
subci 01 = 02 - 03, set carry
rsbr _f _d 01 =03-01

rsbi _f _d 01 =03-01

mulr _f _d 01 =02 % 03

muli _f _d 01 =02 % 03

hmulr _u 01 = ((02 * 03) >> WORDSIZE)
hmuli _u 01 = ((02 * 03) >> WORDSIZE)
divr _u _f _d4 01=02/03

divi u _f _d 01 =02/ 03

remr _u 01 =02 % 03

remi _u 01 = 02 % 03

andr 01 =02 & 03

andi 01 =02 & 03

orr 01 =02 | 03

ori 01 =02 | 03

XOorr 01 =02 ~ 03

xori 01 = 02 ~ 03

lshr 01 = 02 << 03

1shi 01 = 02 << 03

rshr _u 01 = 02 >> 03'

rshi u 01 = 02 >> 03?

1 The sign bit is propagated unless using the _u modifier.
2 The sign bit is propagated unless using the _u modifier.

lrotr 01 = (02 << 03) | (03 >> (WORDSIZE - 03))
lroti 01 = (02 << 03) | (03 >> (WORDSIZE - 03))
rrotr 01 = (02 >> 03) | (03 << (WORDSIZE - 03))
rroti 01 = (02 > 03) | (03 << (WORDSIZE - 03))
movzr 01 =03 7 01 : 02
movnr 01 =03 702 : 01

Note that lrotr, 1lroti, rrotr and rroti are described as the fallback opera-
tion. These are bit shift/rotation operation.

Four operand binary ALU operations
These accept two result registers, and two operands; the last one can be an
immediate. The first two arguments cannot be the same register.

gmul stores the low word of the result in 01 and the high word in 02. For
unsigned multiplication, 02 zero means there was no overflow. For signed mul-
tiplication, no overflow check is based on sign, and can be detected if 02 is zero
or minus one.

qdiv stores the quotient in 01 and the remainder in 02. It can be used as quick
way to check if a division is exact, in which case the remainder is zero.

glsh shifts from 0 to wordsize, doing a normal left shift for the first result
register and setting the second result resister to the overflow bits. qlsh can be
used as a quick way to multiply by powers of two.

grsh shifts from 0 to wordsize, doing a normal right shift for the first result
register and setting the second result register to the overflow bits. qrsh can be
used as a quick way to divide by powers of two.

Note that glsh and grsh are basically implemented as two shifts. It is undefined
behavior to pass a value not in the range 0 to wordsize. Most cpus will usually
and the shift amount with wordsize - 1, or possible use the remainder. GNU
lightning only generates code to specially handle 0 and wordsize shifts. Since
in a code generator for a safe language should usually check the shift amount,
these instructions usually should be used as a fast path to check for division
without remainder or multiplication that does not overflow.

qmulr _u 01 02 = 03 *x 04

gmuli _u 01 02 = 03 * 04

qdivr _u 01 02 = 03 / 04

qdivi _u 01 02 = 03 / 04

qlshr _u 01 = 03 << 04, 02 = 03 >> (WORDSIZE - 04)
qlshi _u 01 = 03 << 04, 02 = 03 >> (WORDSIZE - 04)
qrshr _u 01 = 03 >> 04, 02 = 03 << (WORDSIZE - 04)
gqrshi _u 01 = 03 >> 04, 02 = 03 << (WORDSIZE - 04)

These four operand ALU operations are only defined for float operands.

fmar _f _d4 01 = 02 x 03 + 04

fmai _f _d 01 = 02 =03+ 04

fmsr _f _d 01 = 02 =03 - 04

fmsi _f _d 01 = 02 *03-04

fnmar _f _d 01 =-02 =03 - 04

fnmai f d 01 =-02 %x 03 - 04

fomsr f _d 01 =-02 %03+ 04

fnmsi f _d 01 =-02 %03+ 04

These are a family of fused multiply-add instructions. Note that GNU lightning
does not handle rounding modes nor math exceptions. Also note that not
all backends provide a instruction for the equivalent GNU lightning instruction
presented above. Some are completely implemented as fallbacks and some are
composed of one or more instructions. For common input this should not
cause major issues, but note that when implemented by the cpu, these are
implemented as the multiplication calculated with infinite precision, and after
the addition step rounding is done. Due to this, For specially crafted input
different ports might show different output. When implemented by the CPU,
it is also possible to have exceptions that do not happen if implemented as a
fallback.

Unary ALU operations
These accept two operands, the first must be a register and the second is a
register if the r modifier is used, otherwise, the i modifier is used and the
second argument is a constant.

negr _f _d 01 =-02

negi _f _d 01 =-02

comr 01 = 702

comi 01 = 702

clor 01 = number of leading one bits in 02
cloi 01 = number of leading one bits in 02
clzr 01 = number of leading zero bits in 02
clzi 01 = number of leading zero bits in 02
ctor 01 = number of trailing one bits in 02
ctoi 01 = number of trailing one bits in 02
ctzr 01 = number of trailing zero bits in 02
ctzi 01 = number of trailing zero bits in 02
rbitr 01 = bits of 02 reversed

rbiti 01 = bits of 02 reversed

popcntr 01 = number of bits set in 02
popcnti 01 = number of bits set in 02

Note that ctzr is basically equivalent of a C call ffs but indexed at bit zero,
not one.

Contrary to __builtin_ctz and __builtin_clz, an input value of zero is not
an error, it just returns the number of bits in a word, 64 if GNU lightning
generates 64 bit instructions, otherwise it returns 32.

The clor and ctor are just counterparts of the versions that search for zero

bits.
These unary ALU operations are only defined for float operands.
absr _f _d 01 = fabs(02)
absi _f _d 01 = fabs(02)
sqrtr _f _d 01 = sqrt(02)
sqrti f _d 01 = sqrt(02)

Note that for float and double unary operations, GNU lightning will generate
code to actually execute the operation at runtime.

Compare instructions

These accept three operands; again, the last can be an immediate. The last two
operands are compared, and the first operand, that must be an integer register,
is set to either 0 or 1, according to whether the given condition was met or not.

The conditions given below are for the standard behavior of C, where the “un-
ordered” comparison result is mapped to false.

1tr
1ti
ler
lei
gtr
gti
ger
gei
eqr
eqi
ner
nei
unltr
unler
ungtr
unger
uneqr
ltgtr
ordr
unordr

|
e

I T T T
S = - =
| R T L e A A A A

Hh Hh Hh Hh Hh Fh Fh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh b

Transfer operations

|
Hh

|
Q.

[oTR oy o Py o PR o T e P o P o T MR e Pl P i Pl PR « Pl o R PR o Pl o 1

01

01 =
01 =
01 =
01 =
01 =
01 =
01 =
01 =
01 =
01 =
01 =
01 =
01 =
01 =
01 =
01 =
01 =

01
01

(02
(02
(02
(02
(02
(02
(02
(02
(02
(02

(02 !

(02
(02
(02
1 (02
(02
(02
(02

(02

(02 !

03)
03)
03)
03)
03)
03)
03)

= 03)
= 03)

03)
03)
03)
03)
03)
03)
03)
03)
03)

= 02)

02)

&& '(02 > 03)

I
&&

(02
(03
(03

<= 03)
== 03)
1= 03)

These accept two operands; for ext both of them must be registers, while mov
accepts an immediate value as the second operand.

Unlike movr and movi, the other instructions are used to truncate a wordsize
operand to a smaller integer data type or to convert float data types. You can
also use extr to convert an integer to a floating point value: the usual options

are extr_f and extr_d.

movr
movi

extr c
truncr

extr

extr_u

depr

01

01 =
01 =

01
01
01
01

= 02

02

02

= trunc(02)

= sign_extend(02[03:03+04])
= 02[03:03+04]

[03:03+04] = 02

extr, extr_u and depr are useful to access C compatible bit fields, provided
that these are contained in a machine word. extr is used to extract and signed

extend a value from a bit field. extr_u is used to extract and zero extend a
value from a bit field. depr is used to deposit a value into a bit field.

extr(result, source, offset, length)
extr_u(result, source, offset, length)
depr(result, source, offset, length)

A common way to declare C and GNU lightning compatible bit fields is:

union {
struct {
jit_word_t signed_bits: length;
jit_uword_t unsigned_bits: length;

T s;
jit_word_t signed_value;
jit_uword_t unsigned_value;

} u;

In 64-bit architectures it may be required to use truncr_f_i, truncr_f_1,
truncr_d_i and truncr_d_1 to match the equivalent C code. Only the _i
modifier is available in 32-bit architectures.

truncr_£f_i
truncr_f_1
truncr_d_i
truncr_d_1

<int> 01 =
<long>01 =
<int> 01 =
<long>01

<float> 02
<float> 02
<double>02
<double>02

The float conversion operations

are destination first, source second, but the

order of the types is reversed. This happens for historical reasons.

<double>01 = <float> 02
<float> 01 = <double>02

extr_f_d
extr_d_f

The float to/from integer transfer operations are also destination first, source
second. These were added later, but follow the pattern of historic patterns.

movr_w_£ <float>01 = <int>02

movi_w_f <float>01 = <int>02

movr_f_w <int>01 = <float>02

movi_f_w <int>01 = <float>02

movr_w_d <double>01 = <long>02
movi_w_d <double>01 = <long>02
movr_d_w <long>01 = <double>02
movi_d_w <long>01 = <double>02
movr_ww_d <double>01 = [<int>02:<int>03]
movi_ww_d <double>01 = [<int>02:<int>03]

movr_d_ww
movi_d_ww

[<int>01:<int>02] =
[<int>01:<int>02] =

<double>03
<double>03

These are used to transfer bits to/from floats to/from integers, and are useful
to access bits of floating point values.

movr_w_d, movi_w_d, movr_d_w and movi_d_w are only available in 64-bit. Con-
versely, movr_ww_d, movi_ww_d, movr_d_ww and movi_d_ww are only available

in 32-bit. For the int pair to/from double transfers, integer arguments must
respect endianess, to match how the cpu handles the verbatim byte values.

Network extensions

These accept two operands, both of which must be registers; these two instruc-
tions actually perform the same task, yet they are assigned to two mnemonics
for the sake of convenience and completeness. As usual, the first operand is the
destination and the second is the source. The _ul variant is only available in
64-bit architectures.

htonr _us _ui _ul Host-to-network (big endian) order

ntohr _us _ui _ul Network-to-host order
bswapr can be used to unconditionally byte-swap an operand. On little-endian
architectures, htonr and ntohr resolve to this. The _ul variant is only available
in 64-bit architectures.

bswapr _us _ui _ul 01 = byte_swap(02)

Load operations

1d accepts two operands while 1dx accepts three; in both cases, the last can be
either a register or an immediate value. Values are extended (with or without
sign, according to the data type specification) to fit a whole register. The _ui
and _1 types are only available in 64-bit architectures. For convenience, there
is a version without a type modifier for integer or pointer operands that uses
the appropriate wordsize call.

*02
*02

1ldr _c _uc _s _us _i _ui _1 _f _d 01 = %02

1di _C _uc _s _us _i _ui _1 _f _d 01 = %02

ldxr ¢ _uc _s _us _i _ui _1 _f _d 01 = %x(02+03)

ldxi c _uc _s _us _i _ui _1 _f _d 01 = %(02+03)
1dxbr _C _uc _s _us _i _ui _1 _f _d 02 +=203, 01 =
1dxbi _c _uc _s _us _i _ui _1 _f _d 02 += 03, 01 =
ldxar _C _uc _s _us _i _ui _1 _f _d 01 = %02, 02 += 03
ldxai c uc s us i ui 1 f d 01 =

Store operations

st accepts two operands while stx accepts three; in both cases, the first can be
either a register or an immediate value. Values are sign-extended to fit a whole
register.

str _c _s _i 21 _f _d =01 =02

sti _C _s _i 21 _f _d *x01 = 02

stxr c _s _i 1 _f _d =(01+02) = 03

stxi _c _s _i 1 _f _d =(01+02) = 03

stxbr _C _s _i 1 _f _d 02 += 01, *02

stxbi e _s _i 21 _f _d 02 += 01, *02

stxar _cC _s _i 1 _f _d =02 =03, 02 +
stxai c S i 1 f d *x02 = 03, 02 +

Note that the unsigned type modifier is not available, as the store only writes
to the 1, 2, 4 or 8 sized memory address. The _1 type is only available in 64-bit
architectures, and for convenience, there is a version without a type modifier
for integer or pointer operands that uses the appropriate wordsize call.

%02, 02 += 03

03
03
01
01

Unaligned memory access
These allow access to integers of size 3, in 32-bit, and extra sizes 5, 6 and 7 in
64-bit. For floating point values only support for size 4 and 8 is provided.

unldr 01 = *(signed 03 byte integer)* = 02
unldi 01 = *(signed 03 byte integer)* = 02
unldr_u 01 = *(unsigned 03 byte integer)* = 02
unldi_u 01 = *(unsigned 03 byte integer)* = 02
unldr_x 01 = *(03 byte float)* = 02

unldi_x 01 = *(03 byte float)* = 02

unstr *(03 byte integer)01 = 02

unsti *(03 byte integer)01 = 02

unstr_x *(03 byte float)01 = 02

unsti_x *(03 byte float)01 = 02

With the exception of non standard sized integers, these might be implemented
as normal loads and stores, if the processor supports unaligned memory access,
or, mode can be chosen at jit initialization time, to generate or not generate,
code that does trap on unaligned memory access. Letting the kernel trap means
smaller code generation as it is required to check alignment at runtime3.

Argument management

These are:
prepare (not specified)
va_start (not specified)
pushargr _C _uc _s _us ui _1 _f _d
pushargi _C _uc _s _us ui _1 _f _d
va_push (not specified)
arg _C _uc _s _us ui 1 _f _d
getarg _C _uc _s _us ui 1 _f _d
va_arg _d
putargr _C _uc _s _us ui _1 _f _d
putargi _C _uc _s _us ui _1 _f _d
ret (not specified)
retr _C _uc _s _us ui _1 _f _d
reti _C _uc _s _us ui _1 _f _d
reti £ _d
va_end (not specified)
retval _C _uc _s _us ui _1 _f _d
epilog (not specified)

As with other operations that use a type modifier, the _ui and _1 types are
only available in 64-bit architectures, but there are operations without a type
modifier that alias to the appropriate integer operation with wordsize operands.

prepare, pusharg, and retval are used by the caller, while arg, getarg and
ret are used by the callee. A code snippet that wants to call another procedure
and has to pass arguments must, in order: use the prepare instruction and use

3 This requires changing jit_cpu.unaligned to 0 to disable or 1 to enable unaligned code generation. Not
all ports have the C jit_cpu.unaligned value.

the pushargr or pushargi to push the arguments in left to right order; and
use finish or call (explained below) to perform the actual call.

Note that arg, pusharg, putarg and ret when handling integer types can be
used without a type modifier. It is suggested to use matching type modifiers
to arg, putarg and getarg otherwise problems will happen if generating jit
for environments that require arguments to be truncated and zero or sign ex-
tended by the caller and/or excess arguments might be passed packed in the
stack. Currently only Apple systems with aarch64 cpus are known to have this
restriction.

va_start returns a C compatible va_list. To fetch arguments, use va_arg
for integers and va_arg_d for doubles. va_push is required when passing a
va_list to another function, because not all architectures expect it as a single
pointer. Known case is DEC Alpha, that requires it as a structure passed by
value.

arg, getarg and putarg are used by the callee. arg is different from other
instruction in that it does not actually generate any code: instead, it is a
function which returns a value to be passed to getarg or putarg.* You should
call arg as soon as possible, before any function call or, more easily, right after
the prolog instructions (which is treated later).

getarg accepts a register argument and a value returned by arg, and will move
that argument to the register, extending it (with or without sign, according to
the data type specification) to fit a whole register. These instructions are more
intimately related to the usage of the GNU lightning instruction set in code that
generates other code, so they will be treated more specifically in Chapter 4
[Generating code at run-time|, page 20.

putarg is a mix of getarg and pusharg in that it accepts as first argument
a register or immediate, and as second argument a value returned by arg. It
allows changing, or restoring an argument to the current function, and is a
construct required to implement tail call optimization. Note that arguments in
registers are very cheap, but will be overwritten at any moment, including on
some operations, for example division, that on several ports is implemented as
a function call.

Finally, the retval instruction fetches the return value of a called function in
a register. The retval instruction takes a register argument and copies the
return value of the previously called function in that register. A function with
a return value should use retr or reti to put the return value in the return
register before returning. See Section 4.4 [Fibonacci], page 27, for an example.

epilog is an optional call, that marks the end of a function body. It is auto-
matically generated by GNU lightning if starting a new function (what should
be done after a ret call) or finishing generating jit. It is very important to
note that the fact that epilog being optional may cause a common mistake.
Consider this:

funi:

4 “Return a value” means that GNU lightning code that compile these instructions return a value when
expanded.

prolog

ret
fun2:
prolog

Because epilog is added when finding a new prolog, this will cause the fun2
label to actually be before the return from funi. Because GNU lightning will
actually understand it as:

funi:
prolog

ret
fun2:
epilog
prolog
You should observe a few rules when using these macros. First of all, if calling
a varargs function, you should use the ellipsis call to mark the position of
the ellipsis in the C prototype.

You should not nest calls to prepare inside a prepare/finish block. Doing this
will result in undefined behavior. Note that for functions with zero arguments
you can use just call.

Branch instructions
Like arg, these also return a value which, in this case, is to be used to compile
forward branches as explained in Section 4.4 [Fibonacci numbers|, page 27.
They accept two operands to be compared; of these, the last can be either a
register or an immediate. They are:

bltr _u _f _d if (02 < 03) goto 01
blti _u _f _d if (02 < 03) goto 01
bler _u _f _d if (02 <= 03) goto 01
blei _u _f _d if (02 <= 03) goto 01
bgtr _u _f _d if (02 > 03) goto 01
bgti _u _f _d if (02 > 03) goto 01
bger _u _f _d if (02 >= 03) goto 01
bgei _u _f _d if (02 >= 03) goto 01
beqr _f _d if (02 == 03) goto 01
beqi _f _d if (02 == 03) goto 01
bner _f _d if (02 !'= 03) goto 01
bnei _f _d if (02 '= 03) goto 01
bunltr _f _d if 1(02 >= 03) goto 01
bunler _f _d if '(02 > 03) goto 01
bungtr _f _d if '(02 <= 03) goto 01
bunger _f _d if 1'(02 < 03) goto 01
buneqr _f _d4 if1(02 < 03) && !'(02 > 03) goto 01
bltgtr _f _d if 1(02 >=03) || !(02 <= 03) goto 01

bordr _f _d if (02

02) && (03 == 03) goto 01

bunordr _f _d if1(02 '=02) || (03 != 03) goto 01
bmsr if 02 & 03 goto 01

bmsi if 02 & 03 goto 01

bmcr if 1(02 & 03) goto 01

bmci if 1(02 & 03) goto 01°

boaddr _u 02 += 03, goto 01 if overflow
boaddi _u 02 += 03, goto 01 if overflow
bxaddr _u 02 += 03, goto 01 if no overflow
bxaddi _u 02 += 03, goto 01 if no overflow
bosubr _u 02 -= 03, goto 01 if overflow
bosubi _u 02 -= 03, goto 01 if overflow
bxsubr _u 02 -= 03, goto 01 if no overflow
bxsubi _u 02 -= 03, goto 01 if no overflow

Note that the C code does not have an 01 argument. It is required to always
use the return value as an argument to patch, patch_at or patch_abs.

Jump and return operations

These accept one argument except ret and jmpi which have none; the differ-
ence between finishi and calli is that the latter does not clean the stack
from pushed parameters (if any) and the former must always follow a prepare
instruction.

callr (not specified) function call to register O1
calli (not specified) function call to imme-
diate O1

finishr (not specified) function call to register O1
finishi (not specified) function call to imme-
diate O1

jmpr (not specified) unconditional jump to register
jmpi (not specified) unconditional jump

ret (not specified) return from subroutine
retr _c _uc _s _us _i _ui _1 _f _d

reti _c _uc _s _us _i _ui _1 _f _d

retval _c _uc _s _us _i _ui _1 _f _d move return value

to register

Like branch instruction, jmpi also returns a value which is to be used to compile
forward branches. See Section 4.4 [Fibonacci numbers|, page 27.

There are 3 GNU lightning instructions to create labels:

label (not specified) simple label
forward (not specified) forward label
indirect (not specified) special simple label

The following instruction is used to specify a minimal alignment for the next
instruction, usually with a label:

5 These mnemonics mean, respectively, branch if mask set and branch if mask cleared.

align (not specified) align code
Similar to align is the next instruction, also usually used with a label:
skip (not specified) skip code

It is used to specify a minimal number of bytes of nops to be inserted before
the next instruction.

label is normally used as patch_at argument for backward jumps.

jit_node_t *jump, *label;
label = jit_label();

jump = jit_beqr(JIT_RO, JIT_R1);
jit_patch_at(jump, label);

forward is used to patch code generation before the actual position of the label
is known.

jit_node_t *jump, *label;

label = jit_forward();
jump = jit_beqr(JIT_RO, JIT_R1);
jit_patch_at(jump, label);

jit_link(label);
indirect is useful when creating jump tables, and tells GNU lightning to not

optimize out a label that is not the target of any jump, because an indirect
jump may land where it is defined.

jit_node_t *jump, *label;
jmpr (JIT_RO) ; /* may jump to label */

label = jit_indirect();
indirect is an special case of note and name because it is a valid argument to
address.
Note that the usual idiom to write the previous example is

jit_node_t *addr, *jump;
addr = jit_movi(JIT_RO, 0); /*immediate is ignored */

jmpr (JIT_RO) ;

jit_patch(addr) ; /*implicit label added */

that automatically binds the implicit label added by patch with the movi, but
on some special conditions it is required to create an "unbound" label.

align is useful for creating multiple entry points to a (trampoline) function that
are all accessible through a single function pointer. align receives an integer
argument that defines the minimal alignment of the address of a label directly
following the align instruction. The integer argument must be a power of two
and the effective alignment will be a power of two no less than the argument

to align. If the argument to align is 16 or more, the effective alignment will
match the specified minimal alignment exactly.

jit_node_t *forward, *labell, *label2, *jump;
unsigned char *addrl, *addr2;

forward = jit_forward();
jit_align(16);
labell = jit_indirect(); /* first entry point */
jump = jit_jmpiQ); /* jump to first handler */
jit_patch_at(jump, forward);
jit_align(16);
label2 = jit_indirect(); /* second entry point */

. /* second handler */
jit_jmpr(...);

jit_link(forward);
. /* first handler /*
jit_jmpr(...);

jit_emit();

addrl = jit_address(labell);

addr2 = jit_address(label2);

assert(addr2 - addrl == 16); /* only one of the ad-
dresses needs to be remembered */

skip is useful for reserving space in the code buffer that can later be filled (pos-
sibly with the help of the pair of functions jit_unprotect and jit_protect).

Function prolog
These macros are used to set up a function prolog. The allocai call accept
a single integer argument and returns an offset value for stack storage access.
The allocar accepts two registers arguments, the first is set to the offset for
stack access, and the second is the size in bytes argument.

prolog (not specified) function prolog
allocai (not specified) reserve space on the stack
allocar (not specified) allocate space on the stack

allocai receives the number of bytes to allocate and returns the offset from
the frame pointer register FP to the base of the area.

allocar receives two register arguments. The first is where to store the offset
from the frame pointer register FP to the base of the area. The second argument
is the size in bytes. Note that allocar is dynamic allocation, and special
attention should be taken when using it. If called in a loop, every iteration will
allocate stack space. Stack space is aligned from 8 to 64 bytes depending on
backend requirements, even if allocating only one byte. It is advisable to not
use it with frame and tramp; it should work with frame with special care to
call only once, but is not supported if used in tramp, even if called only once.

As a small appetizer, here is a small function that adds 1 to the input parameter
(an int). I’'m using an assembly-like syntax here which is a bit different from

the one used when writing real subroutines with GNU lightning; the real syntax
will be introduced in See Chapter 4 [Generating code at run-time], page 20.

incr:
prolog
in = arg ! We have an integer argument
getarg RO, in ! Move it to RO
addi RO, RO, 1 ! Add 1
retr RO ! And return the result

And here is another function which uses the printf function from the standard
C library to write a number in hexadecimal notation:

printhex:
prolog
in = arg ! Same as above
getarg RO, in
prepare ! Begin call sequence for printf
pushargi "¥%x" ! Push format string
ellipsis ! Varargs start here
pushargr RO ! Push second argument
finishi printf ! Call printf
ret ! Return to caller

Register liveness
During code generation, GNU lightning occasionally needs scratch registers or
needs to use architecture-defined registers. For that, GNU lightning internally
maintains register liveness information.
In the following example, gqdivr will need special registers like RO on some
architectures. As GNU lightning understands that RO is used in the subsequent
instruction, it will create save/restore code for RO in case.

qdivr VO, V1, V2, V3
movr V3, RO

The same is not true in the example that follows. Here, RO is not alive after the
division operation because RO is neither an argument register nor a callee-save
register. Thus, no save/restore code for RO will be created in case.

qdivr VO, V1, V2, V3
jmpr R1

The live instruction can be used to mark a register as live after it as in the
following example. Here, RO will be preserved across the division.

qdivr VO, V1, V2, V3
live RO
jmpr R1

The live instruction is useful at code entry and exit points, like after and
before a callr instruction.

Trampolines, continuations and tail call optimization
Frequently it is required to generate jit code that must jump to code generated
later, possibly from another jit_context_t. These require compatible stack
frames.

GNU lightning provides two primitives from where trampolines, continuations
and tail call optimization can be implemented.

frame (not specified) create stack frame
tramp (not specified) assume stack frame

frame receives an integer argument® that defines the size in bytes for the stack
frame of the current, C callable, jit function. To calculate this value, a good
formula is maximum number of arguments to any called native function times
eight”, plus the sum of the arguments to any call to jit_allocai. GNU lightning
automatically adjusts this value for any backend specific stack memory it may
need, or any alignment constraint.

frame also instructs GNU lightning to save all callee save registers in the prolog
and reload in the epilog.

main: ! jit entry point
prolog ! function prolog
frame 256 ! save all callee save registers and

! reserve at least 256 bytes in stack
main_loop:

jmpi handler ! jumps to external code

ret ! return to the caller

tramp differs from frame only that a prolog and epilog will not be generated.
Note that prolog must still be used. The code under tramp must be ready to
be entered with a jump at the prolog position, and instead of a return, it must
end with a non conditional jump. tramp exists solely for the fact that it allows
optimizing out prolog and epilog code that would never be executed.

handler: ! handler entry point
prolog ! function prolog
tramp 256 ! assumes all callee save registers

! are saved and there is at least
1 256 bytes in stack

jmpi main_loop ! return to the main loop

GNU lightning only supports Tail Call Optimization using the tramp construct.
Any other way is not guaranteed to work on all ports.

6 It is not automatically computed because it does not know about the requirement of later generated
code.

" Times eight so that it works for double arguments. And would not need conditionals for ports that pass
arguments in the stack.

Predicates

An example of a simple (recursive) tail call optimization:

factorial: ! Entry point of the factorial function

prolog
in = arg ! Receive an integer argument

getarg RO, in ! Move argument to RO

prepare

pushargi 1 ! This is the accumulator
pushargr RO ! This is the argument

finishi fact ! Call the tail call optimized function

retval RO ! Fetch the result

retr RO ! Return it

epilog ! Epilog *before* label before prolog
fact: ! Entry point of the helper function

prolog

frame 16 ! Reserve 16 bytes in the stack
fact_entry: ! This is the tail call entry point
ac = arg ! The accumulator is the first argu-
ment
in = arg ! The factorial argument

getarg RO, ac ! Move the accumulator to RO

getarg R1, in ! Move the argument to R1

blei fact_out, R1, 1 ! Done if argument is one or less

mulr RO, RO, R1 ! accumulator *= argument

putargr RO, ac ! Update the accumulator

subi R1, R1, 1 ! argument -= 1

putargr R1, in ! Update the argument

jmpi fact_entry ! Tail Call Optimize it!
fact_out:

retr RO ! Return the accumulator
forward_p (not specified) forward label predicate
indirect_p (not specified) indirect label predicate
target_p (not specified) used label predicate
arg_register_p (not specified) argument kind predicate
callee_save_p (not specified) callee save predicate
pointer_p (not specified) pointer predicate

forward_p expects a jit_node_t* argument, and returns non zero if it is a
forward label reference, that is, a label returned by forward, that still needs a
link call.

indirect_p expects a jit_node_t* argument, and returns non zero if it is an
indirect label reference, that is, a label that was returned by indirect.

target_p expects a jit_node_t* argument, that is any kind of label, and will
return non zero if there is at least one jump or move referencing it.

arg_register_p expects a jit_node_t* argument, that must have been re-
turned by arg, arg_f or arg_d, and will return non zero if the argument lives
in a register. This call is useful to know the live range of register arguments,
as those are very fast to read and write, but have volatile values.

callee_save_p expects a valid JIT_Rn, JIT_Vn, or JIT_Fn, and will return non
zero if the register is callee save. This call is useful because on several ports,
the JIT_Rn and JIT_Fn registers are actually callee save; no need to save and
load the values when making function calls.

pointer_p expects a pointer argument, and will return non zero if the pointer
is inside the generated jit code. Must be called after jit_emit and before
jit_destroy_state.

Atomic operations

Only compare-and-swap is implemented. It accepts four operands; the second
can be an immediate.

The first argument is set with a boolean value telling if the operation did suc-
ceed.

Arguments must be different, cannot use the result register to also pass an
argument.

The second argument is the address of a machine word.
The third argument is the old value.
The fourth argument is the new value.

casr 01 = (x02 == 03) 7 (*02
casi 01 = (x02 == 03) 7 (%02
If value at the address in the second argument is equal to the third argument,

the address value is atomically modified to the value of the fourth argument
and the first argument is set to a non zero value.

If the value at the address in the second argument is not equal to the third
argument nothing is done and the first argument is set to zero.

04,
04,

1)
1)

: 0
: 0

4 Generating code at run-time

To use GNU lightning, you should include the lightning.h file that is put in your include
directory by the ‘make install’ command.

Each of the instructions above translates to a macro or function call. All you have to do
is prepend jit_ (lowercase) to opcode names and JIT_ (uppercase) to register names. Of
course, parameters are to be put between parentheses.

This small tutorial presents three examples:
e The incr function found in Chapter 3 [GNU lightning’s instruction set], page 3:
e A simple function call to printf
e An RPN calculator.

e Fibonacci numbers

4.1 A function which increments a number by one
Let’s see how to create and use the sample incr function created in Chapter 3 [GNU light-
ning’s instruction set], page 3:

#include <stdio.h>
#include <lightning.h>

static jit_state_t *_jit;
typedef int (xpifi) (int); /* Pointer to Int Function of Int */
int main(int argc, char *argvl[])
{
jit_node_t *in;

pifi incr;

init_jit(argv[0]);
_jit = jit_new_state();

jit_prolog(); /* prolog */
in = jit_argQ; /* in = arg */
jit_getarg(JIT_RO, in); /* getarg RO */
jit_addi(JIT_RO, JIT_RO, 1); Ve addi RO, RO, 1 */
jit_retr(JIT_RO); /* retr RO */

incr = jit_emit();
jit_clear_state();

/* call the generated code, passing 5 as an argument */
printf("%d + 1 = %d\n", 5, incr(5));

jit_destroy_state();
finish_jitQ;

return O;

}

Let’s examine the code line by line (well, almost. . .):

#include <lightning.h>
You already know about this. It defines all of GNU lightning’s macros.

static jit_state_t *_jit;
You might wonder about what is jit_state_t. It is a structure that stores
jit code generation information. The name _jit is special, because since mul-
tiple jit generators can run at the same time, you must either #define _jit
my_jit_state or name it _jit.

typedef int (*pifi) (int);
Just a handy typedef for a pointer to a function that takes an int and returns
another.

jit_node_t *in;
Declares a variable to hold an identifier for a function argument. It is an opaque
pointer, that will hold the return of a call to arg and be used as argument to
getarg.

pifi incr;
Declares a function pointer variable to a function that receives an int and
returns an int.

init_jit(argv[0]);
You must call this function before creating a jit_state_t object. This function
does global state initialization, and may need to detect CPU or Operating
System features. It receives a string argument that is later used to read symbols
from a shared object using GNU binutils if disassembly was enabled at configure
time. If no disassembly will be performed a NULL pointer can be used as
argument.

_jit = jit_new_state();
This call initializes a GNU lightning jit state.

jit_prolog();
Ok, so we start generating code for our beloved function. . .

in = jit_arg(Q);

jit_getarg(JIT_RO, in);
We retrieve the first (and only) argument, an integer, and store it into the
general-purpose register RO.

jit_addi(JIT_RO, JIT_RO, 1);
We add one to the content of the register.

jit_retr (JIT_RO);
This instruction generates a standard function epilog that returns the contents
of the RO register.

incr = jit_emit();
This instruction is very important. It actually translates the GNU lightning
macros used before to machine code, flushes the generated code area out of the
processor’s instruction cache and return a pointer to the start of the code.

jit_clear_state();
This call cleanups any data not required for jit execution. Note that it must
be called after any call to jit_print or jit_address, as this call destroy the
GNU lightning intermediate representation.

printf ("%d + 1 = %d4", 5, incr(5));
Calling our function is this simple—it is not distinguishable from a normal C
function call, the only difference being that incr is a variable.

jit_destroy_state();
Releases all memory associated with the jit context. It should be called after
known the jit will no longer be called.

finish_jitQ;
This call cleanups any global state hold by GNU lightning, and is advisable to
call it once jit code will no longer be generated.

GNU lightning abstracts two phases of dynamic code generation: selecting instructions
that map the standard representation, and emitting binary code for these instructions.
The client program has the responsibility of describing the code to be generated using the
standard GNU lightning instruction set.

Let’s examine the code generated for incr on the SPARC and x86_64 architecture (on
the right is the code that an assembly-language programmer would write):

SPARC
save %sp, —-112, Y%sp
mov %10, %g2 retl
inc %g2 inc %00
mov %g2, %i0
restore
retl
nop
In this case, GNU lightning introduces overhead to create a register window (not
knowing that the procedure is a leaf procedure) and to move the argument to
the general purpose register RO (which maps to %g2 on the SPARC).
x86_64

mov %rdi,%rax
add $0x1,%rax
ret

In this case, for the x86 port, GNU lightning has simple optimizations to under-
stand it is a leaf function, and that it is not required to create a stack frame
nor update the stack pointer.

4.2 A simple function call to printf

Again, here is the code for the example:

#include <stdio.h>
#include <lightning.h>

static jit_state_t *_jit;

typedef void (*pvfi) (int); /* Pointer to Void Function of Int */

int main(int argc, char *argv[])

{

}

pvfi myFunction; /* ptr to generated code */
jit_node_t *xstart, *end; /* a couple of labels */
jit_node_t *in; /* to get the argument */

init_jit(argv[0]);
_jit = jit_new_state();

start = jit_note(__FILE
jit_prologQ);

in = jit_arg(Q);
jit_getarg(JIT_R1, in);
jit_prepare(Q);
jit_pushargi((jit_word_t)"generated %d bytes\n");
jit_ellipsis();

jit_pushargr(JIT_R1);

jit_finishi(printf);

jit_retQ;

jit_epilog();

end = jit_note(__FILE__, __LINE__);

LINE__);

—_ ——

myFunction = jit_emit(Q);

/* call the generated code, passing its size as argument */
myFunction((char*) jit_address(end) - (charx)jit_address(start));
jit_clear_state();

jit_disassemble();
jit_destroy_state();

finish_jit();
return O;

The function shows how many bytes were generated. Most of the code is not very
interesting, as it resembles very closely the program presented in Section 4.1 [A function
which increments a number by one], page 20.

For this reason, we're going to concentrate on just a few statements.

start = jit_note(__FILE LINE__);

end = jit_note(__FILE__, __LINE__);
These two instruction call the jit_note macro, which creates a note in the
jit code; arguments to jit_note usually are a filename string and line number
integer, but using NULL for the string argument is perfectly valid if only need
to create a simple marker in the code.

jit_ellipsis();
ellipsis usually is only required if calling varargs functions with double ar-
guments, but it is a good practice to properly describe the ... in the call
sequence.

jit_pushargi((jit_word_t)"generated %d bytes\n");
Note the use of the (jit_word_t) cast, that is used only to avoid a compiler
warning, due to using a pointer where a wordsize integer type was expected.

jit_prepare(Q);

jit_finishi(printf);
Once the arguments to printf have been pushed, what means moving them to
stack or register arguments, the printf function is called and the stack cleaned.
Note how GNU lightning abstracts the differences between different architectures
and ABI’s — the client program does not know how parameter passing works
on the host architecture.

jit_epilog();
Usually it is not required to call epilog, but because it is implicitly called when
noticing the end of a function, if the end variable was set with a note call after
the ret, it would not consider the function epilog.

myFunction((char*)jit_address(end) - (char*)jit_address(start));
This calls the generate jit function passing as argument the offset difference
from the start and end notes. The address call must be done after the emit
call or either a fatal error will happen (if GNU lightning is built with assertions
enable) or an undefined value will be returned.

jit_clear_state();
Note that jit_clear_state was called after executing jit in this example. It
was done because it must be called after any call to jit_address or jit_print.

jit_disassemble();
disassemble will dump the generated code to standard output, unless GNU
lightning was built with the disassembler disabled, in which case no output will
be shown.

4.3 A more complex example, an RPN calculator

We create a small stack-based RPN calculator which applies a series of operators to a given
parameter and to other numeric operands. Unlike previous examples, the code generator is

fully parameterized and is able to compile different formulas to different functions. Here is
the code for the expression compiler; a sample usage will follow.

Since GNU lightning does not provide push/pop instruction, this example uses a stack-
allocated area to store the data. Such an area can be allocated using the macro allocai,
which receives the number of bytes to allocate and returns the offset from the frame pointer
register FP to the base of the area.

Usually, you will use the 1dxi and stxi instruction to access stack-allocated variables.
However, it is possible to use operations such as add to compute the address of the variables,
and pass the address around.

#include <stdio.h>
#include <lightning.h>

typedef int (xpifi) (int); /* Pointer to Int Function of Int */
static jit_state_t *_jit;

void stack_push(int reg, int *sp)

{
jit_stxi_i (xsp, JIT_FP, reg);
xsp += sizeof (int);
}
void stack_pop(int reg, int *sp)
{
*sp -= sizeof (int);
jit_ldxi_i (reg, JIT_FP, *sp);
}

jit_node_t *compile_rpn(char *expr)
{

jit_node_t *in, *fn;

int stack_base, stack_ptr;

fn = jit_note(NULL, 0);

jit_prologQ);

in = jit_arg(Q);

stack_ptr = stack_base = jit_allocai (32 * sizeof (int));

jit_getarg(JIT_R2, in);

while (xexpr) {
char buf[32];
int n;
if (sscanf(expr, "%[0-9]1%n", buf, &n)) {
expr += n - 1;
stack_push(JIT_RO, &stack_ptr);

jit_movi(JIT_RO, atoi(buf));

} else if (xexpr == ’x’) {
stack_push(JIT_RO, &stack_ptr);
jit_movr (JIT_RO, JIT_R2);

} else if (¥expr == ’+’) {
stack_pop(JIT_R1, &stack_ptr);
jit_addr(JIT_RO, JIT_R1, JIT_RO);

} else if (xexpr == ’-7) {
stack_pop(JIT_R1, &stack_ptr);
jit_subr(JIT_RO, JIT_R1, JIT_RO);

} else if (xexpr == ’*’) {
stack_pop(JIT_R1, &stack_ptr);
jit_mulr (JIT_RO, JIT_R1, JIT_RO);

} else if (xexpr == ’/’) {
stack_pop(JIT_R1, &stack_ptr);
jit_divr(JIT_RO, JIT_R1, JIT_RO);

} else {
fprintf(stderr, "cannot compile: %s\n", expr);
abort();

}

++expr;

}

jit_retr (JIT_RO);
jit_epilog();
return fn;

}

The principle on which the calculator is based is easy: the stack top is held in RO, while
the remaining items of the stack are held in the memory area that we allocate with allocai.
Compiling a numeric operand or the argument x pushes the old stack top onto the stack
and moves the operand into RO; compiling an operator pops the second operand off the
stack into R1, and compiles the operation so that the result goes into RO, thus becoming
the new stack top.

This example allocates a fixed area for 32 ints. This is not a problem when the function
is a leaf like in this case; in a full-blown compiler you will want to analyze the input and
determine the number of needed stack slots—a very simple example of register allocation.
The area is then managed like a stack using stack_push and stack_pop.

Source code for the client (which lies in the same source file) follows:

int main(int argc, char *argv[])
{

jit_node_t *nc, *nf;

pifi c2f, f2c;

int i;

init_jit(argv[0]);
_jit = jit_new_state();

nc = compile_rpn("32x9%5/+");
nf = compile_rpn("x32-5%9/");
(void) jit_emit ();

c2f = (pifi)jit_address(nc);
f2c = (pifi)jit_address(nf);
jit_clear_state();

printf("\nC:");

for (i = 0; i <= 100; i += 10) printf("%3d ", i);
printf("\nF:");

for (1 = 0; i <= 100; i += 10) printf("%3d ", c2f(i));
printf ("\n");

printf("\nF:");

for (i = 32; i <= 212; i += 18) printf("%3d ", 1i);
printf("\nC:");

for (i = 32; i <= 212; i += 18) printf("%3d ", £f2c(i));
printf ("\n");

jit_destroy_state();
finish_jit();
return O;

}

The client displays a conversion table between Celsius and Fahrenheit degrees (both
Celsius-to-Fahrenheit and Fahrenheit-to-Celsius). The formulas are, F'(¢) = ¢ % 9/5 + 32
and C(f) = (f — 32) *5/9, respectively.

Providing the formula as an argument to compile_rpn effectively parameterizes code
generation, making it possible to use the same code to compile different functions; this is
what makes dynamic code generation so powerful.

4.4 Fibonacci numbers

The code in this section calculates the Fibonacci sequence. That is modeled by the recur-
rence relation:

f(0) =0

f(1)=1(2) =1

f(n) = f(n-1) + f(n-2)

The purpose of this example is to introduce branches. There are two kind of branches:
backward branches and forward branches. We’ll present the calculation in a recursive and
iterative form; the former only uses forward branches, while the latter uses both.

#include <stdio.h>
#include <lightning.h>

static jit_state_t *_jit;

typedef int (*pifi) (int); /* Pointer to Int Function of Int */

int main(int argc, char *argv[])

{

pifi fib;

jit_node_t *label;
jit_node_t *call;
jit_node_t *in;
jit_node_t *ref;
jit_node_t *zero;

init_jit(argv[0]);
_jit = jit_new_state();

label = jit_label(Q);
jit_prolog QO;

in = jit_arg Ok
jit_getarg (JIT_VO, in);

zero = jit_beqi (JIT_RO, 0);
jit_movr (JIT_VO, JIT_RO);
jit_movi (JIT_RO, 1);

ref = jit_blei (JIT_VO, 2);
jit_subi (JIT_V1, JIT_VO, 1);
jit_subi (JIT_v2, JIT_VO, 2);

jit_prepare();
jit_pushargr (JIT_V1);
call = jit_finishi(NULL);
jit_patch_at(call, label);
jit_retval (JIT_V1);
jit_prepare();
jit_pushargr (JIT_V2);
call = jit_finishi(NULL);
jit_patch_at(call, label);
jit_retval (JIT_RO);
jit_addr(JIT_RO, JIT_RO, JIT_V1);

jit_patch(ref);
jit_patch(zero);
jit_retr(JIT_RO);

fib = jit_emit();
jit_clear_state();

printf ("fib(%d) = %d\n", 32, £ib(32));

jit_destroy_state();
finish_jit();

return O;

/* offset of the argument */
/* to patch the forward reference */
/* to patch the forward reference */

/*R0O=n*/

/* VO = RO */
/¥ V1 =n-17%/
/¥ V2 =n-2%*/

/* V1 = fib(n-1) */

/* RO = fib(n-2) */
J*RO=RO+ V1 */

/* patch jump */
/* patch jump */

/* call the generated code, passing 32 as an argument */

As said above, this is the first example of dynamically compiling branches. Branch
instructions have two operands containing the values to be compared, and return a jit_
note_t * object to be patched.

Because labels final address are only known after calling emit, it is required to call patch
or patch_at, what does tell GNU lightning that the target to patch is actually a pointer to
a jit_node_t * object, otherwise, it would assume that is a pointer to a C function. Note
that conditional branches do not receive a label argument, so they must be patched.

You need to call patch_at on the return of value calli, finishi, and calli if it is
actually referencing a label in the jit code. All branch instructions do not receive a label
argument. Note that movi is an special case, and patching it is usually done to get the final
address of a label, usually to later call jmpr.

Now, here is the iterative version:

#include <stdio.h>
#include <lightning.h>

static jit_state_t *_jit;
typedef int (xpifi) (int); /* Pointer to Int Function of Int */

int main(int argc, char *argv[])

{
pifi fib;
jit_node_t *in; /* offset of the argument */
jit_node_t *ref; /* to patch the forward reference */
jit_node_t *zero; /* to patch the forward reference */
jit_node_t *jump; /* jump to start of loop */
jit_node_t *loop; /* start of the loop */
init_jit(argv[0]);
_jit = jit_new_state();
jit_prolog QO;
in = jit_arg O3
jit_getarg (JIT_RO, in); J¥RO=n*/
zero = jit_beqi (JIT_RO, 0);
jit_movr (JIT_R1, JIT_RO);
jit_movi (JIT_RO, 1);
ref = jit_blti (JIT_R1, 2);
jit_subi (JIT_R2, JIT_R2, 2);
jit_movr (JIT_R1, JIT_RO);
loop= jit_label();
jit_subi (JIT_R2, JIT_R2, 1); /* decr. counter */
jit_movr (JIT_VO, JIT_RO); /% VO = RO %/
jit_addr (JIT_RO, JIT_RO, JIT_R1); /* RO = RO + R1 =/

jit_movr (JIT_R1, JIT_VO); /* R1 VO */

jump= jit_bnei (JIT_R2, 0); /* if (R2) goto loop; */
jit_patch_at (jump, loop);

jit_patch(ref); /* patch forward jump */
jit_patch(zero); /* patch forward jump */
jit_retr (JIT_RO);

/* call the generated code, passing 36 as an argument */
fib = jit_emit(Q;

jit_clear_state();

printf ("fib(%d) = %d\n", 36, £fib(36));
jit_destroy_state();

finish_jitQ);

return O;

}

This code calculates the recurrence relation using iteration (a for loop in high-level
languages). There are no function calls anymore: instead, there is a backward jump (the
bnei at the end of the loop).

Note that the program must remember the address for backward jumps; for forward
jumps it is only required to remember the jump code, and call patch for the implicit label.

5 Re-entrant usage of GNU lightning

GNU lightning uses the special _jit identifier. To be able to be able to use multiple jit
generation states at the same time, it is required to used code similar to:
struct jit_state lightning;
#define lightning _jit
This will cause the symbol defined to _jit to be passed as the first argument to the
underlying GNU lightning implementation, that is usually a function with an _ (underscode)
prefix and with an argument named _jit, in the pattern:
static void _jit_mnemonic(jit_state_t *, jit_gpr_t, jit_gpr_t);
#define jit_mnemonic(u, v) _jit_mnemonic(_jit, u, v);
The reason for this is to use the same syntax as the initial lightning implementation and
to avoid needing the user to keep adding an extra argument to every call, as multiple jit
states generating code in paralell should be very uncommon.

6 Accessing the whole register file

As mentioned earlier in this chapter, all GNU lightning back-ends are guaranteed to have at
least six general-purpose integer registers and six floating-point registers, but many back-
ends will have more.

To access the entire register files, you can use the JIT_R, JIT_V and JIT_F macros.
They accept a parameter that identifies the register number, which must be strictly less
than JIT_R_NUM, JIT_V_NUM and JIT_F_NUM respectively; the number need not be constant.
Of course, expressions like JIT_RO and JIT_R(0) denote the same register, and likewise for
integer callee-saved, or floating-point, registers.

6.1 Scratch registers

For operations, GNU lightning does not support directly, like storing a literal in memory,
jit_get_reg and jit_unget_reg can be used to acquire and release a scratch register as
in the following pattern:

jit_int32_t reg = jit_get_reg (jit_class_gpr);

jit_movi (reg, immediate);

jit_stxi (offsetof (some_struct, some_field), JIT_VO, reg);

jit_unget_reg (reg);

As jit_get_reg and jit_unget_reg may generate spills and reloads but don’t follow
branches, the code between both must be in the same basic block and must not contain any
branches as in the following (bad) example.

jit_int32_t reg = jit_get_reg (jit_class_gpr);
jit_1dxi (reg, JIT_VO, offset);

jump = jit_bnei (reg, VO);

jit_movr (JIT_V1, reg);

jit_patch (jump);

jit_unget_reg (reg);

7 Customizations

Frequently it is desirable to have more control over how code is generated or how memory
is used during jit generation or execution.

7.1 Memory functions

To aid in complete control of memory allocation and deallocation GNU lightning provides
wrappers that default to standard malloc, realloc and free. These are loosely based on
the GNU GMP counterparts, with the difference that they use the same prototype of the
system allocation functions, that is, no size for free or old_size for realloc.

void jit_set_memory_functions ([Function]
void *(*alloc_func_ptr) (size_t),
void *(*realloc_func_ptr) (void *, size_t),
void (*free_func_ptr) (void *))
GNU lightning guarantees that memory is only allocated or released using these
wrapped functions, but you must note that if lightning was linked to GNU binu-
tils, malloc is probably will be called multiple times from there when initializing the
disassembler.

Because init_jit may call memory functions, if you need to call jit_set_memory_
functions, it must be called before init_jit, otherwise, when calling finish_jit,
a pointer allocated with the previous or default wrappers will be passed.

void jit_get_memory_functions ([Function]
void *(**alloc_func_ptr) (size_t),
void *(**realloc_func_ptr) (void *, size_t),
void (**free_func_ptr) (void *))
Get the current memory allocation function. Also, unlike the GNU GMP counterpart,
it is an error to pass NULL pointers as arguments.

7.2 Protection

Unless an alternate code buffer is used (see below), jit_emit set the access protections that
the code buffer’s memory can be read and executed, but not modified. One can use the
following functions after jit_emit but before jit_clear to temporarily lift the protection:

void jit_unprotect () [Function]
Changes the access protection that the code buffer’s memory can be read and modi-
fied. Before the emitted code can be invoked, jit_protect has to be called to reset
the change.

This procedure has no effect when an alternate code buffer (see below) is used.

void jit_protect () [Function]
Changes the access protection that the code buffer’s memory can be read and exe-
cuted.

This procedure has no effect when an alternate code buffer (see below) is used.

7.3 Alternate code buffer

To instruct GNU lightning to use an alternate code buffer it is required to call jit_realize
before jit_emit, and then query states and customize as appropriate.

void jit_realize () [Function]
Must be called once, before jit_emit, to instruct GNU lightning that no other jit_
xyz call will be made.

jit_pointer_t jit_get_code (jit_word_t *code_size) [Function]
Returns NULL or the previous value set with jit_set_code, and sets the code_size
argument to an appropriate value. If jit_get_code is called before jit_emit, the
code_size argument is set to the expected amount of bytes required to generate code.
If jit_get_code is called after jit_emit, the code_size argument is set to the exact
amount of bytes used by the code.

void jit_set_code (jit_-ponter_t code, jit_word_t size) [Function]
Instructs GNU lightning to output to the code argument and use size as a guard to
not write to invalid memory. If during jit_emit GNU lightning finds out that the
code would not fit in size bytes, it halts code emit and returns NULL.

A simple example of a loop using an alternate buffer is:

jit_uint8_t *code;

int *(func) (int) ; /¥ function pointer */
jit_word_t code_size;

jit_word_t real_code_size;

jit_realize(); /* ready to generate code */
jit_get_code(&code_size) ; /* get expected code size */
code_size = (code_size + 4095) & -4096;

do (55) {

code = mmap(NULL, code_size, PROT_EXEC | PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0);
jit_set_code(code, code_size);
if ((func = jit_emit()) == NULL) {
munmap (code, code_size);
code_size += 4096;

}
} while (func == NULL);
jit_get_code(&real_code_size); /* query exact size of the code */

The first call to jit_get_code should return NULL and set the code_size argument to
the expected amount of bytes required to emit code. The second call to jit_get_code is
after a successful call to jit_emit, and will return the value previously set with jit_set_
code and set the real_code_size argument to the exact amount of bytes used to emit the
code.

7.4 Alternate data buffer

Sometimes it may be desirable to customize how, or to prevent GNU lightning from using
an extra buffer for constants or debug annotation. Usually when also using an alternate
code buffer.

jit_pointer_t jit_get_data (jit_word_t *data_size, jit_word_t [Function]
*note_size)

Returns NULL or the previous value set with jit_set_data, and sets the data_size
argument to how many bytes are required for the constants data buffer, and note_size
to how many bytes are required to store the debug note information. Note that it
always preallocate one debug note entry even if jit_name or jit_note are never
called, but will return zero in the data_size argument if no constant is required;
constants are only used for the float and double operations that have an immediate
argument, and not in all GNU lightning ports.

void jit_set_data (jit_pointer_t data, jit_word_t size, jit_word_t [Function]
flags)
data can be NULL if disabling constants and annotations, otherwise, a valid pointer
must be passed. An assertion is done that the data will fit in size bytes (but that is
a noop if GNU lightning was built with ~-DNDEBUG).

size tells the space in bytes available in data.

flags can be zero to tell to just use the alternate data buffer, or a composition of
JIT_DISABLE_DATA and JIT_DISABLE_NOTE

JIT_DISABLE_DATA
Instructs GNU lightning to not use a constant table, but to use an alternate
method to synthesize those, usually with a larger code sequence using
stack space to transfer the value from a GPR to a FPR register.

JIT_DISABLE_NOTE
Instructs GNU lightning to not store file or function name, and line num-
bers in the constant buffer.

A simple example of a preventing usage of a data buffer is:

jit_realize(); /¥ ready to generate code */
jit_get_data(NULL, NULL);
jit_set_data(NULL, 0, JIT_DISABLE_DATA | JIT_DISABLE_NOTE);

Or to only use a data buffer, if required:

jit_uint8_t *data;
jit_word_t data_size;

jit_realize(); /¥ ready to generate code */
jit_get_data(&data_size, NULL);
if (data_size)

data = malloc(data_size);

else
data = NULL;
jit_set_data(data, data_size, JIT_DISABLE_NOTE);

if (data)
free(data);

8 Acknowledgements

As far as I know, the first general-purpose portable dynamic code generator is DCG, by
Dawson R. Engler and T. A. Proebsting. Further work by Dawson R. Engler resulted in
the VCODE system; unlike DCG, VCODE used no intermediate representation and directly
inspired GNU lightning.

Thanks go to Ian Piumarta, who kindly accepted to release his own program CCG un-
der the GNU General Public License, thereby allowing GNU lightning to use the run-time
assemblers he had wrote for cCG. CCG provides a way of dynamically assemble programs
written in the underlying architecture’s assembly language. So it is not portable, yet very
interesting.

I also thank Steve Byrne for writing GNU Smalltalk, since GNU lightning was first
developed as a tool to be used in GNU Smalltalk’s dynamic translator from bytecodes
to native code.

