
GNU Texinfo texi2any Output

Customization
for GNU Texinfo version 7.1.1, 7 September 2024

This manual is for GNU Texinfo texi2any program output adaptation using customization
files (version 7.1.1, 7 September 2024).

Copyright c© 2013-2023 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later ver-
sion published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License” in the Texinfo man-
ual.

i

Short Contents

1 Overview . 1
2 Loading Initialization Files and Search Paths 2
3 Init File Basics . 3
4 Simple formatting customization . 7
5 Simple headers customizations . 12
6 User Defined Functions . 19
7 Customizing Output-Related Names . 28
8 Init File Calling at Different Stages . 32
9 User Defined Functions in Conversion . 33

10 Mandatory Conversion Function Calls . 38

11 Basic Formatting Customization . 42

12 Dynamic Conversion Information . 44
13 Translations Output and Customization 48

14 Directions, Links, Labels and Files . 52

15 Customizing Footnotes, Tables of Contents and About 57

16 Customizing HTML Footers, Headers and Navigation Panels . . 63
17 Heading Commands and Tree Elements Formatting 66

18 Beginning and Ending Files . 67

19 Titlepage, CSS and Redirection Files . 69

A Specific Functions for Specific Elements 71

B Functions Index . 73

C Variables Index . 75

D General Index . 76

ii

Table of Contents

1 Overview . 1

2 Loading Initialization Files and Search Paths . 2

3 Init File Basics . 3
3.1 Init File Namespace . 3
3.2 Managing Customization Variables . 3

3.2.1 Setting Main Program String Variables . 3
3.2.2 Modifying Main Program Array Variables 4
3.2.3 Setting Converter Variables in Main Program 5
3.2.4 Getting Main Program Variables Values . 5
3.2.5 Adding Customization Variables . 5

3.3 Init File Loading Error Reporting . 5

4 Simple formatting customization 7
4.1 Init File Expansion Contexts: Normal, Preformatted, Code, String,

Math . 7
4.2 Simple Customization for Commands Without Arguments 7
4.3 Simple Customization for Simple Commands with Braces 9
4.4 Simple Customization of Accent Commands . 9
4.5 Simple Customization of Containers . 10
4.6 Simple Customization of CSS Rules and Imports 10

5 Simple headers customizations 12
5.1 Output Element Units . 12
5.2 Directions . 13

5.2.1 Element Direction Information Type . 14
5.2.2 Direction Strings . 15

5.3 Direction Strings Customization . 15
5.4 Simple Navigation Panel Customization . 16

6 User Defined Functions . 19
6.1 User Defined Functions are Registered . 19
6.2 Converter Object and Conversion Functions . 19

6.2.1 Texinfo Tree Conversion Functions . 20
6.2.2 Error Reporting in User Defined Functions 21

6.3 Texinfo Tree Elements in User Defined Functions 21
6.4 Encoding and Decoding File Path Strings . 22

6.4.1 Encoding File Path Strings . 22
6.4.2 Decoding File Path Strings . 23

6.5 Setting the Context for Conversion . 24

iii

6.6 Setting and Getting Conversion Customization Variables 24
6.7 Conversion General Information . 25

7 Customizing Output-Related Names 28
7.1 Customizing Output File Names . 28
7.2 Customizing Output Target Names . 29
7.3 Customizing External Node Output Names . 30
7.4 Customizing Special Elements Output Names 31

8 Init File Calling at Different Stages 32

9 User Defined Functions in Conversion 33
9.1 Tree Element Conversion Functions . 33

9.1.1 Command Tree Element Opening Functions 33
9.1.2 Command Tree Element Conversion Functions 34
9.1.3 Type Tree Element Opening Functions . 35
9.1.4 Type Tree Element Conversion Functions 36

9.2 Formatting Functions . 37
9.2.1 Specific formating Functions . 37

10 Mandatory Conversion Function Calls 38
10.1 Protection of URLs . 38
10.2 Formatting HTML Element with Classes . 38
10.3 Closing Lone HTML Element . 39
10.4 Substituting Non Breaking Space . 39
10.5 Conversion in String Context . 40
10.6 Conversion in Preformatted Context . 40
10.7 Text Formatting Context . 41

11 Basic Formatting Customization 42

12 Dynamic Conversion Information 44
12.1 Dynamic Converter Formatting Information 44
12.2 Opening and Closing Sectioning Commands Extent 45
12.3 Setting Up Content for the Next Text Container 45
12.4 Associating Information to an Output File . 47
12.5 Shared Conversion State . 47

13 Translations Output and Customization 48
13.1 Internationalization of Strings Function . 48
13.2 Translated Strings Customization . 49
13.3 Translation Contexts . 50

iv

14 Directions, Links, Labels and Files 52
14.1 Getting Direction Strings . 52
14.2 Target Commands Links, Texts and Associated Commands 52
14.3 Other Links, Headings and Associated Information for Special

Elements . 53
14.4 Elements and Links for Directions . 55
14.5 Element Counters in Files . 55

15 Customizing Footnotes, Tables of Contents
and About . 57

15.1 Special Elements Information Customization 57
15.2 Customizing Footnotes . 58
15.3 Contents and Short Table of Contents Customization 59
15.4 About Element Customization . 60
15.5 Special Element Body Formatting Functions 61

16 Customizing HTML Footers, Headers and
Navigation Panels . 63

16.1 Navigation Panel and Navigation Header Formatting 63
16.2 Element Header and Footer Formatting . 64

17 Heading Commands and Tree Elements
Formatting . 66

18 Beginning and Ending Files 67
18.1 Customizing HTML File Beginning . 67
18.2 Customizing HTML File End . 67

19 Titlepage, CSS and Redirection Files 69
19.1 HTML Title Page Customization . 69
19.2 Customizing the CSS lines . 69
19.3 Customizing Node Redirection Pages . 70

Appendix A Specific Functions for Specific
Elements . 71

Appendix B Functions Index . 73

Appendix C Variables Index . 75

Appendix D General Index . 76

1

1 Overview

� �
Warning: All of this information, with the exception of command-line options
and search directories associated with command line options (see Chapter 2
[Loading Init Files], page 2), may become obsolete in a future Texinfo release.
Right now, the “API” described in this chapter is immature, so we must keep
open the possibility of incompatible, possibly major, changes. Of course we
try to avoid incompatible changes, but it is not a promise.
 	

This manual describes how to customize the texi2any HTML output. Although some
of the features here can technically be used with other output formats, it’s not especially
useful to do so, so we’ll write the documentation as if HTML were the target format. Most
of the customizations are only available for HTML.

The conversion of Texinfo to HTML is done in two steps. After reading command-line
options and init files, input Texinfo code is parsed into a Texinfo Perl tree and information
is gathered on the document structure. This first step can only be customized to a certain
extent, by using the command-line options and setting customization variables. The Texinfo
Perl tree describes a Texinfo document in a structured way which makes it easy to go through
the tree and format @-commands and other containers.

The second step is the conversion step done in a converter. The HTML converter takes a
Texinfo Perl tree as input and transforms it to HTML. The code that is used to go through
the tree cannot be customized, but the conversion of tree elements can be fully customized.

2

2 Loading Initialization Files and Search Paths

Warning: The texi2any-config.pm file related paths and even the use of
texi2any-config.pm files is not definitive.

You can write so-called initialization files, or init files for short, to modify almost every
aspect of output formatting. The program loads init files named texi2any-config.pm each
time it is run. Those files are looked for in the following directories:

datadir/texi2any/

(where datadir is the system data directory specified at compile-time, e.g.,
/usr/local/share)

sysconfdir/texi2any/

(likewise specified at compile time, e.g., /usr/local/etc)

~/.texi2any/

(where ~ is the current user’s home directory)

./.texi2any/

(under the current directory)

./ (the current directory)

All texi2any-config.pm files found are loaded, in the above order. Thus, ./texi2any-
config.pm can override entries in, say, /usr/local/share/makeinfo/texi2any-

config.pm.

However, the most common way to load an initialization file is with the --init-file

option, explicitly specifying the file to be loaded. By default the following directories are
searched, in the following order. Only the first file found is used:

1. The current directory ./;

2. ./.texi2any/ under the current directory;

3. ~/.texi2any/ where ~ is the current user’s home directory;

4. sysconfdir/texi2any/ where sysconfdir is the system configuration directory speci-
fied at compile-time, e.g., /usr/local/etc;

5. datadir/texi2any/ Where datadir is the system data directory likewise specified at
compile time, e.g., /usr/local/share;

6. ./.texinfo/init/ under the current directory;

7. ~/.texinfo/init/ under the current home directory;

8. sysconfdir/texinfo/init/ with sysconfdir as above;

9. datadir/texinfo/init/ with datadir as above.

10. datadir/texinfo/ext/ with datadir as above.

The datadir/texinfo/ext/ directory contains the init files directly loaded from
texi2any code. When loaded from texi2any code directly, init files are only searched for
in that directory, being considered as part of the program and not as user customization.
Since the directory is also in the list of directories searched for init files loaded by the
--init-file option, those init files can also be loaded as regular user specified init files.

Additional directories may be prepended to the list with the --conf-dir option (see
Section “Invoking texi2any” in Texinfo).

3

3 Init File Basics

Init files are written in Perl, and by convention have extension .init or .pm. Several init
files are included in the Texinfo distribution, and can serve as a good model for writing your
own. Another example is the Texinfo::Convert::HTML module which implements almost
all the Texinfo HTML function described in this manual for the conversion to HTML1. In
Texinfo::Convert::HTML the API may not be followed strictly for performance reasons,
in that case there should always be a ‘API info:’ comment which shows what the API
conformant code should be. The Licenses conditions of the diverse files used as example
should be taken into account when reusing code.

3.1 Init File Namespace

Initialization file are loaded from the main program in the Texinfo::Config namespace.
This means that the namespace of the main program and the namespace of initialization
files are distinct, which minimizes the chance of a name clash.

It is possible to start init files with:

package Texinfo::Config;

It is not required, but it may help some debugging tools determine in which namespace
the code is run.

In the Texinfo::Config namespace, the functions names beginning with ‘texinfo_’,
‘GNUT_’ and ‘_GNUT_’ are reserved. User defined functions in init files should never begin
with those prefixes.

The HTML converter is not available directly in the init files namespace, instead it is
passed to functions defined in init files that are registered as functions to be called from the
converter. See Chapter 6 [User Defined Functions], page 19.

3.2 Managing Customization Variables

The basic operations on customization variables are to set and retrieve their values. New
variables can also be added.

The customization variables also valid in the main program out of the HTML converter
are handled differently if they are strings or arrays. Conversely, customization variables
only relevant for the conversion phase set in the main program are always set like string
variables, in particular by associating array or hash references to customization variables.

This section describes customization variables set in the main program. These variables
are in general passed to converters. It is also possible to set customization variables in
the converters only, not in the main program. This is explained later on (see Section 6.6
[Conversion Customization Variables], page 24).

3.2.1 Setting Main Program String Variables

To set the value of a string customization variable from an initialization file, use texinfo_
set_from_init_file:

1 The Texinfo::Convert::HTML module also implements the HTML converter which go through the tree
and call user defined functions.

Chapter 3: Init File Basics 4

[Function]texinfo_set_from_init_file ($variable name, $variable value)
$variable name is a string containing the name of the variable you want to set, and
$variable value is the value to which you want to set it. $variable value may be
‘undef’.

For example,

texinfo_set_from_init_file('documentlanguage', 'fr');

overrides the @documentlanguage from the document. It would be overridden by
--document-language on the command line. Another example:

texinfo_set_from_init_file('SPLIT', 'chapter');

overrides the default splitting of the document. It would be overridden by --split on the
command line.

A final example:

texinfo_set_from_init_file('NO_CSS', 1);

overrides the default value for NO_CSS. It would be overridden by --set-init-variable

NO_CSS=1 on the command line.

Setting the output format cannot be done by setting the customization variable TEXINFO_
OUTPUT_FORMAT. This customization variable sets the output format in the main program,
but not from init files as additional code needs to be run. Instead, the texinfo_set_

format_from_init_file function should be used:

[Function]texinfo_set_format_from_init_file ($output format)
$output format is the output format; sets the output format, without overriding
formats set from the command line.

Any output format can be set, but since only HTML can be customized, the main use
of texinfo_set_format_from_init_file is to set the format to ‘html’, such that HTML
is generated instead of Info in the default case.

For the customization variables associated with @-commands, see Section “Customiza-
tion Variables for @-Commands” in Texinfo. For the customization variables associated
with command line options, see Section “Customization Variables and Options” in Texinfo.

3.2.2 Modifying Main Program Array Variables

Warning: The main program customization variables associated with arrays are
not documented.

Customization variables for the main program associated with an array of values are
handled differently. Two functions can be used in init files, texinfo_add_to_option_list
to add values to the array and texinfo_remove_from_option_list to remove values from
the array associated with the customization variable:

[Function]texinfo_add_to_option_list ($variable name,
$variable values array reference)

[Function]texinfo_remove_from_option_list ($variable name,
$variable values array reference)

$variable name is the name of the variable; the values in the array reference $vari-
able values array reference are added to the list associated with the variable with

Chapter 3: Init File Basics 5

texinfo_add_to_option_list, and removed with texinfo_remove_from_option_

list.

3.2.3 Setting Converter Variables in Main Program

Array and hash references customization variables values relevant in converters only (not
in main program, but in the HTML converter) can be set through the main program in
init files. These variables cannot be set on the command-line. They are documented in
the customization documentation, not in the main Texinfo manual. Such arrays or hashes
references can be passed through texinfo_set_from_init_file. For example:

my @SECTION_BUTTONS =

(

\&singular_banner,

'Back', 'Forward', 'FastBack', 'FastForward',

'Up', 'Top', 'Contents', 'Index', 'About'

);

texinfo_set_from_init_file ('SECTION_BUTTONS', \@SECTION_BUTTONS);

3.2.4 Getting Main Program Variables Values

To get the value of a variable, the function is texinfo_get_conf:

[Function]texinfo_get_conf ($variable name)
$variable name is the name of the variable; its value (possibly undef) is returned.

For example:

if (texinfo_get_conf('footnotestyle') eq 'separate') { ... }

3.2.5 Adding Customization Variables

Trying to set a customization variable that is not known as a valid customization vari-
able in texi2any is an error. It is possible, however, to add new customization variables
from init files. To add a customization variable, the function is texinfo_add_valid_

customization_option:

[Function]texinfo_add_valid_customization_option ($variable name)
$variable name is added as a valid customization variable name.

The variable value, if set, should also be available in the converters and therefore in the
init file functions registered and called from the converters.

3.3 Init File Loading Error Reporting

If an error or a warning should be emitted when loading an init file, before the conversion,
use texinfo_register_init_loading_error for an error and texinfo_register_init_

loading_warning for a warning.

[Function]texinfo_register_init_loading_error ($message)
[Function]texinfo_register_init_loading_warning ($message)

Cause an error message or a warning message based on $message to be output, taking
into account options related to error reporting such as --force or --no-warn.

Chapter 3: Init File Basics 6

Errors or warning emitted from user defined functions should use the converter (see
Section 6.2.2 [Error Reporting in User Defined Functions], page 21).

7

4 Simple formatting customization

Some change in output formatting can be specified with simple code, not very different from
simple textual configuration information.

4.1 Init File Expansion Contexts: Normal, Preformatted,
Code, String, Math

There are five expansion contexts of interest:

normal context
Paragraphs, index entries, tables, . . .

preformatted context
When spaces between words are kept. For example, within the @display

(see Section “@display” in Texinfo) and @example environments (see Section
“@example” in Texinfo), and in menu comments. The preformatted regions are
usually rendered using <pre> elements in HTML.

code context
When quotes and minus are kept. In particular ---, `` and other similar
constructs are not converted to dash and quote special characters. For example,
in @code or @option commands (see Section “Useful Highlighting” in Texinfo).

math context
Math (see Section “@math” in Texinfo). Code or preformatted specifications are
often used for math too. In those cases, there is no way to separately specify
the formatting in math context.

string context
When rendering strings without formatting elements, for example in titles. The
string context allows for limited formatting, typically without any element when
producing HTML or XML, so the value can be used in an attribute. XML
entities can be used in strings.

It is worth mentioning that in some cases, in particular for file names, plain text can also
be used in conversion. There is no associated context in the converter, so the conversion to
plain text is usually performed by converting a Texinfo elements tree outside of the main
conversion flow.

4.2 Simple Customization for Commands Without
Arguments

These commands include those whose names are a single nonletter character, such as @@,
and those with a normal alphabetic name but whose braces should be empty, such as @TeX{}
and @AA{}.

To change the formatting of a command, the functions is texinfo_register_no_arg_
command_formatting:

Chapter 4: Simple formatting customization 8

[Function]texinfo_register_no_arg_command_formatting
($command name, $context, $text, $html element,
$translated string converted, $translated string to convert)

$command name is the @-command name, without the leading @. $context
is ‘normal’, ‘preformatted’ or ‘string’. There is no separate math context,
‘preformatted’ should be used for math context. See Section 4.1 [Init File
Expansion Contexts], page 7. If $context is undef, the ‘normal’ context is assumed.

The remaining arguments determine the formatting. If $text is set, the corresponding
text is output when the @-command is formatted. $text can contain HTML elements
if needed. If $html element is set, the text is enclosed between the $html element
element opening and the element closing. If $translated string converted is
set, the corresponding text is translated when the document language changes
and used as text. $translated string converted should already be HTML. If
$translated string to convert is set, the corresponding text is translated when the
document language changes and converted from Texinfo code to HTML. Since the
conversion is done in the appropriate context, $translated string to convert should
only be set for the ‘normal’ context. See Section “Texinfo::Translations METHODS”
in texi2any_internals.

It is not required to set values for all the contexts. If preformatted context output is
not set, normal context output is used. If string context output is not set, preformatted
context output is used.

For example, if you want ­ to be output for @- in normal, preformatted (and math)
and string context, call

texinfo_register_no_arg_command_formatting('-', undef, '­');

If you want <small>...</small> to be output for @enddots in normal context and ...

to be output in other contexts, call

texinfo_register_no_arg_command_formatting('enddots',

'normal', '...', 'small');

texinfo_register_no_arg_command_formatting('enddots',

'preformatted', '...');

If you want error--> to be used for @error in every context, with a translation
when the document language changes, call

texinfo_register_no_arg_command_formatting('error', undef, undef, undef,

'error-->');

If you want is the same as to be used for @equiv, translated when the document lan-
guage changes, and converted from Texinfo to HTML in the context of the translation,
call

texinfo_register_no_arg_command_formatting('equiv', undef, undef, undef,

undef, 'is the @strong{same} as');

See Section 13.2 [Translated Strings Customization], page 49, for customization of trans-
lated strings.

Chapter 4: Simple formatting customization 9

4.3 Simple Customization for Simple Commands with
Braces

The formatting of the output produced by “indicator” and font commands (e.g., @code, @t),
and other simple commands with arguments (e.g., @asis, @clicksequence, @sup, @verb)
can be changed with texinfo_register_style_command_formatting:

[Function]texinfo_register_style_command_formatting ($command name,
$html element, $in quotes, $context)

$command name is the @-command name, without the leading @. $context
is ‘normal’, ‘preformatted’ or ‘string’. There is no separate math context,
‘preformatted’ should be used for math context. See Section 4.1 [Init File
Expansion Contexts], page 7. If $context is undef, the ‘normal’ context is assumed.

If $html element is set, the argument is enclosed between the $html element element
opening and the element closing. $html element is always ignored in ‘string’ context.
If $in quotes is true, the result is enclosed in quotes associated with customization
variables OPEN_QUOTE_SYMBOL and CLOSE_QUOTE_SYMBOL.

If $html element is undefined and $in quotes is not set, the formatted argument is
output as is.

For example, to set @sansserif{argument} to be formatted as <code>argument</code>
in normal and preformatted context, and as a quoted string in string context, use:

texinfo_register_style_command_formatting('sansserif', 'code', 0,

'normal');

texinfo_register_style_command_formatting('sansserif', 'code', 0,

'preformatted');

texinfo_register_style_command_formatting('sansserif', undef, 1,

'string');

To output the formatted argument of @t as is:

foreach my $context ('normal', 'example', string') {

texinfo_register_style_command_formatting ('t', undef,

undef, $context);

}

4.4 Simple Customization of Accent Commands

The formatting of accent commands (@', @ringaccent, @dotless) can be customized with
USE_NUMERIC_ENTITY. It is also possible to change how accented commands are converted
to named entities. The accent named entities are obtained by combining a letter to be
accented, such as ‘e’ and a postfix based on the accent command name, for example ‘acute’
for the acute accent @'. For example, ‘@'e’ is converted to the ‘é’ named entity in
the default case.

The association of accent @-command and named entity postfix and the list of letters that
can be prepended can be changed with texinfo_register_accent_command_formatting:

[Function]texinfo_register_accent_command_formatting
($accent command name, $entity postfix, $letters)

$accent command name is a Texinfo accent formatting @-command name,
$entity postfix is a string corresponding to the accent command that is postpended

Chapter 4: Simple formatting customization 10

to the letter accent argument. $letters is a string listing the letters that can be
combined with the $entity postfix. If $entity postfix or $letters is an empty string,
numeric entities are used instead of named entities.

For example, with the following code, @dotless{i} should be converted to ı,
and @dotless{j} to &jnodot;. Other letters than ‘i’ and ‘j’ in argument of @dotless
should not be combined into a named entity with that example.

texinfo_register_accent_command_formatting('dotless', 'nodot', 'ij');

4.5 Simple Customization of Containers

Texinfo tree elements that are not text container nor directly associated with an @-command
can have information set on their formatting. The first piece of information is whether
their contents should be considered in code context (see Section 4.1 [Init File Expansion
Contexts], page 7). The other piece of information is the type of preformatted environment
they are, analogous with the @-command names of @example or @display1.

The function used is texinfo_register_type_format_info:

[Function]texinfo_register_type_format_info ($type, $code type,
$pre class type)

$type is the type of the container. If $code type is set, the container contents are
assumed to be in code context. See Section 4.1 [Init File Expansion Contexts], page 7.
If $pre class type is set, the HTML <pre> elements class attribute are based on
$pre class type, if there are such HTML elements output for preformatted content of
$type containers.

For example, to set content appearing in-between node links in @menu, which is in the
menu_comment container type to be formatted in a code context, with preformatted type
‘menu-between’, use:

texinfo_register_type_format_info('menu_comment', 1, 'menu-between');

See Section “Texinfo::Parser Types of container elements” in texi2any_internals, for
a description of container types.

4.6 Simple Customization of CSS Rules and Imports

CSS in HTML output can already be modified with command line options (see Section
“HTML CSS” in Texinfo) and customization options such as NO_CSS and INLINE_CSS_

STYLE.

Information on static CSS data used in conversion and some control over the CSS output
is possible. The information is about CSS rules lines and CSS import lines obtained from
parsing --css-include=file files, as described in Section “HTML CSS” in Texinfo, and
CSS style rules associated with HTML elements and class attributes used in the conversion
to HTML. The CSS style rules selectors are, classically, element.class strings with element
an HTML element and class an attribute class associated to that element.

The function used are css_get_info to get information and css_add_info to modify:

1 Note that setting the type of preformatted environment does not make sure that there are preformat-
ted containers used for the formatting of their contents instead of paragraph containers, since this is
determined in the very first step of parsing the Texinfo code, which cannot be customized.

Chapter 4: Simple formatting customization 11

[Function]$converter->css_get_info ($specification, $css info)
[Function]$converter->css_add_info ($specification, $css info, $css style)

Those functions can only be used on a converter $converter, from functions registered
and called with a converter. $specification is 'rules' to get information on or set
information for CSS rules lines and 'imports' to get information on or set information
for CSS import lines. Any other value for $specification corresponds to CSS style rules
associated with HTML elements and class attributes selectors.

With css_get_info, if $specification is set to 'rules' or 'imports', the correspond-
ing arrays are returned. Otherwise, if $css info is undef, a hash reference with all
the CSS rules selector as keys and the corresponding rules as values is returned. If
$css info is defined, it is considered to be a CSS rule selector and the corresponding
CSS style is returned, or undef if not found.

With css_add_info, $css info is an additional entry added to CSS rules lines if
$specification is set to 'rules' or an additional entry added to CSS import lines if
$specification is set to 'imports'. Otherwise, $css info is a CSS rule selector and
the associated style rule is set to $css style.

Some examples of use:

my @all_included_rules = $converter->css_get_info('rules');

my $all_default_selector_styles = $converter->css_get_info('styles');

my $titlefont_header_style = $converter->css_get_info('styles',

'h1.titlefont');

$converter->css_add_info('styles', 'h1.titlefont', 'text-align:center');

$converter->css_add_info('imports', "\@import \"special.css\";\n");

Note that the CSS selectors and associated style rules that can be accessed and modified
will not necessarily end up in the HTML output. They are output only if the HTML
element and class corresponding to a selector is seen in the document. See Section 19.2
[Customizing CSS], page 69.

How to run code during the conversion process is described later (see Chapter 8 [Init File
Calling at Different Stages], page 32). The simplest way to use the css_add_info function
would be to use a function registered for the ‘structure’ stage:

sub my_function_set_some_css {

my $converter = shift;

$converter->css_add_info('styles', 'h1.titlefont',

'text-align:center');

... more calls to $converter->css_add_info();

}

texinfo_register_handler('structure', \&my_function_set_some_css);

See Section 19.2 [Customizing CSS], page 69, for even more control on CSS lines output.

12

5 Simple headers customizations

Some customization of navigation panels appearing in header and footers in output can
be specified with simple code. To explain how navigation panels are customized, we first
describe how the document is organized and which directions are available as the directions
is the basis for navigation panel customization.

5.1 Output Element Units

We will call the main unit of output documents a document unit, or a Texinfo tree element
unit. An element unit’s association with output files is determined by the split options (see
Section “Splitting Output” in Texinfo). This section describes precisely how these output
units work, with details for customization.

The output elements are:

Normal document units
These are normal sections and nodes. Usually a node is associated with a
following sectioning command, while a sectioning command is associated with
a previous node; they both together make up the element unit. Either the node
or the sectioning command is considered to be the main element component,
depending on the values of the customization variables USE_NODES (see Section
“HTML Customization Variables” in Texinfo).

For example, when generating Info, the nodes are the units; when generating
HTML, either case may happen (see Section “Two Paths” in Texinfo).

Top element
The top element is the highest element unit in the document structure. If the
document has an @top section (see Section “@top Command” in Texinfo), it is
the element associated with that section; otherwise, it is the element associated
with the document’s @node Top (see Section “The Top Node” in Texinfo). If
there is no @node Top, the first element in the document is the top element.
The Top element is also a normal element.

Miscellaneous elements
The remaining element units are associated with different files if the document
is split, and also if MONOLITHIC is not set. There are four such miscellaneous
elements, also called special elements:

1. Table of contents

2. Short table of contents, also called Overview

3. Footnotes page

4. About page

More details:

• The Table of contents should only be formatted if @contents is present in
the document.

• Similarly the Short table of contents should only appear if @shortcontents
or @summarycontents is present.

Chapter 5: Simple headers customizations 13

• The customization variables contents and shortcontents may be set to
trigger the output of the respective elements.

• If CONTENTS_OUTPUT_LOCATION is set to ‘separate_element’, the Table
of contents and Short table of contents elements are separate (see Sec-
tion 15.3 [Contents and Short Table of Contents Customization], page 59).
Otherwise the Table of contents and Short table of contents elements are
directly included within the document, at locations depending on the spe-
cific CONTENTS_OUTPUT_LOCATION value.

• When generating HTML, the Footnotes page should only be present if
the footnotes appear on a separate page (see Section “Footnote Styles” in
Texinfo). However, a footnote element is present if the document is not
split.

• The About page shouldn’t be present for documents consisting of only one
sectioning element, or for monolithic documents without navigation infor-
mation, or if DO_ABOUT is not set.

It is common not to have anything but normal element units, especially in case of
monolithic output.

The main component of elements is sections if USE_NODES is 0; conversely, the main
component is nodes if USE_NODES is set.

When sections are the main components of element units, “isolated” nodes not directly
associated with a sectioning command are associated with the following sectioning com-
mand, while sectioning commands without nodes constitute element units. Conversely,
when nodes are the main components of elements, isolated sections not associated with
nodes are associated with the previous node, and isolated nodes are element units.

5.2 Directions

A variety of data items, called element directions, are associated with element units. They
may be used in the formatting functions, and/or associated with a button (see Section 5.4
[Simple Navigation Panel Customization], page 16).

Each element direction has a name and a reference to the element unit they point to,
when such an element exists. The element is either a global element unit (for example, the
Top element) or relative to the current element unit (for example, the next element unit).
Such relative elements are determined with respect to the document structure defined by
the section structuring commands (@chapter, @unnumbered. . .) or by the nodes if the node
pointers are specified on @node lines or in menus (see Section “Two Paths” in Texinfo).

Here is the list of global element units directions:

‘ ’ An empty button.

Top Top element.

About About (help) page.

Contents Table of contents.

Overview Overview: short table of contents.

Chapter 5: Simple headers customizations 14

Footnotes Corresponds to the Footnotes element (see Section 5.1 [Output Element Units],
page 12).

Index The first element unit with @printindex.

Here is the list of relative element units directions:

This The current element unit.

Forward Next element unit in reading order.

First First element unit in reading order.

Last Last element unit in reading order.

Back Previous element unit in reading order.

FastForward
Next chapter element unit.

FastBack Beginning of this chapter, or previous chapter if the element is a chapter.

Next Next section element unit at the same level.

Prev Previous section element unit at the same level.

Up Up section.

SectionNext
Next element unit in section reading order.

SectionPrev
Previous element unit in section reading order.

SectionUp Up in section reading order.

NodeNext Next node element unit.

NodeForward
Next node element unit in node reading order.

NodeBack Previous node element unit in node reading order.

NodePrev Previous node element unit.

NodeUp Up node element unit.

Relative direction elements are each associated to a variant, with ‘FirstInFile’
prepended, which points to the direction relative to the first element in file. For example,
FirstInFileNodeNext is the next node element relative to the first element in file. The
‘FirstInFile’ directions are usually used in footers.

5.2.1 Element Direction Information Type

The element directions also have types of information associated, which are in general set
dynamically depending on the current element unit, for instance on the element unit whose
navigation panel is being formatted:

href A string that can be used as an href attribute linking to the element unit
corresponding to the direction.

Chapter 5: Simple headers customizations 15

string A string representing the direction that can be used in context where only en-
tities are available (attributes). See Section 4.1 [Init File Expansion Contexts],
page 7.

text A string representing the direction to be used in contexts with HTML elements
(preformatted and normal contexts). See Section 4.1 [Init File Expansion Con-
texts], page 7.

tree A Texinfo tree element representing the direction.

target A string representing the target of the direction, typically used as id attribute
in the element unit corresponding to the direction, and in href attribute.

node Same as text, but selecting the node associated with the element unit direction
in priority.

section Same as text, but selecting the sectioning command associated with the ele-
ment unit direction in priority.

text, tree and string also have a variant with ‘_nonumber’ prepended, such as text_
nonumber without sectioning command number in the representation.

5.2.2 Direction Strings

Directions have strings associated, corresponding to their names, description or specific
HTML keywords:

accesskey

Direction accesskey attribute used in navigation.

button Direction short name typically used for buttons.

description

Description of the direction.

example Section number corresponding to the example used in the About special element
text.

rel Direction rel attribute used in navigation.

text Direction text in a few words.

‘button’, ‘description’ and ‘text’ are translated based on the document language.

The FirstInFile direction variants are associated with the same strings as the direc-
tion they are prepended to (see [FirstInFile direction variant], page 14). For example
FirstInFileNodeNext is associated with the same strings as NodeNext.

5.3 Direction Strings Customization

The direction strings can be customized with texinfo_register_direction_string_info:

[Function]texinfo_register_direction_string_info ($direction, $type,
$converted string, $string to convert, $context)

$direction is a direction (see Section 5.2 [Directions], page 13), $type is the type
of string (see Section 5.2.2 [Direction Strings], page 15). The other arguments are

Chapter 5: Simple headers customizations 16

optional. $context is ‘normal’ or ‘string’. See Section 4.1 [Init File Expansion
Contexts], page 7. If $context is undef, the ‘normal’ context is assumed.

$converted string is the string, already converted to HTML that is used for the
specified context. If the ‘normal’ context $converted string only is specified, the
same string will be used for the ‘string’ context.

Alternatively, $string to convert can be specified to set the string to the correspond-
ing Texinfo code after translation and conversion to HTML. In that case, the context
is ignored, as it will be set at the time of the conversion.

$string to convert is ignored for special strings that do not need to be translated
and cannot contain Texinfo @-commands (‘accesskey’, ‘rel’ and ‘example’).
$string to convert is also ignored if $converted string is set for any context.

5.4 Simple Navigation Panel Customization

The navigation panel is the line of links (and labels) that typically appears at the top of
each node, so that users can easily get to the next node, the table of contents, and so on.
It can be customized extensively.

The customization variables VERTICAL_HEAD_NAVIGATION, ICONS, HEADERS, HEADER_IN_
TABLE, USE_ACCESSKEY, USE_REL_REV and WORDS_IN_PAGE may be used to change the nav-
igation panel formatting. See Section “HTML Customization Variables” in Texinfo.

Setting ICONS is necessary but not sufficient to get icons for direction buttons since
no button image is specified in the default case. The ACTIVE_ICONS and PASSIVE_ICONS

customization variables need to be set in addition:

ACTIVE_ICONS

PASSIVE_ICONS

Hash references with element directions as key (see Section 5.2 [Directions],
page 13) and button image icons as values. ACTIVE_ICONS is used for directions
actually linking to an element, and PASSIVE_ICONS are used if there is no
element to link to. The button images are interpreted as URLs.

Several arrays and hashes enable even more precise control over the navigation panel
buttons and their display. They can be set as customization variables with texinfo_set_

from_init_file. See Section 3.2.1 [Setting Main Program String Variables], page 3.

The following customization variables arrays determine the buttons present in the various
navigation panels:

SECTION_BUTTONS

Specifies the navigation panel buttons present at the beginning of sectioning
elements in the case of section navigation being enabled or if split at nodes.
Specifies the navigation panel buttons present at the page header if split at
section and there is no section navigation.

SECTION_FOOTER_BUTTONS

CHAPTER_FOOTER_BUTTONS

NODE_FOOTER_BUTTONS

These arrays specify the navigation panel buttons present in the page footer
when the output is split at sections, chapters or nodes, respectively.

Chapter 5: Simple headers customizations 17

CHAPTER_BUTTONS

Specifies the buttons appearing at the page header if split at chapters and there
is no section navigation.

MISC_BUTTONS

Specifies the buttons appearing at the beginning of special elements and, if the
output is split, at the end of such elements.

LINKS_BUTTONS

Used for <link> elements if they are output in the headers.

TOP_BUTTONS

Specifies the buttons used in the top element (see Section 5.1 [Output Element
Units], page 12).

Each array specifies which buttons are included, and how they are displayed. Each array
element is associated with a button of the navigation panel from left to right. The meaning
of the array element values is the following:

string with an element unit direction
If icons are not used, the button is a link to the corresponding element whose
text is the text direction string (see Section 5.2.2 [Direction Strings], page 15),
surrounded by ‘[’ and ‘]’. If the element direction is ‘ ’, the ‘[’ and ‘]’ are
omitted.

If icons are used, the button is an image whose file is determined by the value
associated with the element direction in the ACTIVE_ICONS variable hash if the
link leads to an element, or in the PASSIVE_ICONS variable hash if there is no
element to link to. If there is a link to the element, the icon links to that element.
The button name and button description are given as HTML attributes to have
a textual description of the icon. The corresponding strings correspond to the
button direction string for the button name and the description for a more
detailed description (see Section 5.2.2 [Direction Strings], page 15).

function reference
The function is called with one boolean argument, true if the navigation panel
should be vertical. Should return the formatted button text.

scalar reference
The scalar value is printed.

array reference of length 2
Here, the first array element should be a an element direction. A link to the
element unit associated with the element direction is generated. The text of
the link depends on the second array element.

reference to a text string
In that case, the corresponding text is used.

reference to a function
The functions is called with two arguments, the converter object
and the element direction and should return two scalars, the link
href and text and a boolean set if a delimiter is needed after that
button.

Chapter 5: Simple headers customizations 18

text string The text string is interpreted as an element direction information
type and the corresponding text is used for the link. See Sec-
tion 5.2.1 [Element Direction Information Type], page 14.

For example, if the button array element is

['Next', 'node']

Then the button will be a link to the next section with text based
on the name of the node associated with the next section element
unit.

If the customization variable USE_ACCESSKEY is set, the accesskey attribute is used in
navigation. The accesskey direction string is then used for the accesskey attributes (see
Section 5.2.2 [Direction Strings], page 15).

Similarly, if the USE_REL_REV customization variable is set, the rel attribute is used
in navigation. In that case the rel direction string is used for the rel attribute (see
Section 5.2.2 [Direction Strings], page 15).

19

6 User Defined Functions

Getting beyond the customization described previously requires writing some functions and
registering those functions such that they are called for the conversion. This allows dynamic
redefinition of functions used to produce output.

6.1 User Defined Functions are Registered

User defined functions are always passed as a code reference to a registering function,
together with a string describing what the function formats. In the following made up
example, my_formatting_function is passed as a function reference \&my_formatting_

function to the registering function texinfo_register_command_formatting, with the
string specifying the formatting done by the function being ‘format_thing’:

sub my_formatting_function {

my $arg1 = shift;

my $arg2 = shift;

prepare $formatted_text

...

return $formatted_text;

}

texinfo_register_command_formatting ('format_thing', \&my_formatting_function);

As such functions are defined by a reference name associated with a string we will always
use the string in function prototypes. For the function arguments we will use \@array to
indicate a reference to an array (a.k.a. list, in Perl terminology), \%hash for a reference to
a hash and \&function for a reference on a function.

To illustrate these conventions, here is the prototype for the function associated with
‘format_thing’:

[Function Reference]$text format_thing ($arg1, \@arg2)
A function reference associated with ‘format_thing’ has a first argument $arg1, a
second argument a reference to an array \@arg2, and returns the formatted text
$text.

6.2 Converter Object and Conversion Functions

The first argument of most, if not all user defined function is a converter object.
This object gives access to methods to get information on the conversion context
and to methods useful for the conversion, both as an HTML converter and as a
generic Texinfo::Convert::Converter (see Section “Texinfo::Convert::Converter Helper
methods” in texi2any_internals). The converter can also be used for error reporting as it
is also a Texinfo::Report object (see Section “Texinfo::Report” in texi2any_internals),
and for in-document strings translation as it is also a Texinfo::Translations object
(see Section “Texinfo::Translations” in texi2any_internals). See Section 6.2.2 [Error
Reporting in User Defined Functions], page 21, on error reporting.

Chapter 6: User Defined Functions 20

6.2.1 Texinfo Tree Conversion Functions

One important converter method that can be used in user defined functions is convert_

tree that convert a Texinfo tree rooted at any element. There is no reason to use that
function often, as the converter already goes through the tree calling reference functions to
convert the elements, but it can be interesting in some cases.

[Function]$converted_text = $converter->convert_tree (\%element,
$explanation)

\%element is a Texinfo tree element. $explanation is optional, it is a string explaining
why the function was called, to help in case of debugging. The function returns
\%element converted.

convert_tree is suitable when the conversion is in the flow of the Texinfo tree con-
version. Sometime, it is better to ignore the formatting context of the main conversion,
for example for the formatting of a caption, or the formatting of footnotes texts. Another
special case is the case of tree elements being converted more than once, even if in the
flow of the Texinfo tree conversion, for example if there are multiple @insertcopying in a
document. A last special case arise, with formatting done in advance or out of the main
conversion. This is the case, in practice, for sectioning commands or node commands which
may be formatted as directions in navigation panels, menus or indices, may appear more
than once in the document and be converted more than once, if language changes, for
example.

For such cases, the function is convert_tree_new_formatting_context which sets the
context appropriately. convert_tree_new_formatting_context ultimately calls convert_
tree.

[Function]$converted_text =
$converter->convert_tree_new_formatting_context (\%element,
$context, $multiple_pass, $global_context,
$block_command_name)

\%element is a Texinfo tree element. $context is an optional string describing the
new context to be setup to format out of the main conversion flow. If not defined,
the conversion is done in the main document flow. $multiple pass is an optional
string that marks that the conversion is done more than once. It should be unique
and suitable for inclusion in targets and identifiers. $global context is an optional
string that marks that the formatting may be done in advance, and can be redone.
$block command name is an optional block command name that is used to initialized
the new context. It can be useful, in particular, to propagate the topmost block
command in the new context.

The function returns \%element converted, setting the conversion context according
to the arguments.

See Section 6.5 [Setting the Context for Conversion], page 24, on how to set a specific
context for a Texinfo tree conversion.

Chapter 6: User Defined Functions 21

6.2.2 Error Reporting in User Defined Functions

To report an error or a warning in a user defined function, use the methods of
Texinfo::Report through a converter object (see Section 6.2 [Converter Object and
Conversion Functions], page 19).

To report a warning or an error not specific of an element conversion, use document_warn
or document_error:

[Function]$converter->document_error ($text, $converter)
[Function]$converter->document_warn ($text, $converter)

Register a document-wide error or warning. $text is the error or warning message.
The $converter object should be given as the second argument.

To report a warning or an error in element conversion, use line_warn or line_error

[Function]$converter->line_error ($text, $converter, $location info,
$continuation, $silent)

[Function]$converter->line_warn ($text, $converter, $location info,
$continuation, $silent)

Register a warning or an error. $text is the text of the error or warning. The $con-
verter object should be given as the second argument. The optional $location info
holds the information on the error or warning location. The $location info reference
on hash may be obtained from Texinfo elements source_info keys.

The optional $continuation argument, if set, conveys that the message is a contin-
uation of the previous registered message. The optional $silent argument, if set,
suppresses the immediate output of a message if the DEBUG customization variable is
set.

In general, registering an error does not stop the processing, in particular it does not
stop the main conversion of the Texinfo tree. Write initialization files as if the conversion
always continued after registering the error.

See Section “Texinfo::Report” in texi2any_internals for more on Texinfo::Report.

6.3 Texinfo Tree Elements in User Defined Functions

Many user defined functions used for formatting have Texinfo tree elements as arguments.
The user defined code should never modify the tree elements. It is possible to reuse Texinfo
tree elements information, but with a copy. For example, the following is ok:

my @contents = @{$element->{'contents'}};

push @contents, {'text' => ' my added text'};

my $result = $converter->convert_tree({'cmdname' => 'strong',

'contents' => \@contents });

The following is not ok:

push @{$element->{'contents'}}, {'text' => ' my added text'};

In addition to the elements obtained after parsing a Texinfo document, two elements are
added, unit type elements that correspond to the normal document units (see Section 5.1
[Output Element Units], page 12), and special elements with type special_element that
correspond to added special elements (see Section 5.1 [Output Element Units], page 12).

Chapter 6: User Defined Functions 22

These added elements, as well as nodes and sectioning elements hold information on the doc-
ument structure in the structure element hash (see Section “Texinfo::Structuring METH-
ODS” in texi2any_internals).

Normal tree unit elements have a unit_command key in the extra hash that points to
the associated @node or sectioning @-command depending on which of nodes or sectioning
commands are the main components of elements. See Section 5.1 [Output Element Units],
page 12.

The following keys of the structure hash can be interesting:

associated_unit

For sectioning and @node @-command elements. The associated tree unit ele-
ment.

section_childs

For sectioning commands elements. The children of the sectioning element in
the sectioning tree.

section_level

The level of the section, taking into account @raisesections and
@lowersections. Level 0 corresponds to @top or @part and level 1 to
@chapter level sectioning commands. See Section “Raise/lower sections” in
Texinfo.

unit_filename

For tree unit elements. The associated file name.

unit_next

For tree unit elements. The next unit element in document order.

unit_prev

For tree unit elements. The previous unit element in document order.

Detailed information on the tree elements is available in the Texinfo Parser documenta-
tion, in particular a list of types and of information in the elements extra hash (see Section
“Texinfo::Parser TEXINFO TREE” in texi2any_internals).

6.4 Encoding and Decoding File Path Strings

6.4.1 Encoding File Path Strings

In general, the strings in the customization functions are character strings. For most pur-
poses, this is right, and the encoding in output files is taken care of by the converter.
Operations on directories and file names, however, such as the creation of a directory or the
opening of a file require binary strings.

To encode file names consistently with file name encoding used in the conversion to
HTML, there is a function encoded_output_file_name:

[Function]($encoded_name, $encoding) =
$converter->encoded_output_file_name ($character_string_name)

Encode $character string name in the same way as other file name are encoded in the
converter, based on DOC_ENCODING_FOR_OUTPUT_FILE_NAME, and LOCALE_OUTPUT_

FILE_NAME_ENCODING or on input file encoding (see Section “Other Customization

Chapter 6: User Defined Functions 23

Variables” in Texinfo). Return the encoded name and the encoding used to encode
the name.

There is also a similar function for the input file names encoding, encoded_input_

file_name, which uses DOC_ENCODING_FOR_INPUT_FILE_NAME and LOCALE_INPUT_FILE_

NAME_ENCODING and is less likely to be useful.

When calling external commands, the command line arguments should also be encoded.
To do similarly with other codes, the customization variable MESSAGE_ENCODING should be
used. Already encoded file names may be used. For example

use Encode qw(encode);

....

my ($encoded_file_path, $encoding)

= $converter->encoded_output_file_name($file_name);

my $fh = open($encoded_file_path);

.....

my $call_start = "command --set '$action' ";

my $encoding = $converter->get_conf('MESSAGE_ENCODING');

if (defined($encoding)) {

$encoded_call_start = encode($encoding, $call_start);

} else {

$encoded_call_start = $call_start;

}

my $encoded_call = $encoded_call_start . $encoded_file_path;

my $call = $call_start . $file_name;

if (system($encoded_call)) {

$converter->document_error($converter,

sprintf(__("command did not succeed: %s"),

$call));

}

6.4.2 Decoding File Path Strings

The binary strings that could be accessed correspond to the customization variables strings
or arrays INCLUDE_DIRECTORIES, CSS_FILES, MACRO_EXPAND and INTERNAL_LINKS. If they
need to be decoded into character strings, for example to appear in error messages, it
is possible to use the COMMAND_LINE_ENCODING customization variable value as encoding
name to mimic how the decoding of these strings from the command line is done in the
main program and in the converters. For example:

my $macro_expand_fname = $self->get_conf('MACRO_EXPAND');

my $encoding = $self->get_conf('COMMAND_LINE_ENCODING');

if (defined($encoding)) {

$macro_expand_fname = Encode::decode($encoding, $macro_expand_fname);

Chapter 6: User Defined Functions 24

}

More information on perl and encodings in perlunifaq (https://perldoc.perl.org/
perlunifaq).

6.5 Setting the Context for Conversion

Special container types are recognized by the converter and can be used to convert a Texinfo
tree in a specific context. Those types cannot appear in a regular Texinfo tree. They can
be the type directly associated with a text element, or the type of a tree root element.

The types are:

_code In this container, the conversion is done in a code context See Section 4.1 [Init
File Expansion Contexts], page 7.

_converted

In this container, the texts are considered to be already formatted. This is more
likely to be relevant as the type of a text element.

_string In this container, the conversion is done in a string context. See Section 4.1
[Init File Expansion Contexts], page 7.

These contexts are typically used together with converter conversion functions (see Sec-
tion 6.2 [Converter Object and Conversion Functions], page 19). For example:

my @contents = @{$element->{'contents'}};

push @contents, {'text' => ' <code>HTML</code> text ',

'type' => '_converted'};

my $result = $converter->convert_tree({'type' => '_code',

'contents' => \@contents });

There is no context for plain text, but the conversion to plain text can be achieved
by using the Texinfo::Text converter (see Section “Texinfo::Convert::Text” in texi2any_

internals). For example, to convert the Texinfo tree element $element to plain text:

my $plaintext = Texinfo::Convert::Text::convert_to_text($element,

Texinfo::Convert::Text::copy_options_for_convert_text($converter, 1));

6.6 Setting and Getting Conversion Customization Variables

The customization variables values set during the conversion process may be different from
the main program customization variables. The general rule is that variables set in the main
program, in particular from init files, are passed to the converter. Some variables, however,
only appear in the converter. Some variables are also set in the converter based on the
main program customization variables. Finally, some variables should be set or reset during
conversion, in particular when converting the tree representing the Texinfo document, when
expanding the tree element corresponding to @-commands associated with customization
variables (see Section “Customization Variables for @-Commands” in Texinfo).

The functions described here should be used in user defined functions, but should not be
used out of functions. Conversely, the similar functions used to set customization variables
from init files without a converter should not be used in functions, but should be used out
of functions in init files (see Section 3.2 [Managing Customization Variables], page 3).

To get the value of a variable in a converter $converter, the function is get_conf:

https://perldoc.perl.org/perlunifaq
https://perldoc.perl.org/perlunifaq

Chapter 6: User Defined Functions 25

[Function]$converter->get_conf ($variable name)
$variable name is the name of the variable; its value in the converter $converter
(possibly undef) is returned.

For example:

my $footnotestyle = $converter->get_conf('footnotestyle');

To set a variable in a converter $converter, the function is set_conf:

[Function]$converter->set_conf ($variable name, $variable value)
$variable name is the name of the variable; its value in the converter $converter is
set to $variable value. The $variable name value will not be overidden if it was set
from the command line or from an init file.

For example:

$converter->set_conf('footnotestyle', 'separate');

Some customization variables, in particular those associated with @-commands, can be
reset to the value they had before starting the conversion. For example, they are reset in
order to obtain their value before the conversion. Thet are also reset to the value they
had before starting the conversion when their value at the end of the preambule or at the
end of the document is needed, but there are no @-commands at those locations in the
Texinfo manual. If a value set by set_conf is intended to be found when the customization
variable value is reset, set_conf should be called early. For example, when called from a
user-defined function called at different stage, it should be called in the ‘setup’ stage (see
Chapter 8 [Init File Calling at Different Stages], page 32).

The values set in converter with set_conf will not override command-line set customiza-
tion variables, nor variables set early in init files. This is the expected behaviour, in par-
ticular when the values are set from the document. In the rare cases when overriding the
customization would be needed, the force_conf function can be used:

[Function]$converter->force_conf ($variable name, $variable value)
$variable name is the name of the variable; its value in the converter $converter is
set to $variable value, overriding any previous value.

6.7 Conversion General Information

Some general information is available from the converter.

To determine if an output format such as ‘html’ or ‘tex’ is expanded (see Section “Con-
ditional Commands” in Texinfo), use is_format_expanded:

[Function]$is_format_expanded = $converter->is_format_expanded
($format)

Return true if format $format is expanded, according to command-line and init file
information.

The main method to get information from the converter is get_info:

[Function]$info = $converter->get_info ($item)
Return information on $item.

Chapter 6: User Defined Functions 26

The available information is about:

copying_comment

Text appearing in @copying with all the Texinfo commands put into comments
(see Section “@copying” in Texinfo).

current_filename

The file name of the current document unit being converted.

destination_directory

Destination directory for the output files. It is common to use that string in
directory or file paths with functions requiring binary strings. In that case the
character string needs to be encoded. See Section 6.4.1 [Encoding File Path
Strings], page 22.

document_name

Base name of the document. It is common to use that string in in directory
or file paths with functions requiring binary strings. In that case the character
string needs to be encoded. See Section 6.4.1 [Encoding File Path Strings],
page 22.

documentdescription_string

@documentdescription argument converted in a string context (see Section
“@documentdescription” in Texinfo). See Section 4.1 [Init File Expansion
Contexts], page 7.

floats Information on floats. Gathered from the Texinfo parsing result. See Section
“Texinfo::Parser::floats information” in texi2any_internals.

global_commands

Global commands information. Gathered from the Texinfo parsing
result. See Section “Texinfo::Parser::global commands information” in
texi2any_internals.

index_entries

Information on indices taking into account merged indices. See Section “Tex-
info::Structuring::merge indices” in texi2any_internals.

index_entries_by_letter

Index entries sorted by letter. See Section “Texinfo::Structuring::sort indices”
in texi2any_internals.

indices_information

Information about defined indices, merged indices and index entries. See Section
“Texinfo::Parser::indices information” in texi2any_internals.

jslicenses

An hash reference with categories of javascript used in the document as keys.
The corresponding values are also hashes with file names as keys and with array
references as values. The array references contain information on each of the
file licences, with content

1. licence name

2. license URL

Chapter 6: User Defined Functions 27

3. file name or source of file

labels Association of identifiers to label elements. Gathered from the Texinfo
parsing result. See Section “Texinfo::Parser::labels information” in
texi2any_internals.

line_break_element

HTML line break element, based on ‘
’, also taking into account USE_XML_
SYNTAX customization variable value.

non_breaking_space

Non breaking space, can be ‘ ’, but also a non breaking space charac-
ter or the corresponding numeric entity based on ENABLE_ENCODING and USE_

NUMERIC_ENTITY customization variables values.

paragraph_symbol

Paragraph symbol, can be ‘¶’, but also the corresponding numeric entity
or encoded character based on ENABLE_ENCODING and USE_NUMERIC_ENTITY

customization variables values.

title_string

title_tree

simpletitle_tree

simpletitle_command_name

Some information is deduced from the title commands: simpletitle reflects
@settitle vs. @shorttitlepage, and title is constructed by trying all the
title-related commands, including @top and @titlefont, in the top element.

title_tree is a Texinfo tree corresponding to the title, title_string is the
result of the conversion in a string context (see Section 4.1 [Init File Expansion
Contexts], page 7). simpletitle_tree is a Texinfo tree corresponding to the
simpletitle, and simpletitle_command_name is the @-command name used for
the simpletitle, without the leading @.

structuring

Information on the document structure. Gathered before the conversion. Two
hash keys correspond to interesting information, sectioning_root which
points to the top level sectioning command tree element, and sections_list

which holds the list of the sectioning commands in the document.

title_titlepage

The formatted title, possibly based on @titlepage, or on simpletitle_tree

and similar information, depending on SHOW_TITLE and USE_TITLEPAGE_FOR_

TITLE customization variables in the default case.

See Section 4.6 [Simple Customization of CSS], page 10, for an explanation on getting
information on CSS.

28

7 Customizing Output-Related Names

It is possible to control both output file names and target identifiers in detail.

User defined functions customizing file names and targets are registered with texinfo_

register_file_id_setting_function:

[Function]texinfo_register_file_id_setting_function ($customized,
\&handler)

$customized is a string describing what the function should set. \&handler should be
a reference on the user defined function. The different functions that can be registered
have different arguments and return values.

The different possibilities for the customized information are explained in the next sec-
tions.

For example:

sub my_node_file_name($$$) {

my ($converter, $element, $filename) = @_;

....

return $node_file_name

}

texinfo_register_file_id_setting_function('node_file_name',

\&my_node_file_name);

7.1 Customizing Output File Names

It is possible to specify the output file names with more control than merely the command
line option --output (see Section “Invoking texi2any” in Texinfo). The PREFIX customiza-
tion variable overrides the base name of the file given by @setfilename or the file name
and should not contain any directory components. To alter intermediate directories, use
the SUBDIR customization variable. Finally, the extension may also be overriden by the
customization variable EXTENSION. This variable should be undef if no extension is to be
added.

Furthermore, the customization variables TOP_FILE override the output file name for the
top element.

Two function references registered with texinfo_register_file_id_setting_

function enable further customization. The first, node_file_name is used to customize
the nodes files names.

[Function Reference]$node_file node_file_name ($converter,
\%node_element, $file_name)

$converter is a converter object. \%node element is the Texinfo tree element corre-
sponding to the @node. $file name is the node file name that has been already set.
The function should return the node file name ($node file).

The other function reference, tree_unit_file_name, is used to customize the file names
associated with each normal element unit (see Section 5.1 [Output Element Units], page 12).

Chapter 7: Customizing Output-Related Names 29

[Function Reference]($file, $path) tree_unit_file_name ($converter,
\%unit_element, $file_name, $file_path)

$converter is a converter object. \%unit element is the Texinfo element corresponding
to the unit element. $file name is the file name that has been already set. $file path
is the file path that has been already set. $file path is ‘undef’ if the file is relative
to the output directory, which is the case if the output is split. The function should
return the file name for the unit element, $file, and the file path for the unit element,
$path, which should be ‘undef’ if the file path is to be constructed by putting $file
in the destination directory.

In the user defined functions, the information that a unit element is associated with @top

or @node Top or more generally considered to be the Top element may be determined with

$converter->element_is_tree_unit_top(\%unit_element);

The information on tree elements may be interesting for those functions (see Section 6.3
[Texinfo Tree Elements in User Defined Functions], page 21). The extra key associated_

section of a node element and associated_node of a sectioning command element may
also be useful.

The file name associated to a sectioning command is set together with the target, and
is described in the next section.

7.2 Customizing Output Target Names

Similar to file names, so-called target and id names may be set. The id is placed where the
item is located, while the target is used to construct references to that item. The id and
target are the same. A function used to set both target and file name is also described here.

The following function reference is for target items (nodes, anchors, floats), including for
external manuals:

[Function Reference]$target label_target_name ($converter, $normalized,
\@node_contents, $default_target)

$converter is a converter object. $normalized is the normalized node name,
\@node contents is a reference on an array containing the Texinfo tree contents of
the command label. $default target is the target that has been already set. The
function should return the target ($target).

The element corresponding to the label can be found with label_command if the label
corresponds to an internal reference (see Section 14.2 [Target Commands Links, Texts and
Associated Commands], page 52):

my $element;

$element = $converter->label_command($normalized)

if (defined($normalized));

For sectioning commands, in addition to the sectioning command target, targets for the
sectioning command in table of contents and in short table of contents are needed. The
following function reference is for sectioning command related target and file name:

Chapter 7: Customizing Output-Related Names 30

[Function Reference]($target, $target_contents, $target_shortcontents,
$file) sectioning_command_target_name ($converter,
\%section_element, $default_target,
$default_target_contents, $default_target_shortcontents,
$file_name)

$converter is a converter object. \%section element is the Texinfo element corre-
sponding to the sectioning command.

$default target, $default target contents and $default target shortcontents are the
targets that have been already set for the sectioning element and the sectioning ele-
ment in table of contents and in short table of contents. $file name is the file name
that has been already set.

The function should return the $target, $target contents and $target shortcontents
sectioning element target and sectioning element in table of contents and in short
table of contents targets, and the file name for the sectioning element ($file).

7.3 Customizing External Node Output Names

In the default case references to external nodes are set as described in the Texinfo man-
ual (see Section “HTML Xref” in Texinfo). Some customization is already possible for
external manuals URLs as explained in the Texinfo manual (see Section “HTML Xref Con-
figuration” in Texinfo), and by setting EXTERNAL_CROSSREF_SPLIT, EXTERNAL_CROSSREF_
EXTENSION, EXTERNAL_DIR, TOP_NODE_FILE_TARGET or IGNORE_REF_TO_TOP_NODE_UP (see
Section “HTML Customization Variables” in Texinfo).

If the external reference is not already ignored because of IGNORE_REF_TO_TOP_NODE_
UP, two function references give full control over the external node target output names,
with external_target_split_name if the external target is considered to be split, and
external_target_non_split_name if the external target is non split.

[Function Reference]($target, $host_directory, $file_name)
external_target_split_name($converter, $normalized,
\@node_contents, $default_target, $default_host_directory,
$default_file_name)

$converter is a converter object. $normalized is the normalized node name,
\@node contents is a reference on an array containing the Texinfo tree contents of
the external target.

$default target, $default host directory and $default file name are the target, host
and directory URL part and file name URL part that have been already set.

The function should return the $target, $host directory and $file name URL parts.

[Function Reference]($target, $host_directory_file)
external_target_non_split_name($converter, $normalized,
\@node_contents, $default_target,
$default_host_directory_file)

$converter is a converter object. $normalized is the normalized node name,
\@node contents is a reference on an array containing the Texinfo tree contents of
the external target.

Chapter 7: Customizing Output-Related Names 31

$default target is the target and $default host directory file is the host and file name
part of the URL that have been already set.

The function should return the $target and $host directory file URL parts.

7.4 Customizing Special Elements Output Names

For special element units file and target (see Section 5.1 [Output Element Units], page 12),
the function reference is:

[Function Reference]($target, $file) special_element_target_file_name
($converter, \%element, $default_target, $file_name)

$converter is a converter object. \%element is the Texinfo element corresponding to
the special element unit. $default target is the target that has been already set, and
$file name is the file name that has been already set. The function should return the
$target and $file.

To determine the variety of the special element processed, the extra hash special_

element_variety key can be used. See Table 15.1.

32

8 Init File Calling at Different Stages

Arbitrary user-defined functions may be called during conversion. This could be used, for
example, to initialize variables and collect some @-commands text, and doing clean-up after
the Texinfo tree conversion.

There are four places for user defined functions:

setup Called right after completing main program customization information with
converter specific customization information, but before anything else is done,
including collecting the output files names and registering the customization
variables pre-conversion values.

structure

Called after setting and determining information on CSS, output files and di-
rectories, document structure and associated directions, file names, labels and
links for nodes, sectioning commands, special elements, footnotes and index
entries.

init Called after some gathering of global information on the document, such as
titles, copying comment and document description, which require some conver-
sion of Texinfo, right before the main output processing. At that point most of
the information available from the converter is set (see Section 6.7 [Conversion
General Information], page 25).

finish Called after output generation is finished.

The function used to register a user defined functions is texinfo_register_handler:

[Function]texinfo_register_handler ($stage, \&handler, $priority)
$stage is one of the stages described just above. \&handler is a reference on the user
defined function. $priority is an optional priority class.

To determine the order of user defined functions calls, the priority classes are sorted,
and within a priority class the order is the order of calling texinfo_register_

handler.

The call of the user defined functions is:

[Function Reference]$status stage_handler ($converter, \%tree, $stage)
$converter is a converter object. \%tree is the Texinfo tree root element. $stage is
the current stage.

If $status is not 0 it means that an error occured. If $status is positive, the user
defined functions should have registered an error or warning message, for example
with document_error (see Section 6.2.2 [Error Reporting in User Defined Functions],
page 21). If $status is negative, the converter will emit a non specific error message.
If the $status is lower than -HANDLER_FATAL_ERROR_LEVEL or higher than HANDLER_

FATAL_ERROR_LEVEL, the processing stops immediately. Default value for HANDLER_
FATAL_ERROR_LEVEL is 100.

33

9 User Defined Functions in Conversion

Full customization of output is achieved with replacing default formatting functions with
user defined functions. There are two broad classes of functions, the conversion functions
used for elements of the Texinfo tree, and other formatting functions with diverse purposes,
including formatting that are not based on tree elements (for example beginning and end
of file formatting).

9.1 Tree Element Conversion Functions

Functions used for tree elements associated with @-commands are considered separately
from functions used for tree elements not associated with @-commands, which includes
containers with a type and text. There are two functions for each element command or
type, one called when the element is first encountered, and the other called after formatting
the contents of the element. The actual conversion is usually done after formatting the
contents of the element, but it may sometime be necessary to have some code run when the
element is first encountered.

For @-commands with both a command name and a type, the type is used as selector
for the formating function for def_line, definfoenclose_command and index_entry_

command types.

9.1.1 Command Tree Element Opening Functions

User defined functions called when an @-command element is first encountered are registered
with texinfo_register_command_opening:

[Function]texinfo_register_command_opening ($command name, \&handler)
$command name is an @-command name, with the leading @. \&handler is the user
defined function reference.

The call of the user defined functions is:

[Function Reference]$text command_open ($converter, $command_name,
\%element)

$converter is a converter object. $command name is the @-command name without
the @. \%element is the Texinfo element.

The $text returned is prepended to the formatting of the @-command.

It is possible to have access to the default opening function reference. The function used
is:

[Function]\&default_command_open = $converter->default_command_open
($command_name)

$command name is the @-command name without the @. Returns the default open-
ing function reference for $command name, or ‘undef’ if there is none.

Chapter 9: User Defined Functions in Conversion 34

9.1.2 Command Tree Element Conversion Functions

User defined functions called for an @-command element conversion, after arguments
and contents have been formatted, are registered with texinfo_register_command_

formatting:

[Function]texinfo_register_command_formatting ($command name,
\&handler)

$command name is an @-command name, with the leading @. \&handler is the user
defined function reference.

The call of the user defined functions is:

[Function Reference]$text command_conversion ($converter,
$command_name, \%element, \@args, $content)

$converter is a converter object. $command name is the @-command name without
the @. \%element is the Texinfo element.

\@args, if defined, is a reference on the formatted arguments of the @-command.
Each of the array items correspond to each of the @-command argument. Each array
item is a hash references, with keys corresponding to possible argument formatting
contexts:

normal Argument formatted in a normal context

monospace

Argument formatted in a context where spaces are kept as is, as well
as quotes and minus characters, for instance in ‘--’ and ‘``’. Both in
preformatted and code context. See Section 4.1 [Init File Expansion
Contexts], page 7.

monospacestring

Same as monospace, but in addition in string context. See Section 4.1
[Init File Expansion Contexts], page 7.

monospacetext

Same as monospace, but in addition the argument is converted to plain
text. See Section 6.2 [Converter Object and Conversion Functions],
page 19.

filenametext

Same as monospacetext, but in addition the document encoding is used
to convert accented letters and special insertion @-commands to plain
text even if ENABLE_ENCODING is unset.

raw Text is kept as is, special HTML characters are not protected. Appears
only as @inlineraw second argument.

string In string context. See Section 4.1 [Init File Expansion Contexts], page 7.

tree The Texinfo tree element corresponding to the argument. See Section 6.3
[Texinfo Tree Elements in User Defined Functions], page 21.

Chapter 9: User Defined Functions in Conversion 35

url Similar with filenametext. The difference is that UTF-8 encoding
is always used for the conversion of accented and special insertion
@-commands to plain text. This is best for percent encoding of URLs,
which should always be produced from UTF-8 encoded strings.

The formatted arguments contexts depend on the @-command, there could be none,
for @footnote argument which is not directly converted where the footnote command
is, or multiple, for example for the fourth argument of @image which is both available
as ‘normal’ and ‘string’.

For example, $args->[0]->{'normal'} is the first argument converted in normal
context.

$content is the @-command formatted contents. It corresponds to the contents of
block @-commands, and to Texinfo code following @node, sectioning commands, @tab
and @item in @enumerate and @itemize. $content can be undef or the empty string.

The $text returned is the result of the @-command conversion.

To call a conversion function from user defined code, the function reference should first
be retrieved using command_conversion:

[Function]\&command_conversion = $converter->command_conversion
($command_name)

$command name is the @-command name without the @. Returns the conversion
function reference for $command name, or ‘undef’ if there is none, which should only
be the case for @-commands ignored in HTML not defined by the user.

for example, to call the conversion function for the @tab @-command, passing arguments
that may correspond to another @-command:

&{$converter->command_conversion('tab')}($converter, $cmdname,

$command, $args, $content);

It is possible to have access to the default conversion function reference. The function
used is:

[Function]\&default_command_conversion =
$converter->default_command_conversion ($command_name)

$command name is the @-command name without the @. Returns the default con-
version function reference for $command name, or ‘undef’ if there is none, which
should only be the case for @-commands ignored in HTML.

9.1.3 Type Tree Element Opening Functions

User defined functions called when an element without @-command with a container type
is first encountered are registered with texinfo_register_type_opening:

[Function]texinfo_register_type_opening ($type, \&handler)
$type is the element type. \&handler is the user defined function reference.

The call of the user defined functions is:

Chapter 9: User Defined Functions in Conversion 36

[Function Reference]$text type_open ($converter, $type, \%element)
$converter is a converter object. $type is the element type. \%element is the Texinfo
element.

The $text returned is prepended to the formatting of the type container.

It is possible to have access to the default opening function reference. The function used
is:

[Function]\&default_type_open = $converter->default_type_open ($type)
$command name is the element type. Returns the default opening function reference
for $type, or ‘undef’ if there is none.

9.1.4 Type Tree Element Conversion Functions

User defined functions called for the conversion of an element without @-command with
text or a container type are registered with texinfo_register_type_formatting. For
containers, the user defined function is called after conversion of the content.

[Function]texinfo_register_type_formatting ($type, \&handler)
$type is the element type. \&handler is the user defined function reference.

The call of the user defined functions is:

[Function Reference]$text type_conversion ($converter, $type,
\%element, $content)

$converter is a converter object. $type is the element type. \%element is the Texinfo
element. $content is text for elements associated with text, or the formatted contents
for other elements. $content can be undef or the empty string.

The $text returned is the result of the @-command conversion.

To call a conversion function from user defined code, the function reference should first
be retrieved using type_conversion:

[Function]\&type_conversion = $converter->type_conversion ($type)
$type is the element type. Returns the conversion function reference for $type, or
‘undef’ if there is none, which should only be the case for types ignored in HTML
not defined by the user.

It is possible to have access to the default conversion function reference. The function
used is:

[Function]\&default_type_conversion =
$converter->default_type_conversion ($type)

$type is the element type. Returns the default conversion function reference for $type,
or ‘undef’ if there is none, which should only be the case for types ignored in HTML.

Chapter 9: User Defined Functions in Conversion 37

9.2 Formatting Functions

Most formatting functions are specific, with specific arguments, and a specific item format-
ted.

User defined functions associated with the formatting of special elements body (see
Section 5.1 [Output Element Units], page 12) are handled separately.

The formatting functions are often called from function that can be replaced by a user
defined function, therefore these functions may not be called if the replacement functions
do not keep a similar operation.

9.2.1 Specific formating Functions

User defined formatting functions are registered with texinfo_register_formatting_

function:

[Function]texinfo_register_formatting_function ($formatted, \&handler)
$formatted is a string describing the formatting function. \&handler is the user
defined function reference.

To call a formatting function from user defined code, the function reference should first
be retrieved using formatting_function:

[Function]\&formatting_function = $converter->formatting_function
($formatted)

$formatted is a string describing the formatting function. Returns the associated
formatting function reference.

It is possible to have access to the default formatting function reference. The function
used is:

[Function]\&default_formatting_function =
$converter->default_formatting_function ($formatted)

$formatted is a string describing the formatting function. Returns the default for-
matting function reference.

The string that should be used to register or call each of the formatting functions and
the call of the formatting functions are documented in the following sections of the manual,
depending on where they are relevant.

38

10 Mandatory Conversion Function Calls

There are several conventions and constraints that user defined code should abide to, in
order to comply with customization option values, and also to have information correctly
registered in the converter.

10.1 Protection of URLs

URLs need to be “percent-encoded” to protect non-ASCII characters, spaces and other
ASCII characters. Percent-encoding also allows to have characters be interpreted as part
of a path and not as characters with a special role in URLs. For example, ‘?’ has a special
role in URLs as it starts a query string. To have it considered as part of a file path, instead
of a marker of the beginning of a query, it needs to be percent encoded.

To protect a whole URL, in which characters with a special role in URL are left as is, use
url_protect_url_text. To protect file path in URL, including characters with a special
role in URLs, use url_protect_file_text.

[Function]$protected_url =
$converter->url_protect_url_text($input_string)

Percent-encode $input string, leaving as is all the characters with a special role in
URLs, such as ‘:’, ‘/’, ‘?’, ‘&’, ‘#’ or ‘%’ (and a few other). HTML reserved characters
and form feeds protected are also protected as entities (see Chapter 11 [format_
protect_text], page 42). This is typically used on complete URLs pointing to diverse
internet resources, such as the @url URL argument.

for example

return $self->html_attribute_class('a', [$cmdname])

.' href="'.$self->url_protect_url_text($url)."\">$text";

[Function]$protected_path =
$converter->url_protect_file_text($input_string)

Percent-encode $input string leaving as is character appearing in file paths only,
such as ‘/’, ‘.’, ‘-’ or ‘_’. All the other characters that can be percent-protected are
protected, including characters with a special role in URLs. For example, ‘?’, ‘&’ and
‘%’ are percent-protected. HTML reserved characters and form feeds protected are
also protected as entities (see Chapter 11 [format_protect_text], page 42). This is
typically used on file names corresponding to actual files, used in the path portion of
an URL, such as the image file path in @image.

For example

$self->html_attribute_class('img', [$cmdname])

. ' src="'.$self->url_protect_file_text($image_file)."\");

10.2 Formatting HTML Element with Classes

Opening an HTML element with one or more classes should always be done through html_

attribute_class:

Chapter 10: Mandatory Conversion Function Calls 39

[Function]$element_open = $converter->html_attribute_class
($html_element, \@classes)

Formats the beginning of an HTML element $html element. \@classes is the list of
classes for this element. The element opening returned does not include the end of
element symbol ‘>’ such that it is possible to add more attributes.

If the HTML element is span, an empty string is returned if there is also no attribute.

If NO_CSS is set, no attribute is set for the element. Otherwise a class attribute is
set based on \@classes . If INLINE_CSS_STYLE is set, a CSS style attribute based on
CSS element class rules is also added. Otherwise the information that the element
class was seen is registered by the converter.

Examples of use:

my $open = $converter->html_attribute_class('span', ['category-def']);

$category_result = $open.'>'.$category_result.''

if ($open ne '');

my $result = $converter->html_attribute_class('em', [$cmdname, 'jax_p'])

. '>' . $content . '';

10.3 Closing Lone HTML Element

HTML elements with an opening element, but no closing element, such as or <link>
should be closed by calling close_html_lone_element:

[Function]$html_element = $converter->close_html_lone_element
($unclosed_element)

Close the $unclosed element, which can contain attributes, by prepending ‘>’ or ‘/>’
depending on the USE_XML_SYNTAX customization variable value.

Examples of use:

$description = $converter->close_html_lone_element(

"<meta name=\"description\" content=\"$description\"");

10.4 Substituting Non Breaking Space

If a can appear in formatted code, the corresponding text should be in a call to
substitute_html_non_breaking_space, to take into account ENABLE_ENCODING and USE_

NUMERIC_ENTITY customization variables:

[Function]$substituted_text =
$converter->substitute_html_non_breaking_space
($formatted_text)

Substitute according to customization variables values.

This is not needed if the non_breaking_space information is taken from the general
information (see Section 6.7 [Conversion General Information], page 25).

Chapter 10: Mandatory Conversion Function Calls 40

10.5 Conversion in String Context

Conversion and formatting functions should check if in string context to avoid using HTML
elements in formatting when in string context. See Section 4.1 [Init File Expansion Con-
texts], page 7.

To determine if in string context, the functions is in_string:

[Function]$in_string = $converter->in_string ()
Return true if in string context.

Example of use:

if ($converter->in_string()) {

return "$mail_string ($text)";

} else {

return $converter->html_attribute_class('a', [$cmdname])

." href=\"mailto:$mail_string\">$text";

}

10.6 Conversion in Preformatted Context

Conversion and formatting functions should test if in preformatted context to convert ac-
cordingly. See Section 4.1 [Init File Expansion Contexts], page 7.

To determine if in preformatted context, the functions is in_preformatted:

[Function]$in_preformatted = $converter->in_preformatted ()
Return true if in preformatted context.

If in preformatted context, it is possible to get preformatted @-commands and prefor-
matted types nesting with preformatted_classes_stack:

[Function]@preformatted_nesting =
$converter->preformatted_classes_stack ()

Returns an array containing the block preformatted @-commands such as @example,
@display or @menu names without the leading @ and the HTML attribute class
preformatted container names, in order of appearance.

The %Texinfo::Commands::preformatted_code_commands hash can be used
to determine if a preformatted command is to be formatted as code (see Section
“Texinfo::Commands %preformatted code commands” in texi2any_internals).

my @pre_classes = $converter->preformatted_classes_stack();

foreach my $pre_class (@pre_classes) {

if ($Texinfo::Commands::preformatted_code_commands{$pre_class}) {

$result = '<code>' .$result. '</code>';

last;

}

}

See Section 4.5 [Simple Customization of Containers], page 10, on customizing containers
preformatted class.

Chapter 10: Mandatory Conversion Function Calls 41

10.7 Text Formatting Context

Formatting of text requires to use additional informative functions on specific contexts only
relevant for text. User defined functions should convert the text according to the context.

Each context is associated with a function:

code

[Function]$in_code = $converter->in_code ()
Return true if in code context. See Section 4.1 [Init File Expansion Con-
texts], page 7.

math

[Function]$in_math = $converter->in_math ()
Return true if in math context. See Section 4.1 [Init File Expansion
Contexts], page 7.

raw

[Function]$in_raw = $converter->in_raw ()
Return true if in raw format, in @inlineraw or in @html. In such a
context, text should be kept as is and special HTML characters should
not be protected.

verbatim

[Function]$in_verbatim = $converter->in_verbatim ()
Return true if in verbatim context, corresponding to @verb and
@verbatim. In general, HTML characters should be protected in this
context.

upper-case

[Function]$in_upper_case = $converter->in_upper_case ()
Return true if in upper-case context, corresponding to @sc.

non-breakable space

[Function]$in_non_breakable_space =
$converter->in_non_breakable_space ()

Return true if in context where line breaks are forbidden, corresponding
to @w.

space protected

[Function]$in_space_protected =
$converter->in_space_protected ()

Return true if in context where space and newline characters are kept,
corresponding to @verb.

42

11 Basic Formatting Customization

The following formatting functions references handle basic formatting and are called from
diverse formatting and conversion functions. See Section 9.2.1 [Specific formating Func-
tions], page 37, for information on how to register and get the functions references.

All the functions take a converter object as their first argument.

format_button_icon_img

Called for an active direction, if ICONS is set, when formatting the navigation
panel (see Section 5.4 [Simple Navigation Panel Customization], page 16).

[Function Reference]$text format_button_icon_img ($converter,
$button, $icon, $name)

$button is a button name, typically obtained from the button direction
string (see Section 5.2.2 [Direction Strings], page 15). $icon is an image
file name to be used as icon. $name is the direction heading, typically for-
matted in string context. See Section 4.1 [Init File Expansion Contexts],
page 7.

Returns a formatted icon image.

format_comment

[Function Reference]$text format_comment ($converter,
$input_text)

Return $input text in a comment.

See Section “Texinfo::Convert::Converter::xml comment” in texi2any_

internals.

format_heading_text

[Function Reference]$text format_heading_text ($converter,
$command_name, \@classes, $input_text, $level, $id,
\%element, $target)

Returns a heading formatted using $input text as heading text, $level as
heading level, \@classes for a class attribute. $command name gives an
information on the @-command the heading is associated to and can be
undef, for instance for special elements headings.

$id is an optional identifier, and \%element is an optional Texinfo tree
element associated with the heading. $target is the id of the element this
heading is referring to.

In the default case, if the $target or $id are specified, a copiable anchor
will be generated and injected into the heading. In the case both are
specified, $id is preferred over $target, as it is closer to the element the
user sees the anchor on.

This function reference can be called for @node and sectioning commands, head-
ing commands, tree units, special elements and title @-commands.

A formatted headings is, in the default case, like <h2>$input_text</h2> for a
$level 2 heading.

Chapter 11: Basic Formatting Customization 43

format_program_string

[Function Reference]$text format_program_string ($converter)
This function reference should return the formatted program string.

format_protect_text

[Function Reference]$text format_protect_text ($converter,
$input_text)

Return $input text with HTML reserved characters and form feeds pro-
tected.

For performance reasons, this function reference may not be
called everywhere text is protected. For those cases, the calling
function should also be redefined to call &{$self->formatting_

function('format_protect_text')}(...) instead of another
function1.

See Section “Texinfo::Convert::Converter::xml protect text” in texi2any_

internals.

format_separate_anchor

This function reference is called if there is not another HTML element to add
an identifier attribute to.

[Function Reference]$text format_separate_anchor ($converter,
$id, $class)

id is the identifier. $class is an optional class to be used in an HTML
class attribute.

Return an anchor with identifier $id.

1 The function called is actually the function referenced as $self->formatting_function('format_

protect_text') in the default case, but it is called directly to avoid an indirection

44

12 Dynamic Conversion Information

Dynamic formatting information on the conversion can be obtained from the converter.

For advanced customization, it is also often necessary to pass information during conver-
sion between different formatting functions or between different calls of the same function.

The information is often useful for the formatting of paragraph and preformatted contain-
ers and @-commands such as @abbr, @footnote, @node, sectioning commands, @quotation
and @float.

12.1 Dynamic Converter Formatting Information

To get the current paragraph and preformatted number, use paragraph_number or
preformatted_number:

[Function]$number = $converter->paragraph_number ()
[Function]$number = $converter->preformatted_number ()

Return the current paragraph or preformatted container number in the current for-
matting context.

To get the topmost block @-command being converted, use top_block_command:

[Function]$command_name = $converter->top_block_command ()
Return the most recent block @-command seen in the current formatting context.

To get the text filling and alignement context, determined by @flushleft or @center,
use in_align:

[Function]$align_context = $converter->in_align ()
If the alignment context is the default alignement context, return undef. Otherwise,
returns the command name of the alignment context.

To determine if the conversion is in a context converted multiple times, use in_multi_

expanded:

[Function]$multi_expanded_context_information =
$converter->in_multi_expanded ()

Return a string representing the multiple expanded context, or undef if not in a
multiple expanded context.

To get the location of an image file, use html_image_file_location_name:

[Function]($image_file, $image_basefile, $image_extension,
$image_path, $image_path_encoding) =
$converter->html_image_file_location_name ($command_name,
\%element, \@args)

$command name, \%element and \@args should be the arguments of an @image

@-command formatting (see Section 9.1.2 [Command Tree Element Conversion Func-
tions], page 34).

The return values gives information on the image file if found, or fallback values.
$image file is the relative image file name. It is the file name used in formatting of

Chapter 12: Dynamic Conversion Information 45

the @image command in the default case. $image basefile is the base file name of the
image, without extension, corresponding to the @image @-command first argument.
$image extension is the image file extension (without a leading dot). $image path
is the path to the actual image file, undef if no file was found. $image path is
returned as a binary string, the other strings returned are character strings. $im-
age path encoding is the encoding used to encode the image path to a binary string.

See Section 10.6 [Conversion in Preformatted Context], page 40, for information on
getting preformatted commands and container types nesting information.

12.2 Opening and Closing Sectioning Commands Extent

In the default formatting, when a sectioning command is encountered, a <div> element is
opened for the extent of the sectioning command including its children sectioning commands.
This extent need to be closed at different places, for instance when another sectioning
command is reached, at the end of a file, or at the end of the document.

The user defined formatting function should take care of registering and closing opened
section levels. In the default code, registering is done in the sectioning commands conversion
function only.

The function for registering opened section extent is register_opened_section_level:

[Function]$converter->register_opened_section_level ($level,
$closing text)

$level is the sectioning command level. It is typically obtained with section-

>{'structure'}->{'section_level'} (see Section 6.3 [Texinfo Tree Elements in
User Defined Functions], page 21). $closing text is the text that should be output
when the section level $level is closed.

The function for closing registered section extents is close_registered_sections_

level:

[Function]@closing_texts =
$converter->close_registered_sections_level ($level)

$level is the sectioning command level. Opened section are closed down to section
level $level. The closing texts are returned in the @closing texts array in order.

Example of use:

my $level = $opening_section->{'structure'}->{'section_level'};

$result

.= join('', $converter->close_registered_sections_level($level));

$converter->register_opened_section_level($level, "</div>\n");

12.3 Setting Up Content for the Next Text Container

Text is mainly output in two inline text containers, paragraph for text in paragraph and
preformatted for text in preformatted environments. The Texinfo code parsing makes
sure that it is the case, to simplify conversion to formats which allow text only in specific
environments such as HTML.

Chapter 12: Dynamic Conversion Information 46

Formatted text may also be prepared based on information from Texinfo elements tree
while out of the inline containers. For that case, functions allow to register pending inline
formatted content, and get the content to be prepended in inline text containers.

Pending formatted content text is registered with register_pending_formatted_

inline_content:

[Function]$converter->register_pending_formatted_inline_content
($category, $content)

$content is the formatted content to be registered and output in the next inline
container. $category is a indicator of the source of the formatted inline content,
mostly used to cancel registered content if no inline container was seen.

Pending formatted content can (and should) be cancelled when it is known that there is
no suitable inline container to be used to output the text. The function is cancel_pending_
formatted_inline_content:

[Function]$cancelled_content =
$converter->cancel_pending_formatted_inline_content
($category)

Cancel the first $category pending formatted content text found. Returns undef if
nothing was cancelled, and the cancelled content otherwise.

Pending formatted content is gathered by calling get_pending_formatted_inline_

content. In the default case, this is done in inline containers opening code (see Section 9.1.3
[Type Tree Element Opening Functions], page 35).

[Function]$content =
$converter->get_pending_formatted_inline_content ()

Returns the concatenated pending content.

The inline containers get the content when they are opened, but are converted after
the formatting of their contents. Two additional functions allow to associate pending
content to an element, associate_pending_formatted_inline_content, and get the
associated content, get_associated_formatted_inline_content. associate_pending_

formatted_inline_content is normally called in inline container opening code, right after
get_pending_formatted_inline_content, while get_associated_formatted_inline_

content is called in the inline container conversion function (see Section 9.1.4 [Type Tree
Element Conversion Functions], page 36).

[Function]$converter->associate_pending_formatted_inline_content
(\%element, $content)

Associate $content to the Texinfo tree element \%element.

[Function]$content =
$converter->get_associated_formatted_inline_content
(\%element)

Get $content associated to the Texinfo tree element \%element.

Chapter 12: Dynamic Conversion Information 47

12.4 Associating Information to an Output File

To be able to retrieve information associated to the current file, in general for the file begin
or end formatting, register_file_information can be used to associate information, and
get_file_information to retrieve that information.

[Function]$converter->register_file_information ($key, $value)
Associate the current output file name file to the key $key, itself associated to the
value $value.

[Function]$value = $converter->get_file_information ($key,
$file_name)

Return the value associated to the key $key and file name $file name.

12.5 Shared Conversion State

For information shared among formatting functions without involving the converter, the
function shared_conversion_state can be used both for initialization of shared informa-
tion and to share information:

[Function]$reference = $converter->shared_conversion_state ($name,
$initialization)

Return the reference $reference associated with $name. $initialization is only read
the first time $name is seen and sets up the reference that will be reused afterwards.
If $initialization is a scalar (string or integer, for example), a reference on a scalar is
returned, the associated value being set to $initialization. Otherwise, $initialization
should be a reference on a hash or on an array.

The converter is used to hold the information, but does not use nor write.

Examples of use:

my $explained_commands_hash

= $converter->shared_conversion_state('explained_commands', {});

$explained_commands_hash->{'key'} = 'value';

my $foot_num_reference

= $converter->shared_conversion_state('footnote_number', 0);

${$foot_num_reference}++;

48

13 Translations Output and Customization

Translated strings can be specified in customization functions, for @-commands without
arguments (see Section 4.2 [Simple Customization for Commands Without Arguments],
page 7), for direction strings (see Section 5.3 [Direction Strings Customization], page 15)
and for specific elements headings such as footnotes, contents or about (see Section 15.1
[Special Elements Information Customization], page 57). Translated strings can also be
inserted in the output in user-defined customization functions, by using specific functions
for internationalization of strings, gdt or pgdt.

It is possible to customize the translated strings, in order to change the translations of
the strings translated in the default case. If new translated strings are added, it is even
required to use translated strings customization to add translations for the added strings.

See Section “Internationalization of Document Strings” in Texinfo for additional infor-
mation on the default case.

13.1 Internationalization of Strings Function

The subroutines gdt or pgdt, are used for translated strings:

[Function]$translated_tree = $converter->gdt ($string,
\%variables_hash, $translation_context, $mode)

[Function]$translated_tree = $converter->pgdt ($translation_context,
$string, \%variables_hash, $mode)

$string is the string to be translated, \%variables hash is a hash reference holding the
variable parts of the translated string. $translation context is an optional translation
context that limits the search of the translated string to that context (see Section
“Contexts” in GNU gettext tools). The result returned is a perl Texinfo tree in the
default case.

$mode is an optional string which may modify how the function behaves. The possible
values are:

translated_text

In that case the string is not considered to be Texinfo, a plain string that
is returned after translation and substitution. The substitutions may only
be strings in that case.

If called as pgdt, $translation context is not optional and is the first argument.

When the string is expanded as Texinfo, and converted to a Texinfo tree in perl, the
arguments are substituted; for example, ‘{arg_name}’ is replaced by the corresponding
actual argument, which should be Texinfo perl trees, Texinfo perl tree contents arrays or
strings.

In the following example, ‘{date}’, ‘{program_homepage}’ and ‘{program}’ are the
arguments of the string. Since they are used in @uref, their order in the formatted output
depends on the formatting and is not predictable. ‘{date}’, ‘{program_homepage}’ and
‘{program}’ are substituted after the expansion, which means that they should already be
Texinfo perl trees, Texinfo perl tree contents. A string is turned into a Texinfo text element
without type, with the string as text.

$converter->gdt('Generated @emph{@today{}} using '

Chapter 13: Translations Output and Customization 49

.'@uref{{program_homepage}, @emph{{program}}}.',

{ 'program_homepage' => $converter->get_conf('PACKAGE_URL'),

'program' => { 'text' => $converter->get_conf('PROGRAM') }}));

In the example, the $converter->get_conf('PACKAGE_URL') string is turned into {

'text' => $converter->get_conf('PACKAGE_URL') }.

An example of combining conversion with translation:

$converter->convert_tree($converter->gdt(

'{explained_string} ({explanation})',

{'explained_string' => {'type' => '_converted',

'text' => $result},

'explanation' => {'type' => '_converted',

'text' => $explanation_result}}),

"convert explained $cmdname");

In the default case, the gdt function from the Texinfo::Translations module
is used for translated strings. It is possible to use a user-defined function instead as
seen next. See Section “Texinfo::Translations” in texi2any_internals for more on
Texinfo::Translations.

In texi2any code, gdt is also used to mark translated strings for tools extracting trans-
latable strings to produce template files. pgdt is used to mark translated string with a
translation context associated.

13.2 Translated Strings Customization

To customize strings translations, register the format_translate_string function refer-
ence:

[Function Reference]$translated_tree format_translate_string
($converter, $string, $lang, \%variables_hash,
$translation_context, $mode)

$string is the string to be translated, $lang is the language. $translation context is
an optional translation context. $mode is an optional string which should modify
how the function behaves.

The result returned should be a perl Texinfo tree in the default case, or a string if
$mode is set to translated_text. The result returned may also be ‘undef’, in which
case the translation is done as if the function reference had not been defined.

See Section 13.1 [Internationalization of Strings Function], page 48, for more infor-
mation on strings translations function arguments.

The replace_convert_substrings method of Texinfo::Translations can
be used to substitute \%variables hash and return a Texinfo tree based on a
translated string, taking into account $mode (see Section “Texinfo::Translations
replace convert substrings” in texi2any_internals).

This function reference is not set in the default case, in the default case the gdt method
from the Texinfo::Translations module is called (see Section 13.1 [Internationalization
of Strings Function], page 48). See Section 9.2.1 [Specific formating Functions], page 37,
for information on how to register and get the function reference.

Chapter 13: Translations Output and Customization 50

Here is an example with new translated strings added and definition of
format_translate_string to translate the strings:

texinfo_register_no_arg_command_formatting('error', undef, undef,

undef, 'error-->');

my %translations = (

'fr' => {

'error-->' => {'' => 'erreur-->',},

...

},

'de' => {

'error-->' => {'' => 'Fehler-->',},

...

}

...

);

sub my_format_translate_string($$$;$$$)

{

my ($self, $string, $lang, $replaced_substrings,

$translation_context, $type) = @_;

$translation_context = '' if (!defined($translation_context));

if (exists($translations{$lang})

and exists($translations{$lang}->{$string})

and exists($translations{$lang}->{$string}

->{$translation_context})) {

my $translation = $translations{$lang}->{$string}

->{$translation_context};

return $self->replace_convert_substrings($translation,

$replaced_substrings, $type);

}

return undef;

}

texinfo_register_formatting_function('format_translate_string',

\&my_format_translate_string);

13.3 Translation Contexts

Translation contexts may be set to avoid ambiguities for translated strings, in particular
when the strings are short (see Section “Contexts” in GNU gettext utilities). Transla-
tion contexts are set for translated direction strings (see Section 5.2.2 [Direction Strings],
page 15) and for special elements headings (see Section 15.1 [Special Elements Information
Customization], page 57).

For direction strings, the translation context is based on the direction name (see Sec-
tion 5.2 [Directions], page 13), with ‘direction’ prepended and another string prepended,
depending on the type of string:

Chapter 13: Translations Output and Customization 51

button ‘button label’ is prepended

description

‘description’ is prepended

text ‘string’ is prepended

For example, the Top direction button direction string translation context is ‘Top
direction button label’.

As an exception, the This direction has ‘(current section)’ prepended to have a more
explicit translation context. The This direction text direction string translation context is
thus ‘This (current section) direction string’.

For special element headings, the translation context is obtained by prepending ‘section
heading’ to the special element variety (see Table 15.1). For example, the footnotes special
element variety heading translation context is ‘footnotes section heading’.

Here is an example, which could be used with the same function registered as format_
translate_string as in the example above:

texinfo_register_direction_string_info('Forward', 'text', undef,

'Forward');

texinfo_register_special_element_info('heading', 'contents',

'The @emph{Table of Contents}');

my %translations = (

'fr' => {

'The @emph{Table of Contents}' => {'contents section heading'

=> '@result{} La @emph{Table des mati@`eres}',},

'Forward' => {'Forward direction string'

=> 'Vers l\'avant @result{}',},

}

...

);

Other translated strings may also be associated with translation contexts. The transla-
tion template file po_document/texinfo_document.pot in the source directory of Texinfo
contains the translated strings appearing in all the output formats.

52

14 Directions, Links, Labels and Files

Navigation headers, navigation panels, end or beginning of files, @xref and similar @-
commands output, @menu, @node, sectioning commands, @printindex and @listoffloats

formatting requires directions, links, labels and files information.

14.1 Getting Direction Strings

To get direction strings, use direction_string:

[Function]$string = $converter->direction_string ($direction,
$string_type, $context)

Retrieve the $direction (see Section 5.2 [Directions], page 13) string of type
$string type (see Section 5.2.2 [Direction Strings], page 15). $context is ‘normal’
or ‘string’. See Section 4.1 [Init File Expansion Contexts], page 7. If $context is
undef, the ‘normal’ context is assumed. The string will be translated if needed.

14.2 Target Commands Links, Texts and Associated
Commands

Target @-commands are @-commands that are associated with an identifier and can be
linked to. They corresponds first to @-commands with unique identifier used as labels,
@node, @anchor and @float. Sectioning commands, index entries and footnotes are also
associated to targets.

To get the unique Texinfo tree element corresponding to a label, use label_command:

[Function]\%element = $converter->label_command ($label)
Return the element in the tree that $label refers to.

To get the identifier, file name and href of tree elements that may be used as link target,
use command_id, command_filename and command_href:

[Function]$identifier = $converter->command_id (\%target_element)
Returns the id specific of the \%target element tree element.

[Function]$file_name = $converter->command_filename
(\%target_element)

Returns the file name of the \%target element tree element.

[Function]$href = $converter->command_href (\%target_element,
$source_filename, $source_command, $specified_target)

Return string for linking to \%target element with <a href>. $source filename is the
file the link comes from. If not set, the current file name is used. $source command
is an optional argument, the @-command the link comes from. It is only used for
messages. $specified target is an optional identifier that overrides the target identifier
if set.

To get the text of tree elements that may be used as link description, use command_text:

Chapter 14: Directions, Links, Labels and Files 53

[Function]$result = $converter->command_text (\%target_element,
$type)

Return the information to be used for a hyperlink to \%target element. The infor-
mation returned depends on $type:

text Return text.

tree Return a Texinfo elements tree.

tree nonumber
Return a Texinfo elements tree representing text without a chapter num-
ber being included.

string Return text in string context. See Section 4.1 [Init File Expansion Con-
texts], page 7.

To get the top level element and the tree unit element associated to any Texinfo tree
element, use get_element_root_command_element:

[Function]\%top_level_element, \%element_unit =
$converter->get_element_root_command_element (\%element)

Return the top level element and tree element unit a Texinfo tree \%element is in
(see Section 6.3 [Texinfo Tree Elements in User Defined Functions], page 21). Both
the top level element and the tree element unit may be undefined, depending on how
the converter is called and on the Texinfo tree. The top level element returned is also
determined by the customization variable USE_NODES. If USE_NODES is set the @node

is preferred, otherwise the sectioning command is preferred.

To obtain the top level command element associated with the target element, either a
@node or a sectioning element, use command_root_element_command:

[Function]\%top_level_element =
$converter->command_root_element_command (\%target_element)

Return the top level element \%target element is in.

To get the node element associated with the target element, use command_node:

[Function]\%node_element = $converter->command_node
(\%target_element)

Return the node element associated with \%target element.

14.3 Other Links, Headings and Associated Information for
Special Elements

To get the id of a footnote in the main document, use footnote_location_target:

[Function]$target = $converter->footnote_location_target
(\%footnote_element)

Return the id for the location of the footnote \%footnote element in the main docu-
ment (where the footnote number or symbol appears).

To get an href to link to a footnote location in the main document, use footnote_

location_href:

Chapter 14: Directions, Links, Labels and Files 54

[Function]$href = $converter->footnote_location_href
(\%footnote_element, $source_filename, $specified_target,
$target_filename)

Return string for linking to \%footnote element location in the main document with
<a href>. $source filename is the file the link comes from. If not set, the current
file name is used. $specified target is an optional identifier that overrides the target
identifier if set. $target filename is an optional file name that overrides the file name
href part if set.

See Section 14.2 [Target Commands Links, Texts and Associated Commands], page 52,
to get link information for the location where footnote text is output.

To get id and link href of sectioning commands in table of contents and short table of
contents, use command_contents_target and command_contents_href:

[Function]$target = $converter->command_contents_target
(\%sectioning_element, $contents_or_shortcontents)

Returns the id for the location of \%sectioning element sectioning element in the table
of contents, if $contents or shortcontents is ‘contents’, or in the short table of con-
tents, if $contents or shortcontents is set to ‘shortcontents’ or ‘summarycontents’.

[Function]$href = $converter->command_contents_href
(\%sectioning_element, $contents_or_shortcontents,
$source_filename)

Return string for linking to the \%sectioning element sectioning element location
in the table of contents, if $contents or shortcontents is ‘contents’ or in the
short table of contents, if $contents or shortcontents is set to ‘shortcontents’ or
‘summarycontents’. $source filename is the file the link comes from. If not set, the
current file name is used.

To determine if a tree unit element is the top element, use element_is_tree_unit_top:

[Function]$is_tree_unit_top = $converter->element_is_tree_unit_top
(\%element)

Returns true if the \%element Texinfo tree element is the tree unit Top element (see
Section 5.1 [Output Element Units], page 12) and is either associated with the @top

sectioning command or with the Top @node.

To get information on the special element variety associated with an @-command com-
mand name, use command_name_special_element_information:

[Function]($special_element_variety, \%special_element, $class_base,
$special_element_direction) =
$converter->command_name_special_element_information
($command_name)

$command name is an @-command name without the leading @. If the $com-
mand name is not associated with a special element, returns undef. Otherwise, return
the $special element variety (see Table 15.1), the \%special element texinfo tree unit,
a $class base string for HTML class attribute and the $special element direction di-
rection corresponding to that special elements (see Section 5.2 [Directions], page 13).

Chapter 14: Directions, Links, Labels and Files 55

In the current setup, special elements are associated with @contents, @shortcontents
and @summarycontents and with @footnote.

14.4 Elements and Links for Directions

See Section 5.2 [Directions], page 13, for the list of directions.

To get the Texinfo tree unit special element associated with a special element direction,
such as ‘About’ or ‘Contents’, use special_direction_element:

[Function]\%special_element = $converter->special_direction_element
($direction)

Return the special element associated with direction $direction, or undef if the di-
rection is not a special element direction or the special element is not output.

To get the Texinfo tree unit element associated with other global element directions,
such as ‘Top’ or ‘Index’, use global_direction_element:

[Function]\%element = $converter->global_direction_element
($direction)

Return the Texinfo tree unit element corresponding to direction $direction, or undef
if the direction is not a global direction.

To get link information for relative and global directions, use from_element_direction:

[Function]$result = $converter->from_element_direction ($direction,
$type, $source_element, $source_filename, $source_command)

Return a string for linking to $direction, or the information to be used for a hyperlink
to $direction, depending on $type. The possible values for $type are described in
Section 5.2.1 [Element Direction Information Type], page 14.

$source element is the tree unit element the link comes from. If not set, the current
tree unit element is used. $source filename is the file the link comes from. If not
set, the current file name is used. $source command is an optional argument, the
@-command the link comes from. It is only used for messages.

14.5 Element Counters in Files

The position of the tree unit element being formatted in its file or the total number of
elements output to a file is interesting, for instance to format end of files, decide which
navigation header or footer is needed and whether a rule should be output.

To get information on tree elements unit counter in files, use count_elements_in_

filename:

[Function]$count = $converter->count_elements_in_filename
($specification, $file_name)

Return tree unit element counter for $file name, or undef if the counter does not
exist. The counter returned depends on $specification:

current Return the number of unit elements associated with $file name having
already been processed.

Chapter 14: Directions, Links, Labels and Files 56

remaining Return the number of unit elements associated with $file name that re-
mains to be processed.

total Return the total number of element units associated with the file.

57

15 Customizing Footnotes, Tables of Contents and
About

Some customization is specific for the different cases, especially when the formatting is
not done in a separate document unit (see Section 5.1 [Output Element Units], page 12),
but some customization is relevant for all the special elements. The formatting of special
elements bodies is handled the same for all the special elements, when formatted as separate
elements. To specify a special element in those contexts, the special elements varieties are
used, as described in Table 15.1.

Special Element Special Element Variety
Table of contents contents

Short table of contents shortcontents

Footnotes footnotes

About about

Table 15.1: Association of special elements names with their special element variety

The variety of special elements is in the element extra hash special_element_variety

key.

15.1 Special Elements Information Customization

The following items are common to all the special elements:

class String for special element HTML class attributes.

direction

Direction corresponding to the special element. See Section 5.2 [Directions],
page 13.

heading Special element heading Texinfo code.

heading_tree

Special element heading Texinfo tree.

order Index determining the sorting order of special elements.

file_string

File string portion prepended to the special element file names, such as ‘_toc’.

target A string representing the target of the special element, typically used as id
attribute and in href attribute.

The heading string is set with heading, and should be a Texinfo code string. heading_
tree cannot be set directly, but can be retrieved. It is determined from heading after
translation and conversion to a Texinfo tree.

To set the information, use texinfo_register_special_element_info in an init file:

[Function]texinfo_register_special_element_info ($item type,
$special element variety, $value)

Set $item type information for the special element variety $special element variety
to $value. $value may be ‘undef’, or an empty string, but only heading and target

should be set to that value as a non-empty value is needed for the other items for
formatting.

Chapter 15: Customizing Footnotes, Tables of Contents and About 58

To retrieve the information for formatting, use special_element_info:

[Function]$list_or_value = $converter->special_element_info
($item_type, $special_element_variety)

$item type is the type of information to be retrieved as described above. If $spe-
cial element variety is ‘undef’, the list of the special elements varieties with informa-
tion for the $item type is returned. If $special element variety is a special element
variety, the corresponding value is returned.

The value returned is translated and converted to a Texinfo tree for ‘heading_tree’.

15.2 Customizing Footnotes

NUMBER_FOOTNOTES and NO_NUMBER_FOOTNOTE_SYMBOL customization variables can be used
to change the footnotes formatting. Redefinition of @footnote conversion reference and
footnote formatting references is needed for further customization.

@footnote @-commands appearing in the Texinfo elements tree are converted like any
other elements associated with @-commands (see Section 9.1.2 [Command Tree Element
Conversion Functions], page 34). It is therefore possible to redefine their formatting by
registering a user defined function.

To pass information on footnotes between the conversion function processing the
@footnote command at the location they appear in the document and the functions
formatting their argument elsewhere, two functions are available: register_footnote to
be called where they appear in the document, and get_pending_footnotes to be called
where they are formatted.

[Function]$converter->register_footnote (\%element, $footnote id,
$foot in doc id, $number in doc, $footnote location filename,
$multi expanded region)

\%element is the footnote texinfo tree element. $footnote id is the identifier for the
location where the footnote arguments are expanded. $foot in doc id is the identifier
for the location where the footnote appears in the document. $number in doc is the
symbol used to format the footnote in the document. $footnote location filename is
the filename of the tree unit element of the footnote in the document. If the footnote
appears in a region that is expanded multiple times, the information on the expansion
is $multi expanded region (see Section 12.1 [Dynamic Converter Formatting Infor-
mation], page 44).

register_footnote is normally called in the @footnote @-command conversion func-
tion reference. The default conversion function also call command_href to link to the location
where the footnote text will be expanded (see Section 14.2 [Target Commands Links, Texts
and Associated Commands], page 52).

[Function]@pending_footnotes_information =
$converter->get_pending_footnotes ()

Returns in @pending footnotes information the information gathered in register_

footnote. Each of the array element in @pending footnotes information is an array
reference containing the arguments of register_footnote in the same order.

Chapter 15: Customizing Footnotes, Tables of Contents and About 59

The formatting of footnotes content is done by the format_footnotes_sequence for-
matting reference (see Section 9.2.1 [Specific formating Functions], page 37):

[Function Reference]$footnotes_sequence format_footnotes_sequence
($converter)

Formats and returns the footnotes that need to be formatted. This function normally
calls get_pending_footnotes. The default function also calls footnote_location_
href (see Section 14.3 [Other Links, Headings and Associated Information for Special
Elements], page 53) to link to the location in the document where the footnote ap-
peared.

If footnotes are in a separate element unit (see Section 5.1 [Output Element
Units], page 12), the default footnote special element body formatting function calls
format_footnotes_sequence (see Section 15.5 [Special Element Body Formatting
Functions], page 61).

If the footnotes are not in a separate element unit, or there is no separate element because
there is only one tree unit element or no tree unit element, the format_footnotes_segment
formatting reference is called when pending footnotes need to be formatted. This function
reference can be replaced by a user defined function.

[Function Reference]$footnotes_segment format_footnotes_segment
($converter)

Returns the footnotes formatted. In the default case, the function reference calls
format_footnotes_sequence and also sets up a header with format_heading_text

(see Chapter 11 [Basic Formatting Customization], page 42), using the customization
variables FOOTNOTE_END_HEADER_LEVEL and the special footnotes element heading
information (see Section 15.1 [Special Elements Information Customization], page 57).

15.3 Contents and Short Table of Contents Customization

To begin with, the table of contents and short table of contents can be made to appear at
different locations in the document.

By default, the customization variable CONTENTS_OUTPUT_LOCATION is set to
‘after_top’, specifying that the tables of contents are output at the end of the @top

section, to have the main location for navigation in the whole document early on. This
is in line with FORMAT_MENU set to ‘sectiontoc’ with sectioning command being used in
HTML for navigation rather than menus.

If CONTENTS_OUTPUT_LOCATION is set to ‘inline’, the tables of content are output where
the corresponding @-command, for example @contents, is set. This behavior is consistent
with texi2dvi.

If CONTENTS_OUTPUT_LOCATION is set to ‘separate_element’, the tables of contents are
output in separate elements, either at the end of the document if the output is unsplit
or in separate files if not. This makes sense when menus are used for navigation with
FORMAT_MENU set to ‘menu’.

If CONTENTS_OUTPUT_LOCATION is set to ‘after_title’ the tables of contents are merged
into the title material, which in turn is not output by default; see Section 19.1 [HTML Title
Page Customization], page 69.

Chapter 15: Customizing Footnotes, Tables of Contents and About 60

Next, the following variables allow for some useful control of the formatting of table of
contents and short table of contents:

BEFORE_TOC_LINES

Inserted before the table of contents text.

AFTER_TOC_LINES

Inserted after the table of contents text.

BEFORE_SHORT_TOC_LINES

Inserted before the short table of contents text.

AFTER_SHORT_TOC_LINES

Inserted after the short table of contents text.

Additional customization variables SHORT_TOC_LINK_TO_TOC and NUMBER_SECTIONS can
be used to change the formatting of table of contents.

Finally, the following function reference provides even more control over the table of
contents and short table of contents formatting reference:

[Function Reference]$toc_result format_contents ($converter,
$command_name, \%element, $filename)

$command name is the @-command name without leading @, should be ‘contents’,
‘shortcontents’ or ‘summarycontents’. \%element is optional. It corresponds to
the $command name Texinfo tree element, but it is only set if format_contents is
called from a Texinfo tree element conversion, and not as a special element body
formatting. $filename is optional and should correspond to the filename where the
formatting happens, for links.

In the default function, structuring information is used to format the table of contents
(see Section 6.7 [Conversion General Information], page 25), and command_contents_

href (see Section 14.3 [Other Links, Headings and Associated Information for Special
Elements], page 53) and command_href (see Section 14.2 [Target Commands Links,
Texts and Associated Commands], page 52) are used for links. If $filename is unset,
the current file name is used, using $converter->get_info('current_filename').

Return formatted table of contents or short table of contents.

If contents are in a separate element unit (see Section 5.1 [Output Element Units],
page 12), the default contents and shortcontents special element body formatting function
calls format_contents (see Section 15.5 [Special Element Body Formatting Functions],
page 61). Otherwise, format_contents is called in the conversion of heading @-command,
in title page formatting, and in @contents conversion function, depending on the CONTENTS_
OUTPUT_LOCATION value.

15.4 About Element Customization

The default About element has an explanation of the buttons used in the document, con-
trolled by SECTION_BUTTONS. The formatting of this is influenced by the text, description
and example direction strings (see Section 5.2.2 [Direction Strings], page 15) and by ACTIVE_
ICONS (see Section 5.4 [Simple Navigation Panel Customization], page 16).

Chapter 15: Customizing Footnotes, Tables of Contents and About 61

PROGRAM_NAME_IN_ABOUT can also be used to change the beginning of the About element
formatting.

If the above is not enough and you want to control exactly the formatting of the about
element, the about special element body reference function may be overridden (see Sec-
tion 15.5 [Special Element Body Formatting Functions], page 61).

15.5 Special Element Body Formatting Functions

In addition to the formatting possibilities available with the default special element format-
ting presented previously, it is also possible to control completely how a separate special
element is formatted.

To register body formating user defined functions for special element (see Section 5.1
[Output Element Units], page 12), the special elements varieties are used, as described in
Table 15.1. Special element body formatting user defined functions are registered with
texinfo_register_formatting_special_element_body:

[Function]texinfo_register_formatting_special_element_body
($special element variety, \&handler)

$special element variety is the element variety (see Table 15.1). \&handler is the
user defined function reference.

The call of the user defined functions is:

[Function Reference]$text special_element_body ($converter,
$special_element_variety, \%element)

$converter is a converter object. $special element variety is the element variety.
\%element is the Texinfo element.

The $text returned is the formatted special element body.

To call a special element body formatting function from user defined code, the function
reference should first be retrieved using special_element_body_formatting:

[Function]\&special_element_body_formatting =
$converter->special_element_body_formatting
($special_element_variety)

$special element variety is the special element variety. Returns the conversion func-
tion reference for $variety, or ‘undef’ if there is none, which should not happen for
the special elements described in this manual.

For example:

my $footnotes_element_body

= &{$converter->special_element_body_formatting('footnotes')}(

$converter, 'footnotes', $element);

It is possible to have access to the default conversion function reference. The function
used is:

Chapter 15: Customizing Footnotes, Tables of Contents and About 62

[Function]\&default_special_element_body_formatting =
$converter->defaults_special_element_body_formatting
($special_element_variety)

$special element variety is the special element variety. Returns the default conversion
function reference for $special element variety, or undef if there is none, which should
not happen for the special elements described in this manual.

See Section 15.2 [Customizing Footnotes], page 58, for more on footnotes formatting.
See Section 15.3 [Contents and Short Table of Contents Customization], page 59, for more
on the contents and shortcontents formatting. See Section 15.4 [About Element Cus-
tomization], page 60, for more on the about special element body formatting.

63

16 Customizing HTML Footers, Headers and
Navigation Panels

texi2any provides for customization of the HTML page headers, footers, and navigation
panel. (These are unrelated to the headings and “footings” produced in TEX output; see
Section “Page Headings” in Texinfo.)

In the event that your needs are not met by changing the navigation buttons (see Sec-
tion 5.4 [Simple Navigation Panel Customization], page 16), you can completely control the
formatting of navigation panels by redefining function references. See Section 9.2.1 [Specific
formating Functions], page 37, for information on how to register the function references.

In a nutshell, element header and footer formatting function determines the button direc-
tions list to use and calls navigation header formatting. The navigation header formatting
adds some formatting if needed, but mostly calls the navigation panel formatting. The
navigation panel can call buttons formatting.

16.1 Navigation Panel and Navigation Header Formatting

All the formatting functions take a converter object as first argument.

The overall display of navigation panels is controlled via this function reference, format_
navigation_header:

[Function Reference]$navigation_text format_navigation_header
($converter, \@buttons, $command_name, \%element)

\@buttons is an array reference holding the specification of the buttons for the naviga-
tion panel (see Section 5.4 [Simple Navigation Panel Customization], page 16). \%el-
ement is the element in which the navigation header is formatted. $command name
is the associated command (sectioning command or @node). It may be undef for
special elements.

Returns the formatted navigation header and panel. The navigation panel itself can
be formatted with a call to &{$self->formatting_function('format_navigation_
panel')}.

The customization variable VERTICAL_HEAD_NAVIGATION should be relevant.

The navigation panel display is controlled via format_navigation_panel:

[Function Reference]$navigation_text format_navigation_panel
($converter, \@buttons, $command_name, \%element, $vertical)

\@buttons is an array reference holding the specification of the buttons for that nav-
igation panel. \%element is the element in which the navigation header is formatted.
$command name is the associated command (sectioning command or @node). It may
be undef for special elements. $vertical is true if the navigation panel should be
vertical.

Returns the formatted navigation panel in $navigation text. The buttons in
the navigation panel can be formatted with a call to &{$self->formatting_

function('format_button')}.

The function reference format_button does the formatting of one button:

Chapter 16: Customizing HTML Footers, Headers and Navigation Panels 64

[Function Reference]$formatted_button format_button ($converter,
$button, $source_command)

$button holds the specification of the button (see [Buttons Display], page 17).
$source command is an optional argument, the @-command the link comes from.

Returns the formatted result in $formatted button.

The buttons images can be formatted with format_button_icon_img (see Chapter 11
[Basic Formatting Customization], page 42).

Customization information described in Section 5.4 [Simple Navigation Panel Cus-
tomization], page 16, such as BUTTONS_TEXT, BUTTONS_NAME, BUTTONS_GOTO, USE_
ACCESSKEY, USE_REL_REV and BUTTONS_REL can be relevant for the formatting of a
button.

16.2 Element Header and Footer Formatting

All the formatting functions take a converter object as first argument.

By default, the function associated with format_element_header formats the header
and navigation panel of a tree unit element.

[Function Reference]$formatted_header format_element_header
($converter, $command_name, \%element, \%tree_unit_element)

\%element is the element in which the navigation header is formatted (sectioning
command, @node or special element). $command name is the associated command
name. It may be undef for special elements. \%tree unit element is the associated
tree unit element (see Section 6.3 [Texinfo Tree Elements in User Defined Functions],
page 21).

Returns the formatted navigation header and panel.

In the default code, the function reference select a buttons list (see Section 5.4 [Sim-
ple Navigation Panel Customization], page 16). The navigation header can then
be formatted with a call to &{$self->formatting_function('format_navigation_
header')}. It is also possible to format directly the navigation panel, depending on
customization variables values and location in file.

Similarly, the function associated with format_element_footer formats the footer and
navigation panel of a tree unit element.

[Function Reference]$formatted_footer format_element_footer
($converter, $tree_unit_type, \%tree_unit_element, $content,
$command)

\%tree unit element is the tree unit element element in which the navigation footer is
formatted. $tree unit type is the associated type. $content is the formatted element
content. $command is an optional argument, the @-command associated with the
\%tree unit element.

Returns the formatted navigation footer and panel.

In the default code, the function reference select a buttons list (see Section 5.4 [Sim-
ple Navigation Panel Customization], page 16). The navigation header can then
be formatted with a call to &{$self->formatting_function('format_navigation_
header')}.

Chapter 16: Customizing HTML Footers, Headers and Navigation Panels 65

Many customization variables may be interesting for the footer formatting, such as
SPLIT, HEADERS, DEFAULT_RULE, BIG_RULE, WORDS_IN_PAGE or PROGRAM_NAME_IN_

FOOTER.

66

17 Heading Commands and Tree Elements
Formatting

The customization variables CONTENTS_OUTPUT_LOCATION, CHAPTER_HEADER_LEVEL, TOC_
LINKS, USE_NEXT_HEADING_FOR_LONE_NODE and FORMAT_MENU may be used to change the
sectioning commands conversion. See Section “HTML Customization Variables” in Texinfo.

@node and sectioning default conversion function call format_heading_text (see Chap-
ter 11 [Basic Formatting Customization], page 42) and format_element_header (see Sec-
tion 16.2 [Element Header and Footer Formatting], page 64), as well as functions opening
and closing sectioning commands extent (see Section 12.2 [Opening and Closing Section-
ing Commands Extent], page 45). The @node and sectioning elements are formatted like
any other elements associated with @-commands. The corresponding function references
can therefore be replaced by user defined functions for a precise control of conversion (See
Section 9.1.2 [Command Tree Element Conversion Functions], page 34).

Tree unit elements default conversion involves calling the formatting reference format_

element_footer (see Section 16.2 [Element Header and Footer Formatting], page 64). The
conversion for these elements with type unit can be be replaced by user defined functions for
a precise control of conversion (see Section 9.1.4 [Type Tree Element Conversion Functions],
page 36).

Special elements conversion is achieved by calling special_element_body_formatting

(see Section 15.5 [Special Element Body Formatting Functions], page 61), format_

navigation_header (see Section 16.1 [Navigation Panel and Navigation Header
Formatting], page 63), format_heading_text (see Chapter 11 [Basic Formatting
Customization], page 42) and format_element_footer (see Section 16.2 [Element
Header and Footer Formatting], page 64). The conversion for these elements with type
special_element_type can be be replaced by user defined functions for a precise control
of conversion (see Section 9.1.4 [Type Tree Element Conversion Functions], page 36).

67

18 Beginning and Ending Files

The end of file (footers) formatting function reference is called from the converter after all
the element units in the file have been converted. The beginning of file (headers) formatting
function reference is called right after the footers formatting function reference.

See Section 9.2.1 [Specific formating Functions], page 37, for information on how to
register and get the functions references.

18.1 Customizing HTML File Beginning

You can set the variable DOCTYPE to replace the default. the DOCTYPE is output at the very
beginning of each output file.

You can define the variable EXTRA_HEAD to add text within the <head> HTML element.
Similarly, the value of AFTER_BODY_OPEN is added just after <body> is output. These vari-
ables are empty by default.

The <body> element attributes may be set by defining the customization variable
BODYTEXT.

By default, the encoding name from ENCODING_NAME is used. If this variable is not
defined, it is automatically determined.

A date is output in the header if DATE_IN_HEADER is set.

The description from @documentdescription (or a value set as a customization variable)
is used in the header (see Section “@documentdescription” in Texinfo).

<link> elements are used in the header if USE_LINKS is set, in which case LINKS_BUTTONS
determines which links are used and BUTTONS_REL determines the link type associated with
the rel attribute. See Section 5.4 [Simple Navigation Panel Customization], page 16.

You can set HTML_ROOT_ELEMENT_ATTRIBUTES to add attributes to the <html> element.

The customization variables SECTION_NAME_IN_TITLE, PACKAGE_AND_VERSION,
PACKAGE_URL and other similar variables, HTML_MATH and INFO_JS_DIR may also be used
to change the page header formatting. See Section “HTML Customization Variables” in
Texinfo.

The following function references give full control over the page header formatting done
at the top of each HTML output file.

[Function Reference]$file_begin format_begin_file ($converter,
$filename, \%tree_unit_element)

$filename is the name of the file output. \%tree unit element is the first tree unit
element of the file. This function should print the page header, in HTML, including
the <body> element.

18.2 Customizing HTML File End

You can define the variable PRE_BODY_CLOSE to add text just before the HTML </body>

element. Nothing is added by default.

If PROGRAM_NAME_IN_FOOTER is set, the date and name of the program that generated
the output are output in the footer.

Chapter 18: Beginning and Ending Files 68

The customization variables JS_WEBLABELS and JS_WEBLABELS_FILE are also used in the
page footer formatting. See Section “HTML Customization Variables” in Texinfo.

The format_end_file function reference give full control over the page footer formatting
done at the bottom of each HTML output file.

[Function Reference]$file_end format_end_file ($converter, $filename,
\%tree_unit_element)

$filename is the name of the file output. \%tree unit element is the last output unit
of the file. This function should print the page footer, including the </body> element.

69

19 Titlepage, CSS and Redirection Files

19.1 HTML Title Page Customization

If SHOW_TITLE is not set, no title is output. SHOW_TITLE is ‘undef’ in the default case. If
‘undef’, SHOW_TITLE is set if NO_TOP_NODE_OUTPUT is set. The “title page” is used to format
the HTML title if USE_TITLEPAGE_FOR_TITLE is set, otherwise the simpletitle is used.
USE_TITLEPAGE_FOR_TITLE is set in the default case. See Section “HTML Customization
Variables” in Texinfo.

The following functions references provides full control on the title and “title page”
formatting:

[Function Reference]$title_titlepage format_title_titlepage
($converter)

Returns the formatted title or “title page” text.

In the default case, return nothing if SHOW_TITLE is not set, return the output of
format_titlepage if USE_TITLEPAGE_FOR_TITLE is set, and otherwise output a sim-
ple title based on simpletitle.

[Function Reference]$title_page format_titlepage ($converter)
Returns the formatted “title page” text.

In the default case, the @titlepage is used if found in global information, otherwise
simpletitle is used (see Section 6.7 [Conversion General Information], page 25).

19.2 Customizing the CSS lines

See Section 4.6 [Simple Customization of CSS], page 10, for information on CSS customiza-
tion.

The CSS element.class that appeared in a file, gathered through html_attribute_class

calls (see Section 10.2 [Formatting HTML Element with Classes], page 38) are available
through the html_get_css_elements_classes function:

[Function]@css_element_classes =
$converter->html_get_css_elements_classes ($file_name)

Returns an array containing element.class pairs of elements and classes appearing
in $file name.

It is possible to change completely how CSS lines are generated by redefining the following
function reference:

[Function Reference]$css_lines format_css_lines ($converter,
$file_name)

This function returns the CSS lines and <script> HTML element for $file name.

In the default case, the function reference uses CSS_REFS corresponding to
command-line --css-ref, html_get_css_elements_classes and css_get_info

(see Section 4.6 [Simple Customization of CSS], page 10) to determine the CSS lines.

Chapter 19: Titlepage, CSS and Redirection Files 70

19.3 Customizing Node Redirection Pages

Node redirection pages are output if NODE_FILES is set (see Section “Invoking texi2any”
in Texinfo).

It is possible to change completely how node redirection pages are generated by redefining
the following function reference:

[Function Reference]$node_redirection_file_content
format_node_redirection_page ($converter, \%element)

\%element is a node element needing a redirection page. A redirection page is needed
if the node file name is not the file name expected for HTML cross manual references
(see Section “HTML Xref” in Texinfo).

Returns the content of the node redirection file.

71

Appendix A Specific Functions for Specific
Elements

Links on Texinfo perl modules functions or descriptions of functions that can be used for
specific elements formatting:

@today See Section “Texinfo::Convert::Utils::expand today” in texi2any_internals.

@verbatiminclude

See Section “Texinfo::Convert::Utils::expand verbatiminclude” in texi2any_

internals.

@def* @-commands
See Section “Texinfo::Convert::Utils::definition arguments content” in
texi2any_internals. See Section “Texinfo::Convert::Utils::definition category tree”
in texi2any_internals.

@float See Section “Texinfo::Convert::Converter::float name caption” in texi2any_

internals. Can be called as $converter->float_name_caption.

accent @-commands
See Section “Texinfo::Convert::Converter::xml accent” in texi2any_

internals. Can be called as $converter->xml_accent.

See Section “Texinfo::Convert::Converter::xml numeric entity accent” in
texi2any_internals.

See Section “Texinfo::Convert::Converter::convert accents” in texi2any_

internals.

text element
See Section “Texinfo::Convert::Converter::xml format text with numeric entities”
in texi2any_internals. Can be called as $converter->xml_format_text_

with_numeric_entities.

@item in @table and similar @-commands
See Section “Texinfo::Convert::Converter::table item content tree” in
texi2any_internals. Can be called as $converter->table_item_content_
tree.

@*index @subentry

See Section “Texinfo::Convert::Converter::comma index subentries tree”
in texi2any_internals. Can be called as $converter->comma_index_

subentries_tree.

global informative commands (@contents, @footnotestyle . . .)
See Section “Texinfo::Common::set informative command value” in
texi2any_internals.

heading commands, such as @subheading
See Section “Texinfo::Common::section level” in texi2any_internals. This
function would work for sectioning commands too, but for sectioning com-
mands, section->{'structure'}->{'section_level'} can also be used. See
Section 6.3 [Texinfo Tree Elements in User Defined Functions], page 21.

Appendix A: Specific Functions for Specific Elements 72

sectioning commands
See Section “Texinfo::Structuring::section level adjusted command name” in
texi2any_internals.

@itemize @itemize normally have an @-command as argument. If, instead, the argument
is some Texinfo code, html_convert_css_string_for_list_mark can be used
to convert that argument to text usable in CSS style specifications.

[Function]$text_for_css =
$converter->html_convert_css_string_for_list_mark
(\%element, $explanation)

\%element is the Texinfo element that is converted to CSS text. In
general, it is $itemize->{'args'}->[0], with $itemize an @itemize

Texinfo tree element. $explanation is an optional string describing what
is being done that can be useful for debugging.

Returns \%element formatted as text suitable for CSS.

The Texinfo::Convert::NodeNameNormalization converter, used for normal-
ization of labels, exports functions that can be used on Texinfo elements trees
to obtain strings that are unique and can be used in attributes. See Section
“Texinfo::Convert::NodeNameNormalization” in texi2any_internals.

73

Appendix B Functions Index

$
$converter->associate_pending_formatted_

inline_content . 46
$converter->cancel_pending_formatted_inline_

content . 46
$converter->close_html_lone_element 39
$converter->close_registered_sections_

level . 45
$converter->command_contents_href 54
$converter->command_contents_target 54
$converter->command_conversion 35
$converter->command_filename 52
$converter->command_href . 52
$converter->command_id . 52
$converter->command_name_special_element_
information . 54

$converter->command_node . 53
$converter->command_root_element_command . 53
$converter->command_text . 53
$converter->convert_tree . 20
$converter->convert_tree_new_formatting_

context . 20
$converter->count_elements_in_filename 55
$converter->css_add_info . 11
$converter->css_get_info . 11
$converter->default_command_conversion 35
$converter->default_command_open 33
$converter->default_formatting_function . . . 37
$converter->default_type_conversion 36
$converter->default_type_open 36
$converter->defaults_special_element_body_
formatting . 62

$converter->direction_string 52
$converter->document_error 21
$converter->document_warn 21
$converter->element_is_tree_unit_top 54
$converter->encoded_output_file_name 22
$converter->footnote_location_href 54
$converter->footnote_location_target 53
$converter->force_conf . 25
$converter->formatting_function 37
$converter->from_element_direction 55
$converter->gdt . 48
$converter->get_associated_formatted_inline_

content . 46
$converter->get_conf . 25
$converter->get_element_root_command_

element . 53
$converter->get_file_information 47
$converter->get_info . 25
$converter->get_pending_footnotes 58
$converter->get_pending_formatted_inline_

content . 46
$converter->global_direction_element 55

$converter->html_attribute_class 39
$converter->html_convert_css_string_for_

list_mark . 72
$converter->html_get_css_elements_classes .69
$converter->html_image_file_location_
name . 44

$converter->in_align . 44
$converter->in_code . 41
$converter->in_math . 41
$converter->in_multi_expanded 44
$converter->in_non_breakable_space 41
$converter->in_preformatted 40
$converter->in_raw . 41
$converter->in_space_protected 41
$converter->in_string . 40
$converter->in_upper_case 41
$converter->in_verbatim . 41
$converter->is_format_expanded 25
$converter->label_command 52
$converter->line_error . 21
$converter->line_warn . 21
$converter->paragraph_number 44
$converter->pgdt . 48
$converter->preformatted_classes_stack 40
$converter->preformatted_number 44
$converter->register_file_information 47
$converter->register_footnote 58
$converter->register_opened_section_level .45
$converter->register_pending_formatted_

inline_content . 46
$converter->set_conf . 25
$converter->shared_conversion_state 47
$converter->special_direction_element 55
$converter->special_element_body_

formatting . 61
$converter->special_element_info 58
$converter->substitute_html_non_breaking_

space . 39
$converter->top_block_command 44
$converter->type_conversion 36
$converter->url_protect_file_text($input_

string) . 38
$converter->url_protect_url_text($input_

string) . 38

C
command_conversion . 34
command_open . 33

Appendix B: Functions Index 74

E
external_target_non_split_

name($converter, . 30
external_target_split_name($converter, . . . 30

F
format_begin_file . 67
format_button . 64
format_button_icon_img . 42
format_comment . 42
format_contents . 60
format_css_lines . 69
format_element_footer . 64
format_element_header . 64
format_end_file . 68
format_footnotes_segment . 59
format_footnotes_sequence 59
format_heading_text . 42
format_navigation_header . 63
format_navigation_panel . 63
format_node_redirection_page 70
format_program_string . 43
format_protect_text . 43
format_separate_anchor . 43
format_thing . 19
format_title_titlepage . 69
format_titlepage . 69
format_translate_string . 49

L
label_target_name . 29

N
node_file_name . 28

S
sectioning_command_target_name 30

special_element_body . 61
special_element_target_file_name 31
stage_handler . 32

T
texinfo_add_to_option_list 4
texinfo_add_valid_customization_option 5
texinfo_get_conf . 5
texinfo_register_accent_command_formatting .9
texinfo_register_command_formatting 34
texinfo_register_command_opening 33
texinfo_register_direction_string_info 15
texinfo_register_file_id_setting_function .28
texinfo_register_formatting_function 37
texinfo_register_formatting_special_

element_body . 61
texinfo_register_handler . 32
texinfo_register_init_loading_error 5
texinfo_register_init_loading_warning 5
texinfo_register_no_arg_command_formatting .8
texinfo_register_special_element_info 57
texinfo_register_style_command_formatting . 9
texinfo_register_type_format_info 10
texinfo_register_type_formatting 36
texinfo_register_type_opening 35
texinfo_remove_from_option_list 4
texinfo_set_format_from_init_file 4
texinfo_set_from_init_file 4
tree_unit_file_name . 29
type_conversion . 36
type_open . 36

75

Appendix C Variables Index

A
ACTIVE_ICONS . 16, 17
AFTER_BODY_OPEN . 67
AFTER_SHORT_TOC_LINES . 60
AFTER_TOC_LINES . 60

B
BEFORE_SHORT_TOC_LINES . 60
BEFORE_TOC_LINES . 60
BODYTEXT . 67
BUTTONS_REL, in file beginning 67

C
CHAPTER_BUTTONS . 17
CHAPTER_FOOTER_BUTTONS . 16
CONTENTS_OUTPUT_LOCATION . 59
CONTENTS_OUTPUT_LOCATION, Elements 13

D
DATE_IN_HEADER . 67
DOCTYPE . 67

E
ENCODING_NAME . 67
EXTENSION . 28
EXTRA_HEAD . 67

H
HTML_ROOT_ELEMENT_ATTRIBUTES 67

L
LINKS_BUTTONS . 17
LINKS_BUTTONS, in file beginning 67

M
MISC_BUTTONS . 17

N
NODE_FOOTER_BUTTONS . 16

P
PASSIVE_ICONS . 16, 17
PRE_BODY_CLOSE . 67
PREFIX . 28
PROGRAM_NAME_IN_ABOUT . 60
PROGRAM_NAME_IN_FOOTER . 67

S
SECTION_BUTTONS . 16
SECTION_FOOTER_BUTTONS . 16
SUBDIR . 28

T
texinfo_document Gettext domain 48
TOP_BUTTONS . 17
TOP_FILE . 28

U
USE_NODES . 13

76

Appendix D General Index

–
--init-file . 2

<
</body> tag, outputting . 68
<body> tag, attributes of . 67
<body> tag, outputting . 67
<head> block, adding to . 67

A
About element, customizing . 60
About page, output element unit 12
Accent command named entities 9
Accent commands, customizing HTML for 9
accesskey navigation . 18

B
Button specification, navigation panel 16

C
Calling functions at different stages 32
Commands without arguments, customizing

HTML for . 7
Contents, customizing elements 59
Contexts for expansion in init files 7
CSS customization . 10
Customization of about element 60
Customization of tables of contents elements . . . 59
Customization variables, adding 5
Customization variables, setting and getting 3
Customizing CSS . 10
Customizing HTML page footers 67
Customizing HTML page headers 64
Customizing output file names 28
Customizing output target names 29

D
Date, in header . 67
Direction information type . 14
Direction strings . 15
Direction strings, getting . 52
Directions . 13
Document description, in HTML output 67
Document structure . 22
Document units . 12

E
Element directions . 13
Elements, main unit of output documents 12
Encoding, in HTML output . 67
Error reporting,

conversion . 21
loading . 5

Expansion contexts, for init files 7

F
FirstInFile direction variant 14
Footer, customizing for HTML 67
Footnotes, output element unit 12
Formatting functions, for navigation panel 63
Functions, calling at different stages 32

H
Headers, customizing for HTML 64
HTML customization for accent commands 9
HTML customization for commands without

arguments . 7
HTML customization for simple commands 9

I
Icons, in navigation buttons . 17
Id names, customizing . 29
Init file basics . 3
Init file calling functions at different stages 32
Init file expansion contexts . 7
Init file namespace . 3
Initialization files, loading . 2
Insertion commands, customizing HTML for 7

L
Links information . 13
Loading init files . 2

M
Math expansion context . 7

N
Namespace, for init files . 3
Navigation panel button specification 16
Navigation panel formatting functions 63
Navigation panel, simple customization of 16
Normal document units . 12
Normal expansion context . 7

Appendix D: General Index 77

O

Output element unit directions 13

Output elements . 12

Output elements, defined . 12

Output file names, customizing 28

Overview element, customizing 59

Overview, output element unit 12

P

Perl namespaces, for init files . 3

Perl, language for init files . 3

Preformatted expansion context 7

R

rel navigation . 18

S
Search paths, for initialization files 2
Short table of contents element, customizing 59
Short table of contents, output element unit 12
Simple commands, customizing HTML for 9
Simple Customization, of navigation panel 16
Special Elements file names, customizing 31
Special Elements id names, customizing 31
Special Elements target names, customizing 31
String expansion context . 7
Style commands, customizing HTML for 9

T
Table of contents, output element unit 12
Target names, customizing . 29
texi2any-config.pm init files loaded 2
Texinfo tree element units . 12
Texinfo::Report . 21
Title page, customization . 69
Top element . 12
Translated direction strings . 15
Type, of direction information 14

U
User defined functions, registering 19

	1 Overview
	2 Loading Initialization Files and Search Paths
	3 Init File Basics
	Init File Namespace
	Managing Customization Variables
	Setting Main Program String Variables
	Modifying Main Program Array Variables
	Setting Converter Variables in Main Program
	Getting Main Program Variables Values
	Adding Customization Variables

	Init File Loading Error Reporting

	4 Simple formatting customization
	Init File Expansion Contexts: Normal, Preformatted, Code, String, Math
	Simple Customization for Commands Without Arguments
	Simple Customization for Simple Commands with Braces
	Simple Customization of Accent Commands
	Simple Customization of Containers
	Simple Customization of CSS Rules and Imports

	5 Simple headers customizations
	Output Element Units
	Directions
	Element Direction Information Type
	Direction Strings

	Direction Strings Customization
	Simple Navigation Panel Customization

	6 User Defined Functions
	User Defined Functions are Registered
	Converter Object and Conversion Functions
	Texinfo Tree Conversion Functions
	Error Reporting in User Defined Functions

	Texinfo Tree Elements in User Defined Functions
	Encoding and Decoding File Path Strings
	Encoding File Path Strings
	Decoding File Path Strings

	Setting the Context for Conversion
	Setting and Getting Conversion Customization Variables
	Conversion General Information

	7 Customizing Output-Related Names
	Customizing Output File Names
	Customizing Output Target Names
	Customizing External Node Output Names
	Customizing Special Elements Output Names

	8 Init File Calling at Different Stages
	9 User Defined Functions in Conversion
	Tree Element Conversion Functions
	Command Tree Element Opening Functions
	Command Tree Element Conversion Functions
	Type Tree Element Opening Functions
	Type Tree Element Conversion Functions

	Formatting Functions
	Specific formating Functions

	10 Mandatory Conversion Function Calls
	Protection of URLs
	Formatting HTML Element with Classes
	Closing Lone HTML Element
	Substituting Non Breaking Space
	Conversion in String Context
	Conversion in Preformatted Context
	Text Formatting Context

	11 Basic Formatting Customization
	12 Dynamic Conversion Information
	Dynamic Converter Formatting Information
	Opening and Closing Sectioning Commands Extent
	Setting Up Content for the Next Text Container
	Associating Information to an Output File
	Shared Conversion State

	13 Translations Output and Customization
	Internationalization of Strings Function
	Translated Strings Customization
	Translation Contexts

	14 Directions, Links, Labels and Files
	Getting Direction Strings
	Target Commands Links, Texts and Associated Commands
	Other Links, Headings and Associated Information for Special Elements
	Elements and Links for Directions
	Element Counters in Files

	15 Customizing Footnotes, Tables of Contents and About
	Special Elements Information Customization
	Customizing Footnotes
	Contents and Short Table of Contents Customization
	About Element Customization
	Special Element Body Formatting Functions

	16 Customizing HTML Footers, Headers and Navigation Panels
	Navigation Panel and Navigation Header Formatting
	Element Header and Footer Formatting

	17 Heading Commands and Tree Elements Formatting
	18 Beginning and Ending Files
	Customizing HTML File Beginning
	Customizing HTML File End

	19 Titlepage, CSS and Redirection Files
	HTML Title Page Customization
	Customizing the CSS lines
	Customizing Node Redirection Pages

	A Specific Functions for Specific Elements
	B Functions Index
	C Variables Index
	D General Index

