Texinfo modules documentation

Table of Contents

1 Texinfo::Commands.............................. 1
1.1 Texinfo::Commands NAME 1
1.2 Texinfo::Commands SYNOPSIS 1
1.3 Texinfo::Commands NOTES 1
1.4 Texinfo::Commands DESCRIPTION......... i, .. 1
1.5 @-COMMAND INFORMATIONo 1
1.6 @-COMMAND CLASSES ...\ 1
1.7 Texinfo::Commands SEE ALSO 5
1.8 Texinfo::Commands AUTHOR........... 5
1.9 Texinfo::Commands COPYRIGHT AND LICENSE 5

2 Texinfo::Common 6
2.1 Texinfo::Common NAME 6
2.2 Texinfo::Common SYNOPSIS i 6
2.3 Texinfo::Common NOTES. i 6
2.4 Texinfo::Common DESCRIPTION i a.. 6
2.5 MISC INFORMATION.o i 6
2.6 @-COMMAND INFORMATIONcoiiiiiiiaaann. .. 6
2.7 Texinfo::Common METHODS 7
2.8 Texinfo::Common SEE ALSOo i 11
2.9 Texinfo::Common AUTHOR. 11
2.10 Texinfo::Common COPYRIGHT AND LICENSE.............. 11

3 Texinfo::Parser......... 12
3.1 Texinfo::Parser NAME i 12
3.2 Texinfo::Parser SYNOPSIS ... 12
3.3 Texinfo::Parser NOTES 12
3.4 Texinfo::Parser DESCRIPTION i .. 12
3.5 Texinfo::Parser METHODS 13

3.5.1 Inmitialization i 13
3.5.2 Parsing Texinfo text ... 14
3.5.3 Getting information on the document...................... 14
3.6 TEXINFO TREE 17
3.6.1 Element keys...... ..o 17
3.6.2 Element types.......ooiiiiiii 18
3.6.2.1 Types for command elements 18
3.6.2.2 Types for text elements................. ..., 19
3.6.2.3 Tree container elements................cciiieion... 20
3.6.2.4 Types of container elements........................... 20
3.6.3 Information available in the info key...................... 24
3.6.4 Information available in the extra key..................... 24

3.6.4.1 Extra keys available for more than one @-command ... 24

3.6.4.2 Extra keys specific of certain @-commands or containers. 25

3.7 Texinfo::Parser SEE ALSO 29
3.8 Texinfo::Parser AUTHOR i 29
3.9 Texinfo::Parser COPYRIGHT AND LICENSE.................. 29

Texinfo::Structuring 30
4.1 Texinfo::Structuring NAME i 30
4.2 Texinfo::Structuring SYNOPSIS ... 30
4.3 Texinfo::Structuring NOTES oo, 31
4.4 Texinfo::Structuring DESCRIPTION 31
4.5 Texinfo::Structuring METHODS o it 31
4.6 Texinfo::Structuring SEE ALSOt 36
4.7 Texinfo::Structuring AUTHOR o it 36
4.8 Texinfo::Structuring COPYRIGHT AND LICENSE............. 37

Texinfo::Report 38
5.1 Texinfo::Report NAME. 38
5.2 Texinfo::Report SYNOPSIS 38
5.3 Texinfo::Report NOTES...... ... i 38
5.4 Texinfo::Report DESCRIPTION.......... ..., 38
5.5 Texinfo::Report METHODS i 38
5.6 Texinfo::Report AUTHOR....... ... i 40
5.7 Texinfo::Report COPYRIGHT AND LICENSE 40

Texinfo::Translations 41
6.1 Texinfo::Translations NAME 41
6.2 Texinfo::Translations SYNOPSIS 41
6.3 Texinfo::Translations NOTES......... ... i 41
6.4 Texinfo::Translations DESCRIPTION 41
6.5 Texinfo::Translations METHODS 41
6.6 Texinfo::Translations AUTHOR oo, .. 42
6.7 Texinfo::Translations COPYRIGHT AND LICENSE............ 42

Texinfo:: Transformations....................... 43
7.1 Texinfo::Transformations NAME...... 43
7.2 Texinfo::Transformations NOTES.........., 43
7.3 Texinfo:: Transformations DESCRIPTION....................... 43
7.4 Texinfo:: Transformations METHODS 43
7.5 Texinfo::Transformations SEE ALSO 44
7.6 Texinfo::Transformations AUTHOR 44
7.7 Texinfo:: Transformations COPYRIGHT AND LICENSE........ 44

ii

8 Texinfo::Convert::Texinfo...................... 46
8.1 Texinfo::Convert::Texinfo NAME ii... 46
8.2 Texinfo::Convert::Texinfo SYNOPSIS 46
8.3 Texinfo::Convert::Texinfo NOTES 46
8.4 Texinfo::Convert::Texinfo DESCRIPTION 46
8.5 Texinfo::Convert::Texinfo METHODS........................... 46
8.6 Texinfo::Convert::Texinfo AUTHOR 46
8.7 Texinfo::Convert::Texinfo COPYRIGHT AND LICENSE........ 46

9 Texinfo::Convert::Utils......................... 47
9.1 Texinfo::Convert::Utils NAME 47
9.2 Texinfo::Convert::Utils SYNOPSIS. 47
9.3 Texinfo::Convert::Utils NOTESo 47
9.4 Texinfo::Convert::Utils DESCRIPTION 47
9.5 Texinfo::Convert::Utils METHODS 47
9.6 Texinfo::Convert::Utils SEE ALSO.......... 49
9.7 Texinfo::Convert::Utils AUTHOR 49
9.8 Texinfo::Convert::Utils COPYRIGHT AND LICENSE 49

10 Texinfo::Convert::Unicode.................... 50
10.1 Texinfo::Convert::Unicode NAME 50
10.2 Texinfo::Convert::Unicode SYNOPSIS 50
10.3 Texinfo::Convert::Unicode NOTES............................. 50
10.4 Texinfo::Convert::Unicode DESCRIPTION 50
10.5 Texinfo::Convert::Unicode METHODS......................... 50
10.6 Texinfo::Convert::Unicode AUTHOR 51
10.7 Texinfo::Convert::Unicode COPYRIGHT AND LICENSE...... 51

11 Texinfo::Convert::NodeNameNormalization. 53

11.1
11.2
11.3
114
11.5
11.6
11.7

Texinfo::Convert::
Texinfo::Convert::
Texinfo::Convert::
Texinfo::Convert::
Texinfo::Convert::
Texinfo::Convert::
Texinfo::Convert::

LICENSE........

NodeNameNormalization NAME............. 53
NodeNameNormalization SYNOPSIS 53
NodeNameNormalization NOTES............ 53
NodeNameNormalization DESCRIPTION. ... 53
NodeNameNormalization METHODS 53
NodeNameNormalization AUTHOR.......... 54

NodeNameNormalization COPYRIGHT AND

iii

12 Texinfo::Convert::Text 55

12.1 Texinfo::Convert::Text NAME 55
12.2 Texinfo::Convert::Text SYNOPSIS........... 55
12.3 Texinfo::Convert::Text NOTES 55
12.4 Texinfo::Convert::Text DESCRIPTION 55
12.5 Texinfo::Convert::Text METHODS 55
12.6 Texinfo::Convert::Text AUTHOR 56
12.7 Texinfo::Convert::Text COPYRIGHT AND LICENSE 57
13 Texinfo::Convert::Converter.................. 58
13.1 Texinfo::Convert::Converter NAME 58
13.2 Texinfo::Convert::Converter SYNOPSIS 58
13.3 Texinfo::Convert::Converter NOTES........................... 58
13.4 Texinfo::Convert::Converter DESCRIPTION................... 58
13.5 Texinfo::Convert::Converter METHODS 59
13.5.1 Initialization 59
13.5.2 Getting and setting customization variables............... 60
13.5.3 Conversion to XML i 60
13.5.4 Helper methods i 61
13.6 Texinfo::Convert::Converter SEE ALSO 64
13.7 Texinfo::Convert::Converter AUTHOR......................... 64

13.8 Texinfo::Convert::Converter COPYRIGHT AND LICENSE.... 64

14 Texinfo::Convert::Info......................... 65
14.1 Texinfo::Convert::Info NAME i 65
14.2 Texinfo::Convert::Info SYNOPSIS o ... 65
14.3 Texinfo::Convert::Info NOTES........ 65
14.4 Texinfo::Convert::Info DESCRIPTION 65
14.5 Texinfo::Convert::Info METHODS 65
14.6 Texinfo::Convert::Info AUTHOR 66
14.7 Texinfo::Convert::Info COPYRIGHT AND LICENSE.......... 66

15 Texinfo::Convert::HTML 67
15.1 Texinfo::Convert::HTML NAME 67
15.2 Texinfo::Convert::HTML SYNOPSIS ..., 67
15.3 Texinfo::Convert:HTML NOTES. ... i, 67
15.4 Texinfo::Convert: HTML DESCRIPTION...................... 67
15.5 Texinfo::Convert: HTML METHODS 67
15.6 Texinfo::Convert::HTML AUTHOR.......... 68

15.7 Texinfo::Convert: HTML COPYRIGHT AND LICENSE....... 68

16 Texinfo::Convert::DocBook................... 69

16.1 Texinfo::Convert::DocBook NAME 69
16.2 Texinfo::Convert::DocBook SYNOPSIS 69
16.3 Texinfo::Convert::DocBook NOTES............................ 69
16.4 Texinfo::Convert::DocBook DESCRIPTION 69
16.5 Texinfo::Convert::DocBook METHODS........................ 69
16.6 Texinfo::Convert::DocBook AUTHOR 70

16.7 Texinfo::Convert::DocBook COPYRIGHT AND LICENSE..... 70

17 Texinfo::Convert::TexinfoMarkup............ 71
17.1 Texinfo::Convert::TexinfoMarkup NAME 71
17.2 Texinfo::Convert::TexinfoMarkup SYNOPSIS.................. 71
17.3 Texinfo::Convert::TexinfoMarkup NOTES 71
17.4 Texinfo::Convert:: TexinfoMarkup DESCRIPTION 71
17.5 Texinfo::Convert::TexinfoMarkup METHODS.................. 71

17.5.1 Markup formatting methods defined by subclasses 72
17.5.2 Formatting state information 72
17.6 Texinfo::Convert::TexinfoMarkup AUTHOR, 72
17.7 Texinfo::Convert::TexinfoMarkup SEE ALSO 72
17.8 Texinfo::Convert:: TexinfoMarkup COPYRIGHT AND
LICENSE .. 73

18 Texinfo::Convert::TexinfoXML............... 74
18.1 Texinfo::Convert::TexinfoXML NAME 74
18.2 Texinfo::Convert::TexinfoXML SYNOPSIS..................... 74
18.3 Texinfo::Convert::TexinfoXML NOTES 74
18.4 Texinfo::Convert::TexinfoXML DESCRIPTION................ 74
18.5 Texinfo::Convert:: TexinfoXML METHODS 74
18.6 Texinfo::Convert::TexinfoXML AUTHOR....................... 75

18.7 Texinfo::Convert:: TexinfoXML COPYRIGHT AND LICENSE . 75

19 Texinfo::Convert::Plaintext................... 76
19.1 Texinfo::Convert::Plaintext NAME 76
19.2 Texinfo::Convert::Plaintext SYNOPSIS 76
19.3 Texinfo::Convert::Plaintext NOTES 76
19.4 Texinfo::Convert::Plaintext DESCRIPTION 76
19.5 Texinfo::Convert::Plaintext METHODS........................ 76
19.6 Texinfo::Convert::Plaintext AUTHOR 77

19.7 Texinfo::Convert::Plaintext COPYRIGHT AND LICENSE..... 77

Appendix A Index................................ 78

1 Texinfo::Commands

1.1 Texinfo::Commands NAME

Texinfo::Commands - Classification of commands

1.2 Texinfo::Commands SYNOPSIS

use Texinfo::Commands;
if ($Texinfo::Commands: :accent_commands{$a_command}) {
print STDERR "$a_command is an accent command\n";

}
1.3 Texinfo::Commands NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

1.4 Texinfo::Commands DESCRIPTION

Texinfo::Commands holds a few hashes with information on @-commands and hashes clas-
sifying Texinfo @-commands.

1.5 @-COMMAND INFORMATION

Hashes are defined as our variables, and are therefore available outside of the module.

%index_names
Hash describing the default Texinfo indices. The format of this hash is described
in [Texinfo::Parser::indices_information], page 15.

1.6 @-COMMAND CLASSES

Hashes are defined as our variables, and are therefore available outside of the module.
The key of the hashes are @-command names without the @Q. The following hashes are
available:

%accent_commands
Accent @-commands taking an argument, like @' or @ringaccent, including
@dotless and @tieaccent.

%block_commands
Commands delimiting a block with a closing @end. The values are:

conditional
@if* commands;

def
Definition commands like @deffn;

float
@float;

Chapter 1: Texinfo::Commands 2

format_raw

raw output format commands such as @html or @info;

item_container

commands with @item containing any content, @itemize and
Q@enumerate;

item_line
commands like @table in which the @item argument is on its line;
menuy
menu @-commands, @menu, @detailmenu and @direntry;
math
Math block commands, like @displaymath.
multitable
Omultitable;
other
The remaining block commands.
preformatted
Commands whose content should not be filled, like @example or
@display.
quotation
Commands like @quotation.
raw
@-commands that have no expansion of @-commands in their bod-
ies (@macro, @verbatim and @ignore);
TEGLON

%blockitem_commands

Commands delimiting a region of the document out of the main
processing: @titlepage, @copying, @documentdescription.

Block commands containing @item with possible content before an @item, like
@itemize, @table or Gmultitable.

%brace_code_commands
Brace commands that have their argument in code style, like @code.

%brace_commands

The commands that take braces. Value is noarg for brace commands without
argument such as @AA, @TeX, or @equiv. Other values include accent, arguments,
context and other values.

%close_paragraph_commands
Commands that stop a paragraph. Root commands are not specified here, but
they also close paragraphs.

Chapter 1: Texinfo::Commands 3

%commands_args_number
Set to the number of arguments separated by commas that may appear in braces
or on the @-command line. That means 0 or unset for most block commands,
including @example which has an unlimited (variadic) number of arguments, 1
for @quotation, 2 for @float, 1 for most brace commands, 2 for @email and
@abbr, 5 for @image and @ref.

Values are not necessarily set for all the commands, as commands are also
classified by type of command, some type of commands implying a number of
arguments, and the number of arguments may not be set if it corresponds to
the default (0 for block commands, 1 for other commands that take arguments).

%contain_basic_inline_commands
Commands containing simple text only, much like paragraph text, but without
O@ref, @footnote, @titlefont, @anchor nor @verb.

%contain_plain_text_commands
Commands accepting only plain text with accent, symbol and glyph commands.

%def_commands
Definition commands.

%default_index_commands
Index entry commands corresponding to default indices. For example @cindex.

%explained _commands
@-commands whose second argument explain first argument and further @-
command call without first argument, as @abbr and @acronym.

%formattable_line_commands
Line commands which may be formatted as text, but that require constructing
some replacement text, for example @printindex, @need or @verbatiminclude.
Q@contents and @shortcontents are not in this hash, since they are in a cor-
responding situation only when the tables of contents are formatted where the
commands are.

%formatted_nobrace_commands
Commands not taking brace formatted as text or with text in the main docu-
ment body, corresponding to symbol commands such as @@ or @: and commands
such as @item. @Q-commands appearing only in headers are not in this hash,
but in in %in_heading_spec_commands.

%formatted_line_commands
Line commands which arguments may be formatted as text, such as @center,
@author, @item, @node, @chapter and other. Index commands may be format-
ted as text too, but they may be added with @def*index, therefore they are
not in that hash. Also, in general, they are not formatted as text where they
appear, only when an index is printed.

%heading_spec_commands
@-commands used to specify custom headings, like @everyheading.

Chapter 1: Texinfo::Commands 4

%in_heading_spec_commands
Special @-commands appearing in custom headings, such as @thischapter,
@thistitle or @].

%in_index_commands
@-commands only valid in index entries, such as @sortas or @subentry.

%inline_conditional_commands

%inline_format_commands
Inline conditional commands, like @inlineifclear, and inline format com-
mands like @inlineraw and @inlinefmt.

%letter_no_arg_commands
@-commands with braces but no argument corresponding to letters, like @AA{}
or @ss{} or @o{}.

%math_commands
@-commands which contains math, like @math or @displaymath.

%line_commands
Commands that do not take braces, take arguments on the command line and
are not block commands either, like @node, @chapter, @cindex, @deffnx, @end,
@footnotestyle, O@set, @settitle, @itemx, @definfoenclose, @comment and
many others.

Note that @item is in %line_commands for its role in @table and similar Q-
commands.

%mno_paragraph_commands
Commands that do not start a paragraph.

Y%mnobrace_commands
Command that do not take braces, do not have argument on their line and
are not block commands either. The value is symbol for single character non-
alphabetical @-commands such as @@, @ or @:. Other commands in that hash
include @indent, @tab or @thissection.

Note that @item is in J%nobrace_commands for its role in @multitable,
@itemize and @enumerate.

%mnon_formatted_block_commands
Block commands not formatted as text, such as @ignore or @macro.

Y%preamble_commands
@-commands that do not stop the preamble.

Y%preformatted_commands

Y%preformatted_code_commands
%preformatted_commands is for commands whose content should not be filled,
like @example or @display. If the command is meant for code, it is also in
%preformatted_code_commands, like @example.

%ref_commands
Cross reference @-command referencing nodes, like @xref or @link.

Chapter 1: Texinfo::Commands 5

%root_commands
Commands that are at the root of a Texinfo document, namely @node and
sectioning commands, except heading commands like @heading.

%sectioning_heading_commands
All the sectioning and heading commands.

%variadic_commands
Commands with unlimited arguments, like @example.

1.7 Texinfo::Commands SEE ALSO
Section 3.1 [Texinfo::Parser|, page 12.

1.8 Texinfo::Commands AUTHOR

Patrice Dumas, <pertusus@free.fr>

1.9 Texinfo::Commands COPYRIGHT AND LICENSE
Copyright 2010- Free Software Foundation, Inc. See the source file for all copyright years.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

2 Texinfo::Common

2.1 Texinfo::Common NAME

Texinfo::Common - Texinfo modules common data and miscellaneous methods

2.2 Texinfo::Common SYNOPSIS

use Texinfo::Common;

my @commands_to_collect = ('math');
my $collected_commands
= Texinfo::Common: :collect_commands_in_tree($document_root,
\@commands_to_collect);

2.3 Texinfo::Common NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

2.4 Texinfo::Common DESCRIPTION

Texinfo::Common holds hashes with miscellaneous information and some hashes with infor-
mation on Texinfo @-commands, as well as miscellaneous methods.

2.5 MISC INFORMATION

Hashes are defined as our variables, and are therefore available outside of the module.

TODO: undocumented %null_device_file %default_parser_customization_values
%document_settable_multiple_at_commands %document_settable_unique_at_commands
%default_converter_command_line_options %default_main_program_customization_options
%default_converter_customization @variable_string_settables %document_settable_at_commands
%def_map Y%command_structuring_level — %level_to_structuring_command %encod-
ing_name_conversion_map

Y%texinfo_output_formats
Cannonical output formats that have associated conditionals. In practice cor-
responds to format_raw %block_commands plus info and plaintext.

2.6 @-COMMAND INFORMATION

Hashes are defined as our variables, and are therefore available outside of the module.
The key of the hashes are @-command names without the @. The following hashes are
available:

%all_commands
All the @-commands.

Chapter 2: Texinfo::Common 7

%def_aliases

%def_no_var_arg_commands
%def_aliases associates an aliased command to the original command, for
example defun is associated to deffn.

Jdef _no_var_arg_commands associates a definition command name with
a true value if the argument on the definition command line can contain
non-metasyntactic variables. For instance, it is true for deftypevr but false
for defun, since @defun argument is supposed to contain metasyntactic
variables only.

Y%omnobrace_symbol_text
Values are ASCII representation of single character non-alphabetical commands
without brace such as * or :. The value may be an empty string.

%mnon_formatted_brace_commands
Brace commands that are not immediately replaced with text, such as anchor,
caption, errormsg and others.

%small_block_associated_command
Associate small command like smallexample to the regular command example.

2.7 Texinfo::Common METHODS

Two methods are exported in the default case for Texinfo modules messages translation in
the Uniforum gettext framework and __p.

) ——

The Texinfo tree and Texinfo tree elements used in argument of some functions are doc-
umented in Section 3.6 [Texinfo::Parser TEXINFO TREE], page 17. When customization
information is needed, an object that defines set_conf and/or get_conf is expected, for
example a converter inheriting from Texinfo::Convert::Converter, see Section 13.5.2
[Texinfo::Convert::Converter Getting and setting customization variables|, page 60.

$translated_string = __($msgid)

$translated_string = __p($msgctxt, $msgid)
Returns the $msgid string translated in the Texinfo messages text domain.
__p can be used instead of __ to pass a $msgctrt context string to provide
translators with information on the string context when the string is short or
if the translation could depend on the context. __ corresponds to the gettext
function and __p to the pgettext function.

It is not advised to use those functions in user-defined code. It is not practical
either, as the translatable strings marked by __ or __p need to be collected and
added to the Texinfo messages domain. This facility could only be used in user-
defined code with translatable strings already present in the domain anyway.
In fact, these functions are documented mainly because they are automatically
exported.

See libintl-perl, gettext C interface (https://www.gnu.org/software/
gettext/manual/html_node/gettext.html), Perl in GNU Gettext (https://
www.gnu.org/software/gettext/manual/html_node/Perl.html). For trans-
lation of strings in output, see Section 6.1 [Texinfo::Translations|, page 41.

https://www.gnu.org/software/gettext/manual/html_node/gettext.html
https://www.gnu.org/software/gettext/manual/html_node/gettext.html
https://www.gnu.org/software/gettext/manual/html_node/Perl.html
https://www.gnu.org/software/gettext/manual/html_node/Perl.html

Chapter 2: Texinfo::Common 8

collect_commands_in_tree($tree, $commands_list)
Returns a hash reference with keys @-commands names specified in the $com-
mands_list array reference and values arrays of tree elements corresponding to
those @-command found in $tree by traversing the tree.

collect_commands_list_in_tree($tree, $commands_list)
Return a list reference containing the tree elements corresponding to the Q-
commands names specified in the $commands_list found in $tree by traversing
the tree. The order of the @-commands should be kept.

$encoding_name = element_associated_processing_encoding($element)
Returns the encoding name that can be used for decoding derived from the
encoding that was set where $element appeared.

$result = element_is_inline($element, $check_current)
Return true if the element passed in argument is in running text context. If the
optional $check_current argument is set, check the element itself, in addition
to the parent context.

($encoded_file_name, $encoding) = encode_file_name($file_name, $input_encoding)
Encode the $file_name text string to a binary string $encoded_file_name based
on $input_encoding. Also returns the $encoding name actually used which may
have undergone some normalization. This function is mostly a wrapper around
Section “Encode::encode” in Encode which avoids calling the module if not
needed. Do nothing if $input_encoding is undef.

$text = enumerate_item_representation($specification, $number)
This function returns the number or letter correponding to item number $num-
ber for an @enumerate specification $specification, appearing on an @enumerate
line. For example

enumerate_item_representation('c', 3)

is e.

$command = find_parent_root_command($object, $tree_element)
Find the parent root command (sectioning command or node) of a tree element.
The $object argument is optional, its global_commands field is used to continue
through @insertcopying if in a @copying.

$entry_content_element = index_content_element($element, $prefer_reference_element)
Return a Texinfo tree element corresponding to the content of the index entry
associated to $element. If $prefer_reference_element is set, prefer an untrans-
lated element. If the element is an index command like @cindex or an @ftable
@item, the content element is the argument of the command. If the element is
a definition line, the index entry element is based on the name and class.

$result = is_content_empty($tree, $do_not_ignore_index_entries)
Return true if the $iree has content that could be formatted.
$do_not_ignore_index_entries is optional. If set, index entries are considered
to be formatted.

Chapter 2: Texinfo::Common 9

$file = locate_include_file($customization_information, file_path)
Locate $file_path. If $file_path is an absolute path or has . or .. in the path
directories it is checked that the path exists and is a file. Otherwise, the file
name in $file_path is located in include directories also used to find texinfo files
included in Texinfo documents. $file_path should be a binary string. undef
is returned if the file was not found, otherwise the file found is returned as a
binary string.

($index_entry, $index_info) = lookup_index_entry($index_entry_info,

$indices_information)
Returns an $index_entry hash based on the $index_entry_info and
$indices_information. Also returns the $index_info hash with information on
the index associated to the index entry. $index_entry_info should be an array
reference with an index name as first element and the index entry number in
that index (1-based) as second element. In general, the $index_entry_info is
an [extra index_entry|, page 25, associated to an element.

The $index_entry hash is described in [Texinfo::Parser index_entries],
page 16. The $index_info hash is described in L[Texinfo: :Parser: :indices_
information], page 15.

move_index_entries_after_items_in_tree($tree)
In @enumerate and @itemize from the tree, move index entries appearing just
before @item after the @item. Comment lines between index entries are moved
too.

relate_index_entries_to_table_items_in_tree($tree)
In tables, relate index entries preceding and following an entry with said item.
Reference one of them in the entry’s entry_associated_element.

$normalized_name = normalize_top_node_name($node_string)
Normalize the node name string given in argument, by normalizing Top node
case.

protect_colon_in_tree($tree)

protect_node_after_label_in_tree($tree)
Protect colon with protect_colon_in_tree and characters that are special in
node names after a label in menu entries (tab dot and comma) with protect_
node_after_label_in_tree. The protection is achieved by putting protected
characters in @asis{}.

protect_comma_in_tree($tree)
Protect comma characters, replacing , with @comma{} in tree.

$contents_result = protect_first_parenthesis($contents)
Return a contents array reference with first parenthesis in the contents array
reference protected. If $contents is undef a fatal error with a backtrace will be
emitted.

$level = section_level($section)
Return numbered level of the tree sectioning element $section, as modified by
raise/lowersections.

Chapter 2: Texinfo::Common 10

$element = set_global_document_command($customization_information,

$global_commands_information, $cmdname, $command _location)
Set the Texinfo customization variable corresponding to $cmdname in
$customization_information. The $global_commands_information should
contain information about global commands in a Texinfo document, typically
obtained from a parser [$parser->global_commands_information()], page 15.
$command_location specifies where in the document the value should be taken
from, for commands that may appear more than once. The possibilities are:

last
Set to the last value for the command.

preamble
Set sequentially to the values in the Texinfo preamble.

preamble_or_first
Set to the first value of the command if the first command is not
in the Texinfo preamble, else set as with preamble, sequentially to
the values in the Texinfo preamble.

The $element returned is the last element that was used to set the customization
value, or undef if no customization value was found.

Notice that the only effect of this function is to set a customization variable
value, no @-command side effects are run, no associated customization variables
are set.

$status = set_informative_command_value($customization_information, $element)
Set the Texinfo customization option corresponding to the tree element
$element. The command associated to the tree element should be a command
that sets some information, such as @documentlanguage, Qcontents or
@footnotestyle for example. Return true if the command argument was
found and the customization variable was set.

set_output_encodings($customization_information, $parser_information)
If not already set, set OUTPUT_ENCODING_NAME based on input file encoding.
Also set OUTPUT_PERL_ENCODING accordingly which is used to output in the
correct encoding. In general, OUTPUT_PERL_ENCODING should not be set directly
by user-defined code such that it corresponds to OUTPUT_ENCODING_NAME.

$split_contents = split_custom_heading_command_contents($contents)
Split the $contents array reference at @| in at max three parts. Return
an array reference containing the split parts. The $contents array
reference is supposed to be $element->{'args'}->[0]->{'contents'}
of %Texinfo::Commands::heading_spec_commands commands such as
Q@everyheading.

trim_spaces_comment_from_content($contents)
Remove empty spaces after commands or braces at begin and spaces and com-
ments at end from a content array, modifying it.

$status = valid_customization_option($name)
Return true if the $name is a known customization option.

Chapter 2: Texinfo::Common 11

$status = valid_tree_transformation($name)
Return true if the $name is a known tree transformation name that may be
passed with TREE_TRANSFORMATIONS to modify a texinfo tree.

2.8 Texinfo::Common SEE ALSO

Section 3.1 [Texinfo::Parser|, page 12, Section 13.1 [Texinfo::Convert::Converter|, page 58,
and Section 5.1 [Texinfo::Report], page 38.

2.9 Texinfo::Common AUTHOR

Patrice Dumas, <pertususQ@free.fr>

2.10 Texinfo::Common COPYRIGHT AND LICENSE
Copyright 2010- Free Software Foundation, Inc. See the source file for all copyright years.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

12

3 Texinfo::Parser

3.1 Texinfo::Parser NAME

Texinfo::Parser - Parse Texinfo code into a Perl tree

3.2 Texinfo::Parser SYNOPSIS

use Texinfo::Parser;
my $parser = Texinfo::Parser::parser();
my $tree = $parser->parse_texi_file("somefile.texi");
a Texinfo::Report object in which the errors and warnings
encountered while parsing are registered.
my $registrar = $parser->registered_errors();
my ($errors, $errors_count) = $registrar->errors();
foreach my $error_message (@$errors) {
warn $error_message->{'error_line'};

}

my $indices_information = $parser->indices_information();
my $float_types_arrays = $parser->floats_information();
my $internal_references_array
= $parser->internal_references_information();
$labels_information is an hash reference on normalized node/float/anchor names.
my ($labels_information, $targets_list, $nodes_list) = $parser->labels_information();
A hash reference, keys are @-command names, value is an
array reference holding all the corresponding @-commands.
my $global_commands_information = $parser->global_commands_information();
a hash reference on document information (encodings,
input file name, dircategory and direntry list, for example).
my $global_information = $parser->global_information() ;

3.3 Texinfo::Parser NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

3.4 Texinfo::Parser DESCRIPTION

Texinfo: :Parser will parse Texinfo text into a Perl tree. In one pass it expands user-
defined @-commands, conditionals (@ifset, @ifinfo...) and @value and constructs the
tree. Some extra information is gathered while doing the tree: for example, the @quotation
associated to an @author command, the number of columns in a multitable, or the node
associated with a section.

Chapter 3: Texinfo::Parser 13

3.5 Texinfo::Parser METHODS

No method is exported in the default case. The module allows both an object-oriented
syntax, or traditional function, with the parser as an opaque data structure given as an
argument to every function.

3.5.1 Initialization

The following method is used to construct a new Texinfo: :Parser object:

$parser = Texinfo::Parser::parser($options);
This method creates a new parser. The options may be provided as a hash
reference. Most of those options correspond to Texinfo customization options
described in the Texinfo manual.

CPP_LINE_DIRECTIVES
Handle cpp like synchronization lines if set. Set in the default case.

EXPANDED_FORMATS
An array reference of the output formats for which @if FORMAT con-
ditional blocks should be expanded. Default is empty.

FORMAT_MENU
Possible values are nomenu, menu and sectiontoc. Only report
menu-related errors for menu.

INCLUDE_DIRECTORIES
An array reference of directories in which @include files should be
searched for. Default contains the working directory, ..

IGNORE_SPACE_AFTER_BRACED_COMMAND_NAME
If set, spaces after an @-command name that take braces are ig-
nored. Default on.

MAX_MACRO_CALL_NESTING
Maximal number of nested user-defined macro calls. Default is

100000.

documentlanguage
A string corresponding to a document language set
by @documentlanguage. It overrides the document

@documentlanguage information, if present.

registrar
Section 5.1 [Texinfo::Report], page 38, object reused by the parser
to register errors.

values

A hash reference. Keys are names, values are the corresponding
values. Same as values set by @set.

Chapter 3: Texinfo::Parser 14

3.5.2 Parsing Texinfo text

Different methods may be called to parse some Texinfo code: parse_texi_line for a line,
parse_texi_piece for a fragment of Texinfo, parse_texi_text for a string corresponding
to a full document and parse_texi_file for a file.

For all those functions, if the $parser argument is undef, a new parser object is generated
to parse the line. Otherwise the parser given as an argument is used to parse into a tree.

When parse_texi_line is used, the resulting tree is rooted at a root_line type con-
tainer. Otherwise, the resulting tree should be rooted at a document_root type container.

$tree = parse_texi_line($parser, $text, $first_line_number)
This function is used to parse a short fragment of Texinfo code.

$text is the string containing the texinfo line. $first_line_number is the line
number of the line, if undef, it will be set to 1.

$tree = parse_texi_piece($parser, $text, $first_line_number)
This function is used to parse Texinfo fragments.

$text is the string containing the texinfo text. $first_line_number is the line
number of the first text line, if undef, it will be set to 1.

$tree = parse_texi_text($parser, $text, $first_line_number)
This function is used to parse a text as a whole document.

$text is the string containing the texinfo text. $first_line_number is the line
number of the first text line, if undef, it will be set to 1.

$tree = parse_texi_file($parser, $file_name)
The file with name $file_name is considered to be a Texinfo file and is parsed
into a tree. $file_name should be a binary string.

undef is returned if the file couldn’t be read.

The errors collected during the tree parsing are registered in a Section 5.1
[Texinfo::Report], page 38, object. This object is available with registered_errors. The
errors registered in the Texinfo: :Report object are available through the errors method.
This method is described in [Texinfo::Report::errors|, page 39.

$registrar = registered_errors($parser)
$registrar is a Section 5.1 [Texinfo::Report], page 38, object in which the errors
and warnings encountered while parsing are registered. If a registrar is passed
to the parser initialization options, it is reused, otherwise a new one is created.

3.5.3 Getting information on the document
After parsing some information about the Texinfo code that was processed is available from
the parser.

Some global information is available through global_information:

$info = global_information($parser)
The $info returned is a hash reference. The possible keys are

dircategory_direntry
An array of successive @dircategory and @direntry as they ap-
pear in the document.

Chapter 3: Texinfo::Parser 15

input_encoding_name

input_perl_encoding
input_encoding_name string is the encoding name used for the
Texinfo code. input_perl_encoding string is a corresponding Perl
encoding name.

input_file_name

input_directory
The name of the main Texinfo input file and the associated di-
rectory. Binary strings. In texi2any, they should come from the
command line (and can be decoded with the encoding in the cus-
tomization variable COMMAND _LINE_ENCODING).

Some command lists are available, such that it is possible to go through the corresponding
tree elements without walking the tree. They are available through global_commands_
information:

$commands = global_commands_information($parser)
$commands is an hash reference. The keys are @-command names. The associ-
ated values are array references containing all the corresponding tree elements.

All the @-commands that have an associated label (so can be the target of cross refer-
ences) — @node, @anchor and @float with label — have a normalized name associated, con-
structed as described in the HT'ML Xref node in the Texinfo documentation. Those normal-
ized labels and the association with @-commands is available through labels_information:

$labels_information, $targets_list, $nodes_list = labels_information($parser)
$labels_information is a hash reference whose keys are normalized labels, and
the associated value is the corresponding @-command. $targets_list is a list of
labels @-command. Using $labels_information is preferred. $nodes_list is a list
of all the nodes appearing in the document.

Information on @float is also available, grouped by type of floats, each type corre-
sponding to potential @listoffloats. This information is available through the method
floats_information.

$float_types = floats_information($parser)
$float_types is a hash reference whose keys are normalized float types (the first
float argument, or the @listoffloats argument). The normalization is the
same as for the first step of node names normalization. The value is the list of
float tree elements appearing in the texinfo document.

Internal references, that is, @-commands that refer to node, anchors or floats within the
document are also available:

$internal_references_array = internal_references_information($parser)
The function returns a list of cross-reference commands referring to the same
document.

Information about defined indices, merged indices and index entries is also available
through the indices_information method.

$indices_information = $parser->indices_information()
$indices_information is a hash reference. The keys are

Chapter 3: Texinfo::Parser 16

in_code

name

prefix

merged_in

1 if the index entries should be formatted as code, 0 in the opposite
case.

The index name.

An array reference of prefix associated to the index.

In case the index is merged to another index, this key holds the
name of the index the index is merged into. It takes into account
indirectly merged indices.

contained_indices

An hash reference holding names of indices that are merged into the
index, including itself. It also contains indirectly merged indices.
This key is removed if the index is itself later merged to another
index.

index_entries

An array reference containing index entry structures for index en-
tries associated with the index. The index entry could be associated
to @-commands like @cindex, or @item in @vtable, or definition
commands entries like @deffn.

The keys of the index entry structures are

index_name
The index name associated to the command. Not mod-
ified if the corresponding index is merged in another
index (with @synindex, for example).

entry_element
The element in the parsed tree associated with the Q-
command holding the index entry.

entry_number
The number of the index entry.

The following shows the references corresponding to the default indexes ¢p and
fn, the fn index having its entries formatted as code and the indices correspond-
ing to the following texinfo

Q@defindex some
@defcodeindex code

$index_names = {'cp' => {'name' => 'cp', 'in_code'

l
A\
= O
E]

-

Il
v

'fn' => {'name' => 'fn', 'in_code'
'some' => {'in_code' => 0},
'code' => {'in_code' => 1}};

-

If name is not set, it is set to the index name.

Chapter 3: Texinfo::Parser 17

3.6 TEXINFO TREE

A Texinfo tree element (called element because node is overloaded in the Texinfo world) is an
hash reference. There are three main categories of tree element. Tree elements associated
with an @-command have a cmdname key holding the @-command name. Tree elements
corresponding to text fragments have a text key holding the corresponding text. Finally,
the last category is other elements, which in most cases have a type key holding their
name. Text fragments and @-command elements may also have an associated type when
such information is needed.

The children of an @-command or of other container element are in the array referred
to with the args key or with the contents key. The args key is for arguments of Q-
commands, either in braces or on the rest of the line after the command, depending on
the type of command. The contents key array holds the contents of the texinfo code
appearing within a block @-command, within a container, or within a @node or sectioning
@-command.

Another important key for the elements is the extra key which is associated to a hash
reference and holds all kinds of information that is gathered during the parsing and may
help with the conversion.

You can see examples of the tree structure by running makeinfo like this:

makeinfo -c DUMP_TREE=1 -c TEXINFO_OUTPUT_FORMAT=parse document.texi
For a simpler, more regular representation of the tree structure, you can do:

makeinfo -c¢ TEXINFO_OUTPUT_FORMAT=debugtree document.texi

3.6.1 Element keys

cmdname
The command name of @-command elements.

text
The text fragment of text elements.

type
The type of element considered, in general a container. Frequent types en-
countered are paragraph for a paragraph container, brace_command-arg for the
container holding the brace @-commands contents, line_arg and block_line_arg
contain the arguments appearing on the line of @-commands. Text fragments
may have a type to give an information of the kind of text fragment, for example
spaces_before_paragraph is associated to spaces appearing before a paragraph
beginning. Most @-commands elements do not have a type associated.

args
Arguments in braces or on @-command line. An array reference.

contents
The Texinfo appearing in the element. For block commands, other containers,
@node and sectioning commands. An array reference.

parent

The parent element.

Chapter 3: Texinfo::Parser 18

source_info

info

extra

An hash reference corresponding to information on the location of the element
in the Texinfo input manual. It should mainly be available for @-command
elements, and only for @-commands that are considered to be complex enough
that the location in the document is needed, for example to prepare an error
message.

The keys of the line number hash references are

line_nr

The line number of the @-command.
file_name

The file name where @-command appeared.
macro

The user macro name the @-command is expanded from.

A hash reference holding any other information that cannot be obtained oth-
erwise from the tree. See Section 3.6.3 [Information available in the info key],
page 24.

A hash reference holding information that could also be obtained from the tree,
but is directly associated to the element to simplify downstream code. See
Section 3.6.4 [Information available in the extra key], page 24.

3.6.2 Element types

3.6.2.1 Types for command elements

Some types can be associated with @-commands (in addition to cmdname), although usually
there will be no type at all. The following are the possible values of type for tree elements
for @-commands.

command_as_argument

This is the type of a command given in argument of @itemize, @table, @vtable
or @ftable. For example in

Q@itemize @bullet
@item item
Q@end itemize

the element corresponding with bullet has the following keys:

'cmdname' => 'bullet'
'type' => 'command_as_argument'

The parent @-command has an entry in extra for the command_as_argument
element:

'cmdname' => 'itemize'

'extra' => {'command_as_argument' => $command_element_as_argument}

Chapter 3: Texinfo::Parser 19

def_line

This type may be associated with a definition command with a x form, like
@defunx, @defvrx. For the form without x, the associated def_line is the first
contents element. It is described in more details below.

definfoenclose_command
This type is set for an @-command that is redefined by @definfoenclose. The
beginning is in {'extra'}->{'begin'} and the end in {'extra'}->{'end'}.
index_entry_command
This is the type of index entry command like @cindex, and, more importantly
user-defined index entry commands. So for example if there is:
Q@defindex foo

@fooindex index entry

the @fooindex @-command element will have the indez_entry_command type.

3.6.2.2 Types for text elements
The text elements may have the following types (or may have no type at all):

after_menu_description_line

space_at_end_menu_node
Space after a node in the menu entry, when there is no description, and space
appearing after the description line.

empty_line
An empty line (possibly containing whitespace characters only).

ignorable_spaces_after_command
spaces appearing after an @-command without braces that does not take takes
argument on the line, but which is followed by ignorable spaces, such as @item
in @itemize or @multitable, or @noindent.

spaces_after_close_brace
Spaces appearing after a closing brace, for some rare commands for which this
space should be ignorable (like @caption or @sortas).

spaces_before_paragraph
Space appearing before a paragraph beginning.

raw

Text in an environment where it should be kept as is (in @verbatim, @verb,
@macro body).

rawline_arg
Used for the arguments to some special line commands whose arguments
aren’t subject to the usual macro expansion. For example @set, @clickstyle,
@unmacro, @comment. The argument is associated to the text key.

spaces_at_end
Space within an index @-command before an @-command interrupting the index
command.

Chapter 3: Texinfo::Parser 20

text_after_end
Text appearing after @bye.

text_before_beginning
Text appearing before real content, including the \input texinfo.tex.

untranslated
English text added by the parser that may need to be translated during con-
version. Happens for @def* @-commands aliases that leads to prepending text
such as ’Function’.

3.6.2.3 Tree container elements

Some types of element are containers of portions of the tree, either for the whole tree, or
for contents appearing before @node and sectioning commands.

before_node_section
Content before nodes and sectioning commands at the beginning of document_
root.

document_root
root_line

root_line is the type of the root tree when parsing Texinfo line fragments
using parse_texi_line. document_root is the document root otherwise.

document_root first content should be before_node_section, then nodes and
sections @-commands elements, @bye element and postamble_after_end.

postamble_after_end
This container holds everything appearing after @bye.

preamble_before_beginning
This container holds everything appearing before the first content, including
the \input texinfo.tex line and following blank lines.

preamble_before_setfilename
This container holds everything that appears before @setfilename.

preamble_before_content
This container holds everything appearing before the first formatted content,
corresponding to the preamble in the Texinfo documentation.

3.6.2.4 Types of container elements

The other types of element are containers with other elements appearing in their contents.
The paragraph container holds normal text from the Texinfo manual outside of any @-
commands, and within @-commands with blocks of text (@footnote, @itemize Q@item,
@quotation for example). The preformatted container holds the content appearing in @-
commands like @example and the rawpreformatted container holds the content appearing
in format commands such as @html. The other containers are more specific.

The types of container element are the following:
balanced_braces

Special type containing balanced braces content (braces included) in the context
where they are valid, and where balanced braces need to be collected to know

Chapter 3: Texinfo::Parser 21

when a top-level brace command is closed. In @math, in raw output format
brace commands and within brace @-commands in raw output format block
commands.

before_item
A container for content before the first @item of block @-commands with items
(Gtable, Gmultitable, @enumerate...).

brace_command_arg
brace_command_context
line_arg

block_line_arg

following_arg
Those containers occur within the args array of @-commands taking an ar-
gument. brace_command_arg is used for the arguments to commands taking
arguments surrounded by braces (and in some cases separated by commas).
brace_command_context is used for @-commands with braces that start a new
context (6footnote, @caption, Gmath).

line_arg is used for commands that take the texinfo code on the rest of the
line as their argument, such as @settitle, @node, @section. block_line_arg is
similar but is used for commands that start a new block (which is to be ended
with @end).

following_arg is used for the accent @-commands argument that did not use
braces but instead followed the @-command, possibly after a space, as
@™n
Oringaccent A
For example
@code{in code}
leads to
{'cmdname' => 'code',
'args' => [{'type' => 'brace_command_arg',
'contents' => [{'text' => 'in code'}]}]}
As an exception, @value flag argument is directly in the args array reference,
not in a brace_command_arg container. Note that only @value commands that
are not expanded because there is no corresponding value set are present as
elements in the tree.

bracketed_arg
Bracketed argument. On definition command and on @multitable line.

bracketed_linemacro_arg
Argument of a user defined linemacro call in bracket. It holds directly the
argument text (which does not contain the braces) and does not contain other
elements. It should not appear directly in the tree as the user defined linemacro
call is replaced by the linemacro body.

def_aggregate
Contains several elements that together are a single unit on a @def* line.

Chapter 3: Texinfo::Parser 22

def_line
def_item

inter_def_item
The def_line type is either associated with a container within a definition com-
mand, or is the type of a definition command with a x form, like @deffnx,
or @defline. It holds the definition line arguments. The container with type
def_item holds the definition text content. Content appearing before a defini-
tion command with a x form is in an inter_def_item container.

macro_call

rmacro_call

linemacro_call
Container holding the arguments of a user defined macro, linemacro or rmacro.
It should not appear directly in the tree as the user defined call is expanded.
The name of the macro, rmacro or linemacro is the the info command_name
value.

macro_name
macro-arg

Taken from @macro definition and put in the args key array of the macro,
macro-name is the type of the text fragment corresponding to the macro name,
macro_arg is the type of the text fragments corresponding to macro formal
arguments.

menu_cominent
The menu_comment container holds what is between menu entries in menus.
For example, in:

Omenu
Menu title

* entry::

Between entries
* other::
@end menu

Both
Menu title
and
Between entries

will be in a menu_comment.

Chapter 3: Texinfo::Parser 23

menu_entry
menu_entry_leading_text
menu_entry_name
menu_entry_separator
menu_entry_node
menu_entry_description
A menu_entry holds a full menu entry, like
* node:: description.

The different elements of the menu entry are in the menu_entry contents array
reference.

menu_entry_leading_text holds the star and following spaces. menu_entry_name
is the menu entry name (if present), menu_entry_node corresponds to the node
in the menu entry, menu_entry_separator holds the text after the node and
before the description, in most cases :: . Lastly, menu_entry_description is for
the description.

multitable_head
multitable_body
row

In Gmultitable, a multitable_head container contains all the rows with
@headitem, while multitable_body contains the rows associated with @item. A
row container contains the @item and @tab forming a row.

paragraph
A paragraph. The contents of a paragraph (like other container elements for
Texinfo content) are elements representing the contents of the paragraph in

the order they occur, such as text elements without a cmdname or type, or
@-command elements for commands appearing in the paragraph.

preformatted
Texinfo code within a format that is not filled. Happens within some block
commands like @example, but also in menu (in menu descriptions, menu com-
ments...).

rawpreformatted
Texinfo code within raw output format block commands such as @tex or @html.

table_entry
table_term
table_definition
inter_item

Those containers appear in @table, @ftable and @vtable. A table_entry con-
tainer contains an entire row of the table. It contains a table_term container,
which holds all the @item and @itemx lines. This is followed by a table_definition
container, which holds the content that is to go into the second column of the
table.

If there is any content before an @itemx (normally only comments, empty lines
or maybe index entries are allowed), it will be in a container with type inter_item
at the same level of @item and @itemx, in a table_term.

Chapter 3: Texinfo::Parser 24

3.6.3 Information available in the info key

arg_line

The string correspond to the line after the @-command for @-commands that
have special arguments on their line, and for @macro line.

command_name
The name of the user defined macro, rmacro or linemacro called associated with
the element holding the arguments of the user defined command call.

delimiter

@verb delimiter is in delimiter.

spaces_after_argument
A reference to an element containing the spaces after @-command arguments
before a comma, a closing brace or at end of line, for some @-commands and
bracketed content type with opening brace, and line commands and block com-
mand lines taking Texinfo as argument and comma delimited arguments. De-
pending on the @-command, the spaces_after_argument is associated with the
@-command element, or with each argument element.

spaces_after_cmd_before_arg
For accent commands with spaces following the @-command, like:

Oringaccent A

Q" u
there is a spaces_after_cmd_before_arg key linking to an element containing the
spaces appearing after the command in text.

Space between a brace @-command name and its opening brace also ends up
in spaces_after_cmd_before_arg. It is not recommended to leave space between
an @-command name and its opening brace.

spaces_before_argument

A reference to an element containing the spaces following the opening brace of
some @-commands with braces and bracketed content type, spaces following @-
commands for line commands and block command taking Texinfo as argument,
and spaces following comma delimited arguments. For context brace commands,
line commands and block commands, spaces_before_argument is associated with
the @-command element, for other brace commands and for spaces after comma,
it is associated with each argument element.

3.6.4 Information available in the extra key

3.6.4.1 Extra keys available for more than one @-command

element_node
The node element in the parsed tree containing the element. Set for
@-commands elements that have an associated index entry and for
OGnodedescription.

Chapter 3: Texinfo::Parser 25

element_region

index_entry

The region command (@copying, @titlepage) containing the element, if it is in
such an environement. Set for @-commands elements that have an associated
index entry and for @anchor.

The index entry information is associated to @-commands that have an associ-
ated index entry. The associated information should not be directly accessed,
instead [Texinfo::Common: :lookup_index_entry|, page 9, should be called
on the extra inder_entry value. The $indices_information is the information
on a Texinfo manual indices obtained from [Texinfo::Parser::indices_
information|, page 15. The index entry information hash returned by
Texinfo::Common: :lookup_index_entry is described in [index_entries],
page 16.

Currently, the index_entry value is an array reference with an index name as
first element and the index entry number in that index (1-based) as second
element.

index_ignore_chars

misc_args

A string containing the characters flagged as ignored in key sorting in the
document by setting flags such as tziindexbackslashignore. Set, if not empty,
for @-commands elements that have an associated index entry.

An array holding strings, the arguments of @-commands taking simple textual
arguments as arguments, like @everyheadingmarks, @frenchspacing, @alias,
@synindex, @columnfractions.

missing_argument

text_arg

Set for some @-commands with line arguments and a missing argument.

The string correspond to the line after the @-command for @-commands that
have an argument interpreted as simple text, like @setfilename, @end or
@documentencoding.

3.6.4.2 Extra keys specific of certain @-commands or containers

@abbr

Q@acronym

Q@anchor

@float

The first argument normalized is in normalized.

@-commands that are targets for cross-references have a mormalized key for
the normalized label, built as specified in the Texinfo documentation in the
HTML Xref node. There is also a node_content key for an array holding the
corresponding content.

Chapter 3: Texinfo::Parser 26

Q@author
If in a @titlepage, the titlepage is in titlepage, if in @quotation or
@smallquotation, the corresponding tree element is in quotation.
The author tree element is in the authors array of the @titlepage or the
Q@quotation or @smallquotation it is associated with.

Qclick

In clickstyle there is the current clickstyle command.

definition command
def_command holds the command name, without x if it is an x form of a defi-
nition command. original_def_cmdname is the original def command.

If it is an x form, it has not_after_command set if not appearing after the
definition command without x.

def_line

For each element in a def_line, the key def_role holds a string describing the
meaning of the element. It is one of category, name, class, type, arg, typearg,
spaces or delimiter, depending on the definition.

The def_index_element is a Texinfo tree element corresponding to the index
entry associated to the definition line, based on the name and class. If needed
this element is based on translated strings. In that case, if @documentlanguage
is defined where the def_line is located, documentlanguage holds the docu-
mentlanguage value. def_index_ref_element is similar, but not translated, and
only set if there could have been a translation.

The omit_def-name_space key value is set and true if the Texinfo variable
txidefnamenospace was set for the def _line, signaling that the space between
function definition name and arguments should be omitted.

@definfoenclose defined commands
begin holds the string beginning the @definfoenclose, end holds the string
ending the @definfoenclose.

@documentencoding
The argument, normalized is in input_encoding_name.

Q@enumerate
The enumerate_specification extra key contains the enumerate argument.

@float

@listoffloats
If @float has a first argument, and for @listoffloats argument there is a
float_type key with the normalized float type.

caption and shortcaption hold the corresponding tree elements associated to a
@float. The @caption or @shortcaption have the float tree element stored in

float.

Chapter 3: Texinfo::Parser 27

index entry @-command

O@subentry
If an index entry @-command, such as @cindex, or a @subentry contains a
@sortas command, sortas holds the @sortas command content formatted as
plain text.
subentry links to the next level @subentry element.
Index entry @-command (but not @subentry) can also have seentry and seealso
keys that link to the corresponding @-commands elements.

@inlinefmt

@inlineraw

@inlinefmtifelse

@inlineifclear

@inlineifset

The first argument is in format. If an argument has been determined as being
expanded by the Parser, the index of this argument is in expand_inder. Index
numbering begins at 0, but the first argument is always the format or flag name,
so, if set, it should be 1 or 2 for @inlinefmtifelse, and 1 for other commands.

@item in @enumerate or @itemize
The item_number extra key holds the number of this item.

@item and @tab in Gmultitable
The cell_number index key holds the index of the column of the cell.

Q@itemize

Q@table

@vtable

@ftable
The command_as_argument extra key points to the @-command on as argu-
ment on the @-command line.
If the command in argument for @table, @vtable or @ftable is @kbd and the
context and @kbdinputstyle is such that @kbd should be formatted as code,
the command_as_argument_kbd_code extra key is set to 1.

Q@kbd
code is set depending on the context and @kbdinputstyle.

Gmacro

invalid_syntax is set if there was an error on the @macro line. info key hash
arg_line holds the line after @macro.

menu_entry_node
Extra keys with information about the node entry label same as those ap-
pearing in the @node line_arg explicit directions arguments extra hash labels
information.

Chapter 3: Texinfo::Parser 28

O@multitable

@node

paragraph

OGpart

Qref
Oxref
Opxref

Q@inforef

row

The key maz_columns holds the maximal number of columns. If there is a
@columnfractions as argument, then the columnfractions key is associated
with the element for the @Qcolumnfractions command.

Explicit directions labels information is in the line_arg arguments extra node
direction @node arguments. They consist in a hash with the node_content key
for an array holding the corresponding content, a manual_content key if there is
an associated external manual name, and a normalized key for the normalized
label, built as specified in the HTML Xref Texinfo documentation node.

An associated_section key holds the tree element of the sectioning command
that follows the node. An node_preceding_part key holds the tree element of
the @part that precedes the node, if there is no sectioning command between the
@part and the node. A node_description key holds the first @nodedescription
associated to the node.

A node containing a menu have a menus key which refers to an array of refer-
ences to menu elements occuring in the node.

The first node containing a @printindex @-command has the isinder key set.

The indent or noindent key value is set if the corresponding @-commands are
associated with that paragraph.

The next sectioning command tree element is in part_associated_section. The
following node tree element is in part_following_node if there is no sectioning
command between the @part and the node.

The node argument brace_command_arg holds information on the label, like the
one appearing in the @node line_arg explicit directions arguments extra hash
labels information.

The row_number index key holds the index of the row in the @multitable.

sectioning command

The node preceding the command is in associated_node. The part preceding
the command is in associated_part. If the level of the document was modified
by @raisections or @lowersections, the differential level is in sections_level.

untranslated

documentlanguage holds the @documentlanguage value. If there is a translation
context, it should be in translation_context.

Chapter 3: Texinfo::Parser 29

3.7 Texinfo::Parser SEE ALSO

Texinfo manual (http://www.gnu.org/software/texinfo/manual/texinfo/).

3.8 Texinfo::Parser AUTHOR

Patrice Dumas, <pertusus@free.fr>

3.9 Texinfo::Parser COPYRIGHT AND LICENSE
Copyright 2010- Free Software Foundation, Inc. See the source file for all copyright years.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

http://www.gnu.org/software/texinfo/manual/texinfo/

30

4 Texinfo::Structuring

4.1 Texinfo::Structuring NAME

Texinfo::Structuring - information on Texinfo::Parser tree

4.2 Texinfo::Structuring SYNOPSIS

use Texinfo::Structuring qw(sectioning_structure nodes_tree number_floats
associate_internal_references split_by_node split_by_section split_pages
merge_indices sort_indices elements_directions elements_file_directions);

$tree is a Texinfo document tree. $parser is a Texinfo::Parser object.

$config is an object implementing the get_conf() method.

my $registrar = $parser->registered_errors();

my $sections_root = sectioning_structure ($registrar, $config, $tree);

my ($labels, $targets_list, $nodes_list) = $parser->labels_information();

my $parser_information = $parser->global_information();

my $global_commands = $parser->global_commands_information();

set_menus_node_directions($registrar, $config, $parser_information,
$global_commands, $nodes_list, $labels);

my $top_node = nodes_tree($registrar, $config, $parser_information,
$nodes_list, $labels);

complete_node_tree_with_menus($registrar, $config, $nodes_list, $top_node);

my $refs = $parser->internal_references_information();

check_nodes_are_referenced($registrar, $config, $nodes_list, $top_node,
$labels, $refs);

associate_internal_references($registrar, $parser, $parser_information,

$labels, $refs);

number_floats ($parser->floats_information());

my $tree_units;

if ($split_at_nodes) {

$tree_units = split_by_node($tree);
} else {
$tree_units = split_by_section($tree);

}

split_pages($tree_units, $split);

elements_directions($config, $labels, $tree_units);

elements_file_directions($tree_units);

my $indices_information = $parser->indices_information();
my $merged_index_entries
= merge_indices($indices_information);
my $index_entries_sorted;
if ($sort_by_letter) {
$index_entries_sorted = sort_indices($registrar, $config,
$merged_index_entries, $indices_information,

Chapter 4: Texinfo::Structuring 31

'by_letter');
} else {
$index_entries_sorted = sort_indices($registrar, $config,
$merged_index_entries,
$indices_information);

4.3 Texinfo::Structuring NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

4.4 Texinfo::Structuring DESCRIPTION

Texinfo::Structuring first allows to collect information on a Texinfo tree. In most case, it
also requires information from a parser object to do that job. Thanks to sectioning_
structure the hierarchy of sectioning commands is determined. The directions implied
by menus are determined with set_menus_node_directions. The node tree is analysed
with nodes_tree. Nodes directions are completed with menu directions with complete_
node_tree_with_menus. Floats get their standard numbering with number_floats and
internal references are matched up with nodes, floats or anchors with associate_internal_
references.

The following methods depend on the output format, so are usually called from convert-
ers.

It is also possible to associate top-level contents of the tree, which consist in nodes and
sectioning commands with tree unit elements that group together a node and the next
sectioning element. With split_by_node nodes are considered to be the main sectioning
elements, while with split_by_section the sectioning command elements are the main
elements. The first mode is typical of Info format, while the second corresponds to a
traditional book. The elements may be further split in pages, which are not pages as in
book pages, but more like web pages, and hold series of tree unit elements.

The elements may have directions to other elements prepared by elements_directions.
elements_file_directions should also set direction related to files, provided files are
associated with elements by the user.

merge_indices may be used to merge indices, which may be sorted with sort_indices.

4.5 Texinfo::Structuring METHODS

No method is exported in the default case.

Most methods takes a Section 5.1 [Texinfo::Report], page 38, $registrar as argument
for error reporting. Most also require Texinfo customization variables information, which
means an object implementing the get_conf method, in practice the main program con-
figuration or a converter (Section 13.5.2 [Texinfo::Convert::Converter Getting and setting
customization variables], page 60). Other common input arguments such as parser infor-
mation, labels or refs are obtained from a parser, see Section 3.1 [Texinfo::Parser], page 12.

Chapter 4: Texinfo::Structuring 32

associate_internal _references($registrar, $customization_information, $parser_information,
$labels, $refs)
Verify that internal references (@ref and similar without fourth of fifth ar-
gument and menu entries) have an associated node, anchor or float. Set the
normalized key in the extra hash menu_entry_node hash for menu entries
and in the first argument extra hash for internal references @ref and similar
@-commands. Register errors in $registrar.

check_nodes_are_referenced($registrar, $customization_information, $nodes_list,
$top_node, $labels, $refs)
Check that all the nodes are referenced (in menu, @*ref or node direction).
Register errors in $registrar.

Should be called after complete_node_tree_with_menus in order to have the
autogenerated menus available.

complete_node_tree_with_menus($registrar, $customization_information, $nodes._list,
$top-node)
Complete nodes directions with menu directions. Check consistency of menus,
sectionning and nodes direction structures. Register errors in $registrar.

elements_directions($customization_information, $labels, $tree_units)
Directions are set up for the tree unit elements in the array reference
$tree_units given in argument. The corresponding hash is in {'structure'}-
>{'directions'} and keys correspond to directions while values are
elements.

The following directions are set up:

This

The element itself.
Forward

Element next.
Back

Previous element.

NodeForward
Following node element in reading order. It is the next node, or
the first in menu or the next of the up node.

NodeBack

Preceding node element.
NodeUp
NodeNext
NodePrev

The up, next and previous node elements.
Up
Next

Chapter 4: Texinfo::Structuring 33

Prev

The up, next and previous section elements.

FastBack

For top level elements, the previous top level element. For other
elements the up top level element. For example, for a chapter
element it is the previous chapter, for a subsection element it is the
chapter element that contains the subsection.

FastForward
The next top level section element.

elements_file_directions($tree_units)
In the directions reference described above for elements_directions, sets the
PrevFile and NextFile directions to the elements in previous and following files.

It also sets FirstInFile* directions for all the elements by using the directions
of the first element in file. So, for example, FirstInFileNodeNext is the next
node of the first element in the file of each element.

The API for association of pages/elements to files is not defined yet.

@nodes_list = get_node_node_childs_from_sectioning($node)
$node is a node tree element. Find the node $node children based on the
sectioning structure. For the node associated with @top sectioning command,
the sections associated with parts are considered.

$entry_key = index_entry_sort_string($main_entry, $entry_tree_element, $sortas, $options)
Return a string suitable as a sort string, for index entries. The index entry
processed is $entry_tree_element, and can be a @subentry. $main_entry is the
main index entry tree element that can be used to gather information. $sortas
can be given to override the sort string (typically obtained from @sortas). The
$options are options used for Texinfo to text conversion for the generation of
the sort string, typically obtained from [setup_index_entry_keys_formatting],
page 35.

$merged_entries = merge_indices($indices_information)
Using information returned by [Texinfo::Parser::indices_information],
page 15, a structure holding all the index entries by index name is returned,
with all the entries of merged indices merged with those of the indice merged
into.

The $merged_entries returned is a hash reference whose keys are the index
names and values arrays of index entry structures described in details in [Tex-
info::Parser index_entries], page 16.

$new_block = new_block_command($content, $parent, $command_name)
Returns the texinfo tree corresponding to a block command named $com-
mand_name with contents $content and parent in tree $parent.

$new_menu = new_complete_node_menu($node, $use_sections)
Returns a texinfo tree menu for node $node, pointing to the children of the
node obtained with the sectioning structure. If $use_sections is set, use section
names for the menu entry names.

Chapter 4: Texinfo::Structuring 34

$detailmenu = new_master_menu($translations, $labels, $menus)
Returns a detailmenu tree element formatted as a master node. $translations,
if defined, should be a Section 6.1 [Texinfo::Translations], page 41, object and
should also hold customization information. $menus is an array reference con-
taining the regular menus of the Top node.

$entry = new_node_menu_entry($node, $use_sections)
Returns the texinfo tree corresponding to a single menu entry pointing to $node.
If $use_sections is set, use the section name for the menu entry name. Returns
undef if the node argument is missing.

$top_node = nodes_tree($registrar, $customization_information, $parser_information,
$nodes_list, $labels)
Goes through nodes and set directions. Returns the top node. Register errors
in $registrar.

This functions sets, in the structure node element hash:
node_up
node_prev

node_next

Up, next and previous directions for the node.

number_floats($float_information)
Number the floats as described in the Texinfo manual. Sets the number key in
the structure hash of the float tree elements.

$command_name = section_level_adjusted_command_name($element)
Return the sectioning command name corresponding to the sectioning element
$element, adjusted in order to take into account raised and lowered sections,
when needed.

$sections_root, $sections_list = sectioning_structure($registrar,
$customization_information, $tree)
This function goes through the tree and gather information on the document
structure for sectioning commands. It returns $sections_root the root of the
sectioning commands tree and a reference on the sections elements list. Errors
are registered in $registrar.

It sets section elements structure hash values:
section_level
The level in the sectioning tree hierarchy. 0 is for @top or

@part, 1 for @chapter, @appendix... This level is corrected by
O@raisesections and @lowersections.

section_number
The sectioning element number.

section_childs
An array holding sectioning elements children of the element.

section_up

Chapter 4: Texinfo::Structuring 35

section_prev
section_next
The up, previous and next sectioning elements.

toplevel_next

toplevel _prev

toplevel _up
The next and previous and up sectioning elements of toplevel sec-
tioning elements (like @top, @chapter, @appendix), not taking into
account @part elements.

set_menus_node_directions($registrar, $customization_information, $parser_information,
$global_commands, $nodes_list, $labels);
Goes through menu and set directions. Register errors in $registrar.

This functions sets, in the structure node element hash reference:

menu_child
The first child in the menu of the node.

menu_up

menu_next
menu_prev
Up, next and previous directions as set in menus.

$option = setup_index_entry_keys_formatting($customization_information)
Return options for conversion of Texinfo to text relevant for index keys sorting.

($index_entries_sorted, $index_entries_sort_strings) = sort_indices($registrar,

$customization_information, $merged_index_entries, $indices_information, $sort_by_letter)
If $sort_by_letter is set, sort by letter, otherwise sort all entries together. In
both cases, a hash reference with index names as keys $index_entries_sorted is
returned.

When sorting by letter, an array reference of letter hash references is associated
with each index name. Each letter hash reference has two keys, a letter key with
the letter, and an entries key with an array reference of sorted index entries
beginning with the letter.

When simply sorting, the array of the sorted index entries is associated with
the index name.

$index_entries_sort_strings is a hash reference associating the index entries with
the strings that were used to sort them.

Register errors in $registrar.

$tree_units = split_by_node($tree)
Returns a reference array of tree units where a node is associated to the following
sectioning commands. Sectioning commands without nodes are also with the

previous node, while nodes without sectioning commands are alone in their tree
units.

Tree units are regular tree elements with type unit, the associated nodes and
sectioning tree elements are in the array associated with the contents key. The

Chapter 4: Texinfo::Structuring 36

associated elements have a associated_unit key set in the structure hash that
points to the associated tree unit.

Tree units have directions in the structure hash reference, namely unit_next
and unit_prev pointing to the previous and the next tree unit.

In the extra hash reference, tree units have:

unit_command
The node command associated with the element.

$tree_units = split_by_section($tree)
Similarly with split_by_node, returns an array of tree units. This time, lone
nodes are associated with the previous sections and lone sections makes up a
tree unit.

The structure and extra hash keys set are the same, except that
unit_command is the sectioning command associated with the element.

$pages = split_pages($tree_units, $split)
The tree units from the array reference argument have an extra first_in_page
value set in the structure hash reference to the first tree unit in the group,
and based on the value of $split. The possible values for $split are

chapter
The tree units are split at chapter or other toplevel sectioning tree
units.

node
Each element has its own page.

section

The tree units are split at sectioning commands below chapter.

value evaluating to false
No splitting, only one page is returned, holding all the tree units.

warn_non_empty_parts($registrar, $customization_information, $global_commands)
Register a warning in $registrar for each @part that is not empty in
$global_commands information (typically obtained by calling global_
commands_information() on a parser).

4.6 Texinfo::Structuring SEE ALSO

Texinfo manual (http://www.gnu.org/s/texinfo/manual/texinfo/), Section 3.1 [Tex-
info::Parser|, page 12.

4.7 Texinfo::Structuring AUTHOR

Patrice Dumas, <pertususQ@free.fr>

http://www.gnu.org/s/texinfo/manual/texinfo/

Chapter 4: Texinfo::Structuring 37

4.8 Texinfo::Structuring COPYRIGHT AND LICENSE
Copyright 2010- Free Software Foundation, Inc. See the source file for all copyright years.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

38

5 Texinfo::Report

5.1 Texinfo::Report NAME

Texinfo::Report - Error storing for Texinfo modules

5.2 Texinfo::Report SYNOPSIS

use Texinfo::Report;
my $registrar = Texinfo::Report::new();

if ($warning_happened) {
$registrar->line_warn($converter, sprintf(__("\@%s is wrongly used"),
$current->{'cmdname'}), $current->{'source_info'});

}

my ($errors, $errors_count) = $registrar->errors();
foreach my $error_message (@$errors) {
warn $error_message->{'error_line'};

}
5.3 Texinfo::Report NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

5.4 Texinfo::Report DESCRIPTION

The Texinfo: :Report module helps with error handling. It is used by the Texinfo mod-
ules Section 3.1 [Texinfo::Parser|, page 12, and Section 13.1 [Texinfo::Convert::Converter],
page 58. To use this module, either create a new Texinfo::Report object or initial-
ize another object such as to be able to call Texinfo::Report methods. In any case,
Texinfo: :Report: :new() is called to setup the module.

Besides the new method, errors is used for reporting errors, and the other methods to
store errors (and warnings).

5.5 Texinfo::Report METHODS

No method is exported in the default case.

The new method initializes Texinfo: :Report related fields. The errors collected are
available through the errors method, the other methods allow registering errors and warn-
ings.

my $registrar = Texinfo::Report::new()

$converter->Texinfo::Report::mew()
If called without argument, a Texinfo::Report object is initialized and re-
turned. This is how the module is used in the Texinfo Parsers, as a separate
object.

Chapter 5: Texinfo::Report 39

If called on a $converter, the $converter is initialized itself such as to be able
to call Texinfo: :Report methods. It is how it is used in the Converters.

($error_warnings_list, $error_count) = errors($registrar)
This function returns as $error_count the count of errors since calling new. The
$error_warnings_list is an array of hash references one for each error, warning
or error line continuation. Each of these has the following keys:

type
May be warning, or error.
text
The text of the error.
error_line
The text of the error formatted with the file name, line number and
macro name, as needed.
line_nr
The line number of the error or warning.
file_name
The file name where the error or warning occurs.
macro

The user macro name that is expanded at the location of the error
or warning.

$registrar->line_warn($text, $configuration_information, $error_location_info,

$continuation, $silent)

$registrar->line_error($text, $configuration_information, $error_location_info,

$continuation, $silent)
Register a warning or an error. The $text is the text of the error or warning.
The $configuration_information object gives some information that can modify
the messages or their delivery. The optional $error_location_info holds the
information on the error or warning location. The $error_location_info reference
on hash may be obtained from Texinfo elements source_info keys. It may also
be setup to point to a file name, using the file_name key and to a line number,
using the 1ine_nr key. The file_name key value should be a binary string.

The $continuation optional arguments, if true, conveys that the line is a con-
tinuation line of a message.

The $silent optional arguments, if true, suppresses the output of a message that
is output immediatly if debugging is set.

The source_info key of Texinfo tree elements is described in more details in
[Texinfo::Parser source_info|, page 18.

$registrar->document_warn($configuration_information, $text, $continuation)
$registrar->document_error($configuration_information, $text, $continuation)
Register a document-wide error or warning. $text is the error or warning mes-
sage. The $configuration_information object gives some information that can

Chapter 5: Texinfo::Report 40

modify the messages or their delivery. The $continuation optional arguments,
if true, conveys that the line is a continuation line of a message.

5.6 Texinfo::Report AUTHOR

Patrice Dumas, <pertusus@free.fr>

5.7 Texinfo::Report COPYRIGHT AND LICENSE
Copyright 2010- Free Software Foundation, Inc. See the source file for all copyright years.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

41

6 Texinfo::Translations

6.1 Texinfo::Translations NAME

Texinfo::Translations - Translations of output documents strings for Texinfo modules

6.2 Texinfo::Translations SYNOPSIS

Q@ISA = qw(Texinfo::Translations);

my $tree_translated = $converter->gdt('See {reference} in Q@cite{{bookl}}',
{'reference' => $tree_reference,
'book' => {'text' => $book_namel}});

6.3 Texinfo::Translations NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

6.4 Texinfo::Translations DESCRIPTION

The Texinfo::Translations module helps with translations in output documents.

Translation of error messages uses another interface, which is the classical gettext based
perl interface. It is not described as it is described in details elsewhere, some elements are
in [Texinfo::Common __ and __p]|, page 7.

6.5 Texinfo::Translations METHODS

No method is exported.

The gdt and pgdt methods are used to translate strings to be output in converted
documents, and returns, in general, a Texinfo tree.

The replace_convert_substrings method is called by gdt to substitute replaced sub-
strings in a translated string and convert to a Texinfo tree. It may be especially useful when
overriding or reimplementing gdt.

$tree = $object->gdt($string, $replaced_substrings, $translation_context, $mode, $lang)

The $string is a string to be translated. In the default case, the function returns
a Texinfo tree, as the string is interpreted as Texinfo code after translation.
$replaced_substrings is an optional hash reference specifying some substitution
to be done after the translation. The key of the $replaced_substrings hash
reference identifies what is to be substituted, and the value is some string,
texinfo tree or array content that is substituted in the resulting texinfo tree. In
the string to be translated word in brace matching keys of $replaced_substrings
are replaced.

The $object is typically a converter, but can be any object that implements
get_conf, or undefined (undef). If not undefined, the information in the $o0b-
ject is used to determine the encoding, the documentlanguage and get some
customization information.

Chapter 6: Texinfo:: Translations 42

The $translation_contest is optional. If not undef this is a translation context
string for $string. It is the first argument of pgettext in the C API of Gettext.
$lang is optional. If set, it overrides the documentlanguage.

For example, in the following call, the string See {reference} in
@cite{{book}} is translated, then parsed as a Texinfo string, with {reference}
substituted by $tree_reference in the resulting tree, and {book} replaced by the
associated texinfo tree text element:

$tree = $converter->gdt('See {reference} in Q@cite{{book}}',
{'reference' => $tree_reference,
'book' => {'text' => $book_namel}});
gdt uses a gettext-like infrastructure to retrieve the translated strings, using
the texinfo_document domain.

$mode is an optional string which may modify how the function behaves. The
possible values are:

translated_text
In that case the string is not considered to be Texinfo, a plain string
that is returned after translation and substitution. The substitu-
tions may only be strings in that case.

$tree = $object->pgdt($translation_context, $string, $replaced_substrings, $mode, $lang)
Same to gdt except that the $translation_context is not optional. Calls gdt.
This function is useful to mark strings with a translation context for translation.
This function is similar to pgettext in the Gettext C APIL.

$tree = $object->replace_convert_substrings($translated_string, $replaced_substrings,

$mode)
$translated_string is a string already translated. $replaced_substrings is an op-
tional hash reference specifying some substitution to be done. $mode is an
optional string which may modify how the function behaves, and in particular
whether the translated string should be converted to a Texinfo tree. $object
is typically a converter, but can be any object that implements get_conf, or
undefined (undef). If not undefined, the information in the $object is used to
get some customization information.

The function performs the substitutions of substrings in the translated string
and converts to a Texinfo tree if needed. It is called from gdt after the retrieval
of the translated string.

6.6 Texinfo::Translations AUTHOR

Patrice Dumas, <pertusus@free.fr>

6.7 Texinfo::Translations COPYRIGHT AND LICENSE
Copyright 2010- Free Software Foundation, Inc. See the source file for all copyright years.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

43

7 Texinfo::Transformations

7.1 Texinfo::Transformations NAME

Texinfo:: Transformations - transformations of Texinfo Perl tree

7.2 Texinfo::Transformations NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

7.3 Texinfo::Transformations DESCRIPTION

Includes miscellaneous methods set_menus_to_simple_menu and menu_to_simple_menu
to change the menu texinfo tree, as well as insert_nodes_for_sectioning_commands that
adds nodes for sectioning commands without nodes and complete_tree_nodes_menus and
complete_tree_nodes_missing_menu that completes the node menus based on the sec-
tioning tree.

7.4 Texinfo::Transformations METHODS

No method is exported in the default case.

complete_tree_nodes_menus($tree, $add_section_names_in_entries)
Add menu entries or whole menus for nodes associated with sections, based
on the sectioning tree. If the optional $add_section_names_in_entries argu-
ment is set, a menu entry name is added using the section name. This function
should be called after [sectioning_structure], page 34.

complete_tree_nodes_missing_menu(S$tree, $use_section_names_in_entries)
Add whole menus for nodes associated with sections and without menu, based
on the sectioning tree. If the optional $add_section_names_in_entries argu-
ment is set, a menu entry name is added using the section name. This function
should be called after [sectioning_structure], page 34.

($root_content, $added_sections) = fill_gaps_in_sectioning($tree)
This function adds empty @unnumbered and similar commands in a tree to
fill gaps in sectioning. This may be used, for example, when converting from a
format that can handle gaps in sectioning. $tree is the tree root. An array refer-
ence is returned, containing the root contents with added sectioning commands,
as well as an array reference containing the added sectioning commands.

If the sectioning commands are lowered or raised (with @raisesections,
@lowersection) the tree may be modified with Q@raisesections or
@lowersection added to some tree elements.

($root_content, $added_nodes) = insert_nodes_for_sectioning_commands(S$tree,
$nodes_list, $targets_list, $labels)
Insert nodes for sectioning commands without node in $tree. Add nodes to
the labels used as targets for references $labels and $targets_list and to
$nodes_list.

Chapter 7: Texinfo:: Transformations 44

An array reference is returned, containing the root contents with added nodes,
as well as an array reference containing the added nodes.

menu_to_simple_menu($menu)

set_menus_to_simple_menu($nodes_list)
menu_to_simple_menu transforms the tree of a menu tree element. set_menus_
to_simple_menu calls menu_to_simple_menu for all the menus of the nodes in
$nodes_list.

A simple menu has no menu_comment, menu_entry or menu_entry_description
container anymore, their content are merged directly in the menu in preformat-
ted container.

protect_hashchar_at_line_beginning($registrar, $customization_information, $tree)

Protect hash (#) character at the beginning of line such that they would not be
considered as lines to be processed by the CPP processor. The $registrar and
$customization_information arguments may be undef. If defined, the $registrar
argument should be a Section 5.1 [Texinfo::Report], page 38, object in which
the errors and warnings encountered while parsing are registered. If defined,
$customization_information should give access to customization through get_
conf. If both $registrar and $customization_information are defined they are
used for error reporting in case an hash character could not be protected because
it appeared in a raw environment.

$modified_tree = reference_to_arg_in_tree($tree)
Modify $tree by converting reference @-commands to simple text using one of
the arguments. This transformation can be used, for example, to remove ref-
erence @-command from constructed node names trees, as node names cannot
contain reference @-command while there could be some in the tree used in
input for the node name tree.

regenerate_master_menu($translations, $labels)
Regenerate the Top node master menu, replacing the first detailmenu in Top
node menus or appending at the end of the Top node menu. $translations, if
defined, should be a Section 6.1 [Texinfo::Translations|, page 41, object and
should also hold customization information.

7.5 Texinfo::Transformations SEE ALSO

Texinfo manual (http://www.gnu.org/s/texinfo/manual/texinfo/), Section 3.1 [Tex-
info::Parser|, page 12.

7.6 Texinfo::Transformations AUTHOR

Patrice Dumas, <pertusus@free.fr>

7.7 Texinfo::Transformations COPYRIGHT AND LICENSE
Copyright 2010- Free Software Foundation, Inc. See the source file for all copyright years.

http://www.gnu.org/s/texinfo/manual/texinfo/

Chapter 7: Texinfo:: Transformations 45

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

46

8 Texinfo::Convert::Texinfo

8.1 Texinfo::Convert::Texinfo NAME

Texinfo::Convert::Texinfo - Convert a Texinfo tree to Texinfo code

8.2 Texinfo::Convert::Texinfo SYNOPSIS

use Texinfo::Convert::Texinfo qw(convert_to_texinfo);

my $texinfo_text = convert_to_texinfo($tree);

8.3 Texinfo::Convert::Texinfo NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

8.4 Texinfo::Convert::Texinfo DESCRIPTION

Texinfo::Convert::Texinfo converts a Texinfo tree (described in Section 3.1
[Texinfo::Parser|, page 12) to Texinfo code. If the Texinfo tree results from parsing some
Texinfo document, The converted Texinfo code should be exactly the same as the initial
document, except that user defined @-macros and @value are expanded, and some invalid
code is discarded.

8.5 Texinfo::Convert::Texinfo METHODS

$texinfo_text = convert_to_texinfo($tree)
Converts the Texinfo tree $tree to Texinfo code.

8.6 Texinfo::Convert::Texinfo AUTHOR

Patrice Dumas, <pertusus@free.fr>

8.7 Texinfo::Convert::Texinfo COPYRIGHT AND
LICENSE

Copyright 2010- Free Software Foundation, Inc. See the source file for all copyright years.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

47

9 Texinfo::Convert::Utils

9.1 Texinfo::Convert::Utils NAME

Texinfo::Convert::Utils - miscellaneous functions usable in all converters

9.2 Texinfo::Convert::Utils SYNOPSIS

use Texinfo::Convert::Utils;

my $today_tree = Texinfo::Convert::Utils::expand_today($converter);
my $verbatiminclude_tree
= Texinfo::Convert::Utils::expand_verbatiminclude(undef, $converter,
$verbatiminclude) ;

9.3 Texinfo::Convert::Utils NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

9.4 Texinfo::Convert::Utils DESCRIPTION

miscellaneous methods that may be useful for backends converting texinfo trees. This
module contains the methods that can be used in converters which do not inherit from
Section 13.1 [Texinfo::Convert::Converter|, page 58.

9.5 Texinfo::Convert::Utils METHODS

No method is exported in the default case.

Most methods takes a $converter as argument, in some cases optionally, to get
some information, see Section 13.5.2 [Texinfo::Convert::Converter Getting and setting
customization variables|, page 60, and use methods for error reporting, see Section 13.1
[Texinfo::Convert::Converter|, page 58, and Section 5.1 [Texinfo::Report], page 38, and for
strings translations, see Section 6.1 [Texinfo:: Translations|, page 41.

Even when the caller does not inherit from Section 13.1 [Texinfo::Convert::Converter],
page 58, it could implement the required interfaces and could also have a converter available
in some cases, to call the functions which require a converter.

$result = add_heading_number($converter, $heading_element, $heading_text,

$do_number)
The $converter argument may be undef. $heading_element is a heading com-
mand tree element. $heading_text is the already formatted heading text. if the
$do_number optional argument is defined and false, no number is used and the
text is returned as is. This function returns the heading with a number and
the appendix part if needed. If $converter is not defined, the resulting string
won’t be translated.

Chapter 9: Texinfo::Convert::Utils 48

($category, $class, $type, $name, $arguments) = definition_arguments_content($element)
$element should be a @def* Texinfo tree element. The $category, $class, $type,
$name are elements corresponding to the definition @-command line. Texinfo
elements on the @-command line corresponding to arguments in the function
definition are returned in the $arguments array reference. Arguments corre-
spond to text following the other elements on the @-command line. If there is
no argument, $arguments will be undef.

$tree = definition_category_tree($converter, $def_line)
The $converter argument may be undef. $def_line is a def_line texinfo tree
container. This function returns a texinfo tree corresponding to the category
of the $def_line taking the class into account, if there is one. If $converter is
not defined, the resulting string won’t be translated.

($encoded_name, $encoding) = $converter->encoded_input_file_name($converter,

$character_string_name, $input_file_encoding)

($encoded_name, $encoding) = $converter->encoded_output_file_name($converter,

$character_string_name)
Encode $character_string-name in the same way as other file names are en-
coded in converters, based on customization variables, and possibly on the
input file encoding. Return the encoded name and the encoding used to encode
the name. The encoded_input_file_name and encoded_output_file_name
functions use different customization variables to determine the encoding. The
$converter argument is not optional and is used both to access to customization
variables and to access to parser information.

The <$input_file_encoding> argument is optional. If set, it is used for the input
file encoding. It is useful if there is more precise information on the input file
encoding where the file name appeared.

$tree = expand_today($converter)
Expand today’s date, as a texinfo tree with translations. The $converter ar-
gument is not optional and is used both to retrieve customization information
and to translate strings.

$tree = expand_verbatiminclude($registrar, $customization_information,

$verbatiminclude)
The $registrar argument may be undef. The S$customization_information
argument is required and is used to retrieve customization information
Section 13.5.2 [Texinfo::Convert::Converter Getting and setting customization
variables], page 60. S$verbatiminclude is a @verbatiminclude tree element.
This function returns a @verbatim tree elements after finding the included file
and reading it. If $registrar is not defined, error messages are not registered.

(\@contents, \@accent_commands) = find_innermost_accent_contents($element)
$element should be an accent command Texinfo tree element. Returns an array
reference containing the innermost accent @-command contents, normally a text
element with one or two letter, and an array reference containing the accent
commands nested in $element (including $element).

Chapter 9: Texinfo::Convert::Utils 49

$heading_element = find_root_command_next_heading_command($element,

$expanded_format_raw, $do_not_ignore_contents, $do_not_ignore_index_entries)
Return an heading element found in the $element contents if it appears before
contents that could be formatted. $expanded_format_raw is a hash reference
with raw output formats (html, docbook, xml...) as keys, associated value
should be set for expanded raw output formats. $do_not_ignore_contents is op-
tional. If set, @contents and @shortcontents are considered to be formatted.
$do_not_ignore_indexr_entries is optional. If set, index entries are considered to
be formatted.

Only heading elements corresponding to @heading, @subheading and similar @-
commands that are not associated to nodes in general are found, not sectioning
commands.

9.6 Texinfo::Convert::Utils SEE ALSO

Section 13.1 [Texinfo::Convert::Converter|, page 58, and Section 6.1 [Texinfo:: Translations],
page 41.

9.7 Texinfo::Convert::Utils AUTHOR

Patrice Dumas, <pertusus@free.fr>

9.8 Texinfo::Convert::Utils COPYRIGHT AND LICENSE
Copyright 2010- Free Software Foundation, Inc. See the source file for all copyright years.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

50

10 Texinfo::Convert::Unicode

10.1 Texinfo::Convert::Unicode NAME

Texinfo::Convert::Unicode - Representation as Unicode characters

10.2 Texinfo::Convert::Unicode SYNOPSIS

use Texinfo::Convert::Unicode qw(unicode_accent encoded_accents
unicode_text) ;
use Texinfo::Convert::Text qw(convert_to_text);

my ($innermost_contents, $stack)
= Texinfo::Convert::Utils::find_innermost_accent_contents($accent);

my $formatted_accents = encoded_accents ($converter,
convert_to_text($innermost_contents), $stack, $encoding,
\&Texinfo: :Text::ascii_accent_fallback);

my $accent_text = unicode_accent('e', $accent_command) ;

10.3 Texinfo::Convert::Unicode NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

10.4 Texinfo::Convert::Unicode DESCRIPTION

Texinfo::Convert: :Unicode provides methods dealing with Unicode representation and
conversion of Unicode code points, to be used in converters.

When an encoding supported in Texinfo is given as argument of a method of the module,
the accented letters or characters returned by the method should only be represented by
Unicode code points if it is known that Perl should manage to convert the Unicode code
points to encoded characters in the encoding character set. Note that the actual conversion
is done by Perl, not by the module.

10.5 Texinfo::Convert::Unicode METHODS

$result = brace_no_arg_command($command_name, $encoding)
Return the Unicode representation of a command with brace and no argument
$command_name (like @bullet{}, @aa{} or Gguilsinglleft{}), or undef if
the Unicode representation cannot be converted to encoding $encoding.

$possible_conversion = check_unicode_point_conversion($arg, $Soutput_debug)
Check that it is possible to output actual UTF-8 binary bytes corresponding to
the Unicode code point string $arg (such as 201D). Perl gives a warning and
will not output UTF-8 for Unicode non-characters such as U+10FFFF. If the
optional $output_debug argument is set, a debugging output warning is emitted

Chapter 10: Texinfo::Convert::Unicode 51

if the test of the conversion failed. Returns 1 if the conversion is possible and
can be attempted, 0 otherwise.

$result = encoded_accents($converter, $text, $stack, $encoding, $format_accent, $set_case)
$encoding is the encoding the accented characters should be encoded to. If
$encoding not set, $result is set to undef. Nested accents and their content are
passed with $text and $stack. $text is the text appearing within nested accent
commands. $stack is an array reference holding the nested accents texinfo
tree elements. In general, $text is the formatted contents and $stack the stack
returned by [Texinfo::Convert::Utils::find_innermost_accent_contents|, page 48.
The function tries to convert as much as possible the accents to $encoding
starting from the innermost accent.

$format_accent is a function reference that is used to format the accent com-
mands if there is no encoded character available at some point of the conversion
of the $stack. $converter is a converter object optionaly used by $format_accent.
It may be undef if there is no need of converter object in $format_accent.

If $set_case is positive, the result is upper-cased, while if it is negative, the
result is lower-cased.

$width = string_width($string)
Return the string width, taking into account the fact that some characters
have a zero width (like composing accents) while some have a width of 2 (most
chinese characters, for example).

$result = unicode_accent($text, $accent_command)
$text is the text appearing within an accent command. $accent_command
should be a Texinfo tree element corresponding to an accent command taking
an argument. The function returns the Unicode representation of the accented
character.

$is_decoded = unicode_point_decoded_in_encoding($encoding, $unicode_point)
Return true if the $unicode_point will be encoded in the encoding $encoding.
The $unicode_point should be specified as a four letter string describing an
hexadecimal number with letters in upper case (such as 201D). Tables are used
to determine if the $unicode_point will be encoded, when the encoding does not
cover the whole Unicode range.

If the encoding is not supported in Texinfo, the result will always be false.

$result = unicode_text($text, $in_code)
Return $text with dashes and quotes corresponding, for example to ——— or ',
represented as Unicode code points. If $in_code is set, the text is considered to
be in code style.

10.6 Texinfo::Convert::Unicode AUTHOR

Patrice Dumas, <pertusus@free.fr>

10.7 Texinfo::Convert::Unicode COPYRIGHT AND
LICENSE

Copyright 2010- Free Software Foundation, Inc. See the source file for all copyright years.

Chapter 10: Texinfo::Convert::Unicode 52

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

93

11 Texinfo::Convert::NodeNameNormalization

11.1 Texinfo::Convert::NodeNameNormalization NAME

Texinfo::Convert::NodeNameNormalization - Normalize and transliterate Texinfo trees

11.2 Texinfo::Convert::NodeNameNormalization SYNOPSIS

use Texinfo::Convert::NodeNameNormalization qw(normalize_node
normalize_transliterate_texinfo);

my $normalized = normalize_node({'contents' => $node_contents});

my $file_name = normalize_transliterate_texinfo({'contents'
=> $section_contents});

11.3 Texinfo::Convert::NodeNameNormalization NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

11.4 Texinfo::Convert::NodeNameNormalization
DESCRIPTION

Texinfo::Convert: :NodeNameNormalization allows to normalize node names, with
normalize_node following the specification described in the Texinfo manual HTML Xref
node. This is useful whenever one want a unique identifier for Texinfo content, which
is only composed of letter, digits, - and _. In Section 3.1 [Texinfo::Parser|, page 12,
normalize_node is used for @node, @float and @anchor names normalization, but also
@float types and @acronym and @abbr first argument.

It is also possible to transliterate non-ASCII letters, instead of mangling them, with
normalize_transliterate_texinfo, losing the uniqueness feature of normalized node
names.

Another method, transliterate_protect_file_name transliterates non-ASCII letters
and protect characters that should not appear on file names.

11.5 Texinfo::Convert::NodeNameNormalization METHODS

$partially_normalized = convert_to_normalized($tree)
The Texinfo $tree is returned as a string, with @-commands and spaces nor-
malized as described in the Texinfo manual HTML Xref node. ASCII 7-bit
characters other than spaces and non-ASCII characters are left as is in the
resulting string.

$normalized = normalize_node($tree)
The Texinfo $tree is returned as a string, normalized as described in the Texinfo
manual HTML Xref node.

Chapter 11: Texinfo::Convert::NodeNameNormalization 54

The result will be poor for Texinfo trees which are not @-command arguments
(on an @-command line or in braces), for instance if the tree contains @node or
block commands.

$transliterated = normalize_transliterate_texinfo($tree, $no_unidecode)
The Texinfo $tree is returned as a string, with non-ASCII letters transliterated
as ASCII, but otherwise similar with normalize_node output. If the optional
$no_unidecode argument is set, Text::Unidecode is not used for characters
whose transliteration is not built-in.

$transliterated = transliterate_texinfo($tree, $no_unidecode)
The Texinfo $tree is returned as a string, with non-ASCII letters transliterated
as ASCII. If the optional $no_unidecode argument is set, Text: :Unidecode is
not used for characters whose transliteration is not built-in.

$file_name = transliterate_protect_file_name($string, $no_unidecode)
The string $string is returned with non-ASCII letters transliterated as ASCII,
and ASCII characters not safe in file names protected as in node normalization.
If the optional $no_unidecode argument is set, Text::Unidecode is not used
for characters whose transliteration is not built-in.

11.6 Texinfo::Convert::NodeNameNormalization AUTHOR

Patrice Dumas, <pertususQ@free.fr>

11.7 Texinfo::Convert::NodeNameNormalization
COPYRIGHT AND LICENSE

Copyright 2010- Free Software Foundation, Inc. See the source file for all copyright years.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

95

12 Texinfo::Convert::Text

12.1 Texinfo::Convert:: Text NAME

Texinfo::Convert::Text - Convert Texinfo tree to simple text

12.2 Texinfo::Convert:: Text SYNOPSIS

use Texinfo::Convert::Text qw(convert_to_text ascii_accent text_accents);

my $result = convert_to_text($tree);

my $result_encoded = convert_to_text($tree,
{'enabled_encoding' => 'utf-8'});

my $result_converter = convert_to_text($tree,
{'converter' => $converter});

my $result_accent_text = ascii_accent('e', $accent_command);
my $accents_text = text_accents($accents, 'utf-8');

12.3 Texinfo::Convert:: Text NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

12.4 Texinfo::Convert::Text DESCRIPTION

Texinfo: :Convert: :Text is a simple backend that converts a Texinfo tree to simple text.
It is used in converters, especially for file names. The converter is very simple, and, in the
default case, cannot handle output strings translation or error handling.

12.5 Texinfo::Convert:: Text METHODS

$result = convert_to_text($tree, $Soptions)
Convert a Texinfo tree to simple text. $options is a hash reference of options.
The converter is very simple, and has almost no internal state besides the
options. It cannot handle as is output strings translation or error storing.

If the converter option is set, some additional features may be available for
the conversion of some @-commands, like output strings translation or error
reporting.

The following options may be set:

enabled_encoding
If set, the value is considered to be the encoding name texinfo ac-
cented letters should be converted to. This option being set corre-
sponds to the --enable-encoding option, or the ENABLE_ENCODING
customization variable for Info and Plaintext and for some conver-
sion to text in other formats. For file names in HTML and LaTeX,

Chapter 12: Texinfo::Convert::Text 56

SC

code

and for DocBook or Texinfo XML, this variable should in general
be set unless the output encoding is US-ASCII.

If set, the text is upper-cased.

If set the text is in code style. (mostly ==, ===, ' " and "~ are kept
as is).

NUMBER_SECTIONS

sort_string

converter

If set, sections are numbered when output.

A somehow internal option to convert to text more suitable for
alphabetical sorting rather than presentation.

If this converter object is passed to the function, some features of
this object may be used during conversion. Mostly error reporting
and strings translation, as the converter object is also supposed to
be a Section 5.1 [Texinfo::Report], page 38, objet. See also Sec-
tion 13.1 [Texinfo::Convert::Converter], page 58.

expanded_formats_hash

A reference on a hash. The keys should be format names (like html,
tex), and if the corresponding value is set, the format is expanded.

$result_accent_text = ascii_accent($text, $accent_command)
$text is the text appearing within an accent command. $accent_command
should be a Texinfo tree element corresponding to an accent command taking
an argument. The function returns a transliteration of the accented character.

$result_accent_text = ascii_accent_fallback($converter, $text, $accent_command)
Same as ascii_accent but with an additional first argument converter, which
is ignored, but needed if this function is to be in argument of functions that
need a fallback for accents conversion.

$accents_text = text_accents($accents, $encoding, $set_case)
$accents is an accent command that may contain other nested accent com-
mands. The function will format the whole stack of nested accent commands
and the innermost text. If $encoding is set, the formatted text is converted to
this encoding as much as possible instead of being converted as simple ASCII.
If $set_case is positive, the result is meant to be upper-cased, if it is negative,
the result is to be lower-cased.

12.6 Texinfo::Convert::Text AUTHOR

Patrice Dumas, <pertususQ@free.fr>

Chapter 12: Texinfo::Convert::Text 57

12.7 Texinfo::Convert:: Text COPYRIGHT AND LICENSE
Copyright 2010- Free Software Foundation, Inc. See the source file for all copyright years.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

o8

13 Texinfo::Convert::Converter

13.1 Texinfo::Convert::Converter NAME

Texinfo::Convert::Converter - Parent class for Texinfo tree converters

13.2 Texinfo::Convert::Converter SYNOPSIS

package Texinfo::Convert::MyConverter;

use Texinfo::Convert::Converter;
@ISA = qw(Texinfo::Convert: :Converter);

sub converter_defaults (3) {
return Ymyconverter_defaults;

}

sub converter_initialize($) {
my $self = shift;
$self->{'document_context'} = [{}];
}

sub convert($$) {

}

sub convert_tree($$) {

}
sub output($$) {

3
end of Texinfo::Convert::MyConverter

my $converter = Texinfo::Convert::MyConverter->converter(
{'parser' => $parser});
$converter->output ($texinfo_tree);

13.3 Texinfo::Convert::Converter NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

13.4 Texinfo::Convert::Converter DESCRIPTION

Texinfo: :Convert: :Converter is a super class that can be used to simplify converters
initialization. The class also provide some useful methods.

Chapter 13: Texinfo::Convert::Converter 59

In turn, the converter should define some methods. Two are optional, converter_
defaults, converter_initialize and used for initialization, to give information to
Texinfo::Convert: :Converter.

The convert_tree method is mandatory and should convert portions of Texinfo tree.
The output method is used by converters as entry point for conversion to a file with head-
ers and so on. Although it is is not called from other modules, it should in general be
implemented by converters. output is called from texi2any. convert is not required,
but customarily used by converters as entry point for a conversion of a whole Texinfo tree
without the headers done when outputting to a file.

Existing backends may be used as examples that implement those methods.
Texinfo::Convert::Texinfo together with Texinfo::Convert::PlainTexinfo, as well
as Texinfo::Convert: :TextContent are trivial examples. Texinfo::Convert::Text is
less trivial, although still simple, while Texinfo: :Convert: :DocBook is a real converter
that is also not too complex.

The documentation of Section 2.1 [Texinfo::Common], page 6, Section 10.1
[Texinfo::Convert::Unicode|, page 50, and Section 5.1 [Texinfo::Report], page 38, describes
modules or additional function that may be useful for backends, while the parsed Texinfo
tree is described in Section 3.1 [Texinfo::Parser], page 12.

13.5 Texinfo::Convert::Converter METHODS

13.5.1 Initialization

A module subclassing Texinfo: :Convert: :Converter is created by calling the converter
method that should be inherited from Texinfo: :Convert: :Converter.

$converter = MyConverter->converter($options)

The $options hash reference holds options for the converter. In this option
hash reference a Section 3.1 [parser object], page 12, may be associated with
the parser key. The other options are Texinfo customization options and a
few other options that can be passed to the converter. Most of the customiza-
tion options are described in the Texinfo manual. Those customization op-
tions, when appropriate, override the document content. TODO what about
the other options (all are used in converters; ’structuring’ is available in HTML
$converter->get_info()? The parser should not be available directly anymore
after getting the associated information. TODO document this associated infor-
mation (’parser_info’, ’indices_information’, *floats’..., most available in HTML
converter, either through $converter->get_info() or label_command())

The converter function returns a converter object (a blessed hash reference)
after checking the options and performing some initializations, especially when
a parser is given among the options. The converter is also initialized as a
Section 5.1 [Texinfo::Report], page 38.

To help with these initializations, the modules subclassing Texinfo: :Convert: :Converter
can define two methods:

%defaults = $converter->converter_defaults($options)
The module can provide a defaults hash for converter customization options.
The $options hash reference holds options for the converter.

Chapter 13: Texinfo::Convert::Converter 60

converter_initialize
This method is called at the end of the Texinfo: :Convert: :Converter con-
verter initialization.

13.5.2 Getting and setting customization variables

Texinfo::Convert: :Converter implements a simple interface to set and retrieve Texinfo
customization variables. Helper functions from diverse Texinfo modules needing customiza-
tion information expect an object implementing get_conf and/or set_conf. The converter
itself can therefore be used in such cases.

$converter->force_conf($variable_name, $variable_value)
Set the Texinfo customization option $variable_name to $variable_value. This
should rarely be used, but the purpose of this method is to be able to revert a
customization that is always wrong for a given output format, like the splitting
for example.

$converter->get_conf($variable_name)
Returns the value of the Texinfo customization variable $variable_name.

$status = $converter->set_conf($variable_name, $variable_value)
Set the Texinfo customization option $variable_name to $variable_value if not
set as a converter option. Returns false if the customization options was not
set.

13.5.3 Conversion to XML

Some Texinfo::Convert: :Converter methods target conversion to XML. Most methods
take a $converter as argument to get some information and use methods for error reporting.

$formatted_text = $converter->xml_format_text_with_numeric_entities($text)
Replace quotation marks and hyphens used to represent dash in Texinfo text
with numeric XML entities.

$protected_text = $converter->xml_protect_text($text)
Protect special XML characters (&, <, >, ") of $text.

$comment = $converter->xml_comment($text)
Returns an XML comment for $text.

$result = xml_accent($text, $accent_command, $in_upper_case, $use_numeric_entities)

$text is the text appearing within an accent command. $accent_command
should be a Texinfo tree element corresponding to an accent command tak-
ing an argument. $in_upper_case is optional, and, if set, the text is put in
upper case. The function returns the accented letter as XML named entity if
possible, falling back to numeric entities if there is no named entity and to an
ASCII transliteration as last resort. $use_numeric_entities is optional. If set,
numerical entities are used instead of named entities if possible.

$result = $converter—>xml_accents($accent_command, $in-upper-case)
$accent_command is an accent command, which may have other accent com-
mands nested. If $in_upper_case is set, the result should be upper cased. The
function returns the accents formatted as XML.

Chapter 13: Texinfo::Convert::Converter 61

$result = xml_numeric_entity_accent($accent_command_name, $text)
$accent_command_name is the name of an accent command. $text is the text
appearing within the accent command. Returns the accented letter as XML
numeric entity, or undef is there is no such entity.

13.5.4 Helper methods

The module provides methods that may be useful for converter. Most methods take a
$converter as argument to get some information and use methods for error reporting, see
Section 5.1 [Texinfo::Report|, page 38. Also to translate strings, see Section 6.1 [Tex-
info::Translations|, page 41. For useful methods that need a converter optionally and can
be used in converters that do not inherit from Texinfo::Convert: :Converter, see Sec-
tion 9.1 [Texinfo::Convert::Utils|, page 47.

$contents_element = $converter->comma_index_subentries_tree($entry, $separator)
$entry is a Texinfo tree index entry element. The function sets up an array
with the @subentry contents. The result is returned as contents in the $con-
tents_element element, or undef if there is no such content. $separator is an
optional separator argument used, if given, instead of the default: a comma
followed by a space.

$result = $converter—>convert_accents($accent_command, \&format_accents,
$output_encoded_characters, $in_upper_case)
$accent_command is an accent command, which may have other accent com-
mands nested. The function returns the accents formatted either as encoded let-
ters if $output_encoded_characters is set, or formatted using \ &format_accents.
If $in_upper_case is set, the result should be uppercased.

$result = $converter->convert_document_sections($root, $file_handler)
This method splits the $root Texinfo tree at sections and calls convert_tree
on the elements. If the optional $file_handler is given in argument, the result
are output in $file_handler, otherwise the resulting string is returned.

$succeeded = $converter->create_destination_directory($destination_directory_path,
$destination_directory name)
Create destination directory $destination_directory_path. $desti-
nation_directory_path ~should be a Dbinary string, while $destina-
tion_directory_name should be a character string, that can be used in error
messages. $succeeded is true if the creation was successful or uneeded, false
otherwise.

(Soutput_file, $destination_directory, $output_filename, $document_name, $input_basefile)

= $converter->determine_files_and_directory($output_format)
Determine output file and directory, as well as names related to files. The result
depends on the presence of @setfilename, on the Texinfo input file name, and
on customization options such as OUTPUT, SUBDIR or SPLIT, as described in the
Texinfo manual. $output_format is optional. If it is not set the current output
format, if defined, is used instead. If not an empty string, _$output_format is
prepended to the default directory name.

$output_file is mainly relevant when not split and should be used as the output
file name. In general, if not split and $outpui_file is an empty string, it means

Chapter 13: Texinfo::Convert::Converter 62

that text should be returned by the converter instead of being written to an
output file. This is used in the test suite. $destination_directory is either the
directory $output_file is in, or if split, the directory where the files should be
created. $output_filename is, in general, the file name portion of $output_file
(without directory) but can also be set based on @setfilename, in particular
when $output_file is an empty string. $document_name is $output_filename
without extension. $input_basefile is based on the input texinfo file name, with
the file name portion only (without directory).

The strings returned are text strings.

($encoded_name, $encoding) =
$converter->encoded_input_file_name($character_string_name, $input_file_encoding)
($encoded_name, $encoding) =
$converter->encoded _output_file_name($character_string_name)
Encode $character_string_name in the same way as other file names are encoded
in the converter, based on customization variables, and possibly on the input
file encoding. Return the encoded name and the encoding used to encode
the name. The encoded_input_file_name and encoded_output_file_name
functions use different customization variables to determine the encoding.

The <$input_file_encoding> argument is optional. If set, it is used for the input
file encoding. It is useful if there is more precise information on the input file
encoding where the file name appeared.

Note that encoded_output_file_name is a wrapper around the function with
the same name in [Texinfo::Convert::Utils::encoded_output_file_name], page 48,
and encoded_input_file_name is a wrapper around the function with the same
name in [Texinfo::Convert::Utils::encoded_input_file_name|, page 48.

($caption, $prepended) = $converter->float_name_caption($float)
$float is a texinfo tree @float element. This function returns the caption
element that should be used for the float formatting and the $prepended texinfo
tree combining the type and label of the float.

$tree = $converter->float_type_number($float)
$float is a texinfo tree @float element. This function returns the type and
number of the float as a texinfo tree with translations.

$end_line = $converter->format_comment_or_return_end _line($element)
Format comment at end of line or return the end of line associated with the
element. In many cases, converters ignore comments and output is better for-
matted with new lines added independently of the presence of newline or com-
ment in the initial Texinfo line, so most converters are better off not using this
method.

$filename = sub $converter->node_information_filename($normalized, $node_contents)
Returns the normalized file name corresponding to the $normalized node name
and to the $node_contents node name contents.

Chapter 13: Texinfo::Convert::Converter 63

($normalized_name, $filename) =
$converter->normalized_sectioning_command_filename($element)
Returns a normalized name $normalized_name corresponding to a section-
ing command tree element $element, expanding the command argument using
transliteration and characters protection. Also returns $filename the corre-
sponding filename based on $normalized_name taking into account additional
constraint on file names and adding a file extension.

$converter->present_bug_message($message, $element)
Show a bug message using $message text. Use information on $element tree
element if given in argument.

$converter->set_global_document_commands($commands_location, $selected_commands)
Set the Texinfo customization options for @-commands. $selected_commands is
an optional array reference containing the @-commands set, if not given all the
global informative @-commands are set. $commands_location specifies where
in the document the value should be taken from. The possibilities are:

before
Set to the values before document conversion, from defaults and
command-line.

last
Set to the last value for the command.

preamble

Set sequentially to the values in the Texinfo preamble.

preamble_or_first
Set to the first value of the command if the first command is not
in the Texinfo preamble, else set as with preamble, sequentially to
the values in the Texinfo preamble.

Notice that the only effect of this function is to set a customization variable
value, no @-command side effects are run, no associated customization variables
are set.

For more information on the function used to set the value for each of the
command, see [Texinfo::Common set_global_document_command], page 10.

$table_item_tree = $converter->table_item_content_tree($element, $contents)
$element should be an @item or @itemx tree element, $contents should be
corresponding texinfo tree contents. Returns a tree in which the @-command
in argument of @xtable of the $element has been applied to $contents.

$result = $converter->top_node_filename($document_name)
Returns a file name for the Top node file using either TOP_FILE customization
value, or EXTENSION customization value and $document_name.

Finally, there is:

$result = $converter->output_internal_links()
At this level, the method just returns undef. It is used in the HTML output,
following the -—internal-links option of texiZ2any specification.

Chapter 13: Texinfo::Convert::Converter 64

13.6 Texinfo::Convert::Converter SEE ALSO

Section 2.1 [Texinfo::Common]|, page 6, Section 10.1 [Texinfo::Convert::Unicode], page 50,
Section 5.1 [Texinfo::Report], page 38, Section 6.1 [Texinfo::Translations|, page 41, Sec-
tion 9.1 [Texinfo::Convert::Utils|, page 47, and Section 3.1 [Texinfo::Parser]|, page 12.

13.7 Texinfo::Convert::Converter AUTHOR

Patrice Dumas, <pertusus@free.fr>

13.8 Texinfo::Convert::Converter COPYRIGHT AND
LICENSE

Copyright 2011- Free Software Foundation, Inc. See the source file for all copyright years.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

65

14 Texinfo::Convert::Info

14.1 Texinfo::Convert::Info NAME

Texinfo::Convert::Info - Convert Texinfo tree to Info

14.2 Texinfo::Convert::Info SYNOPSIS

my $converter
= Texinfo::Convert::Info->converter ({'parser' => $parser});

$converter->output ($tree) ;
$converter->convert ($tree) ;
$converter->convert_tree($tree);

14.3 Texinfo::Convert::Info NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

14.4 Texinfo::Convert::Info DESCRIPTION

Texinfo::Convert::Info converts a Texinfo tree to Info.

14.5 Texinfo::Convert::Info METHODS

$converter = Texinfo::Convert::Info->converter($options)
Initialize converter from Texinfo to Info.

The $options hash reference holds options for the converter. In this option
hash reference a Section 3.1 [parser object], page 12, may be associated with
the parser key. The other options are Texinfo customization options and a few
other options that can be passed to the converter. Most of the customization
options are described in the Texinfo manual. Those customization options,
when appropriate, override the document content. The parser should not be
available directly anymore after getting the associated information.

See Section 13.1 [Texinfo::Convert::Converter], page 58, for more information.

$converter->output($tree)
Convert a Texinfo tree $tree and output the result in files as described in the
Texinfo manual.

$result = $converter->convert($tree)
Convert a Texinfo tree $tree and return the resulting output.

$result = $converter->convert_tree($tree)
Convert a Texinfo tree portion $tree and return the resulting output. This
function does not try to output a full document but only portions. For a full
document use convert.

Chapter 14: Texinfo::Convert::Info 66

14.6 Texinfo::Convert::Info AUTHOR

Patrice Dumas, <pertusus@free.fr>

14.7 Texinfo::Convert::Info COPYRIGHT AND LICENSE
Copyright 2010- Free Software Foundation, Inc. See the source file for all copyright years.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

67

15 Texinfo::Convert::HTML

15.1 Texinfo::Convert::HTML NAME
Texinfo::Convert::HTML - Convert Texinfo tree to HTML

15.2 Texinfo::Convert::HTML SYNOPSIS

my $converter
= Texinfo::Convert: :HTML->converter ({'parser' => $parserl});

$converter->output ($tree) ;
$converter->convert ($tree) ;
$converter—>convert_tree($tree);
$converter->output_internal_links(); # HTML only

15.3 Texinfo::Convert::HTML NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

15.4 Texinfo::Convert::HTML DESCRIPTION
Texinfo::Convert::HTML converts a Texinfo tree to HTML.

15.5 Texinfo::Convert::HTML METHODS

$converter = Texinfo::Convert:: HTML->converter($options)
Initialize converter from Texinfo to HTML.

The $options hash reference holds options for the converter. In this option
hash reference a Section 3.1 [parser object], page 12, may be associated with
the parser key. The other options are Texinfo customization options and a few
other options that can be passed to the converter. Most of the customization
options are described in the Texinfo manual. Those customization options,
when appropriate, override the document content. The parser should not be
available directly anymore after getting the associated information.

See Section 13.1 [Texinfo::Convert::Converter], page 58, for more information.

$converter->output($tree)
Convert a Texinfo tree $tree and output the result in files as described in the
Texinfo manual.

$result = $converter->convert($tree)
Convert a Texinfo tree $tree and return the resulting output.

$result = $converter->convert_tree($tree)
Convert a Texinfo tree portion $tree and return the resulting output. This
function does not try to output a full document but only portions. For a full
document use convert.

Chapter 15: Texinfo::Convert::HTML 68

$result = $converter->output_internal_links()
Returns text representing the links in the document. The format should fol-
low the —-internal-links option of the texi2any specification. This is only
supported in (and relevant for) HTML.

15.6 Texinfo::Convert::HTML AUTHOR

Patrice Dumas, <pertusus@free.fr>

15.7 Texinfo::Convert::HTML COPYRIGHT AND
LICENSE

Copyright 2010- Free Software Foundation, Inc. See the source file for all copyright years.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

69

16 Texinfo::Convert::DocBook

16.1 Texinfo::Convert::DocBook NAME

Texinfo::Convert::DocBook - Convert Texinfo tree to DocBook

16.2 Texinfo::Convert::DocBook SYNOPSIS

my $converter
= Texinfo::Convert: :DocBook->converter ({'parser' => $parser});

$converter->output ($tree) ;
$converter->convert ($tree) ;
$converter->convert_tree($tree);

16.3 Texinfo::Convert::DocBook NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

16.4 Texinfo::Convert::DocBook DESCRIPTION

Texinfo::Convert::DocBook converts a Texinfo tree to DocBook.

16.5 Texinfo::Convert::DocBook METHODS

$converter = Texinfo::Convert::DocBook->converter($options)
Initialize converter from Texinfo to DocBook.

The $options hash reference holds options for the converter. In this option
hash reference a Section 3.1 [parser object], page 12, may be associated with
the parser key. The other options are Texinfo customization options and a few
other options that can be passed to the converter. Most of the customization
options are described in the Texinfo manual. Those customization options,
when appropriate, override the document content. The parser should not be
available directly anymore after getting the associated information.

See Section 13.1 [Texinfo::Convert::Converter], page 58, for more information.

$converter->output($tree)
Convert a Texinfo tree $tree and output the result in files as described in the
Texinfo manual.

$result = $converter->convert($tree)
Convert a Texinfo tree $tree and return the resulting output.

$result = $converter->convert_tree($tree)
Convert a Texinfo tree portion $tree and return the resulting output. This
function does not try to output a full document but only portions. For a full
document use convert.

Chapter 16: Texinfo::Convert::DocBook 70

16.6 Texinfo::Convert::DocBook AUTHOR

Patrice Dumas, <pertusus@free.fr>

16.7 Texinfo::Convert::DocBook COPYRIGHT AND
LICENSE

Copyright 2010- Free Software Foundation, Inc. See the source file for all copyright years.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

71

17 Texinfo::Convert:: TexinfoMarkup

17.1 Texinfo::Convert::TexinfoMarkup NAME

Texinfo::Convert:: TexinfoMarkup - Convert Texinfo tree to element and attribute markup

17.2 Texinfo::Convert::TexinfoMarkup SYNOPSIS

package Texinfo::Convert::TexinfoMyMarkup;
use Texinfo::Convert::TexinfoMarkup;
Q@ISA = qw(Texinfo::Convert: :TexinfoMarkup) ;

sub converter_defaults ($$) {
return /myconverter_defaults;

}

sub txi_markup_protect_text($$)

{
my $self = shift;

17.3 Texinfo::Convert::TexinfoMarkup NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

17.4 Texinfo::Convert::TexinfoMarkup DESCRIPTION

Texinfo: :Convert: : TexinfoMarkup converts a Texinfo tree to the Texinfo Markup Lan-
guage which is based on nested elements with attributes, similar to XML. All the infor-
mation present in the Texinfo tree, after expansion of @macro, @value and inclusion of
include files is kept. Texinfo::Convert::TexinfoMarkup is an abstract class, to be used
as a super class for modules implementing specific markup formatting functions called by
Texinfo::Convert: :TexinfoMarkup.

The Texinfo Markup Language elements and attributes are not documented, but the
Texinfo XML output by the Texinfo: :Convert: :TexinfoXML subclass (Section 18.1 [Tex-
info::Convert:: TexinfoXML], page 74) is a straightforward formatting as XML, and is de-
scribed by the texinfo DTD. Therefore the texinfo DTD can be used as a description of the
structure of both Texinfo XML and of the more abstract Texinfo Markup Language.

17.5 Texinfo::Convert::TexinfoMarkup METHODS

Chapter 17: Texinfo::Convert::TexinfoMarkup 72

17.5.1 Markup formatting methods defined by subclasses

The following methods should be implemented by the modules inheriting from
Texinfo::Convert: :TexinfoMarkup:

$result = $converter->txi_markup_atom($atom)
Format the $atom symbol string in a simpler way than with an element. For
example in XML the formatting of the symbol is achieved with an entity.

$result = $converter->txi_markup_comment($comment_string)
Format $comment_string as a comment.

$result = $converter->txi_markup_convert_text($element)
Called to format the Texinfo tree $element text, which is a reference on a hash.
The $element text is in the text key. The type key value may also be set
to distinguish the type of text (Section 3.6.2.2 [Texinfo::Parser Types for text
elements]|, page 19). Texinfo tree elements are described in details in Section 3.6
[Texinfo::Parser TEXINFO TREE], page 17.

$result = $converter->txi_markup_element($format_element, $attributes)

$result = $converter->txi_markup_open_element($format_element, $attributes)

$result = $converter->txi_markup_close_element($format_element, $attributes)
txi_markup_element is called for the formatting of empty elements. Other-
wise, txi_markup_open_element is called when an element is opened, and txi_
markup_close_element is called when an element is closed. $format_element
is the element name, $attributes is a reference on an array containing references
on arrays of pairs, one pair for each attribute, with the attribute name as the
first item of the pair and the attribute text as the second item of the pair.

$result = $converter->txi_markup_header()
Called to format a header at the beginning of output files.

$result = $converter->txi_markup_protect_text($string)
Protect special character in text for text fragments out of text texinfo tree
elements. For example, for spaces at end of line that are ignorable in most
output formats, for @set or @macro arguments.

17.5.2 Formatting state information

A method is available for subclasses to gather information on the formatting state:

$converter->in_monospace()
Return 1 if in a context where spacing should be kept and --- or '' left as is,
for example in @code, @example.

17.6 Texinfo::Convert::TexinfoMarkup AUTHOR

Patrice Dumas, <pertusus@free.fr>

17.7 Texinfo::Convert::TexinfoMarkup SEE ALSO

Section 13.1 [Texinfo::Convert::Converter], page 58. Section 18.1 [Tex-
info::Convert:: TexinfoXML], page T74. The Texinfo::Convert::TexinfoSXML is
another subclass, which outputs SXML. It is not much documented.

Chapter 17: Texinfo::Convert::TexinfoMarkup 73

17.8 Texinfo::Convert::TexinfoMarkup COPYRIGHT AND
LICENSE

Copyright 2010- Free Software Foundation, Inc. See the source file for all copyright years.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

74

18 Texinfo::Convert::TexinfoX ML

18.1 Texinfo::Convert::TexinfoXML NAME
Texinfo::Convert:: TexinfoXML - Convert Texinfo tree to TexinfoXML

18.2 Texinfo::Convert::TexinfoXML SYNOPSIS

my $converter
= Texinfo::Convert: :TexinfoXML->converter ({'parser' => $parser});

$converter->output ($tree) ;
$converter->convert ($tree) ;
$converter->convert_tree($tree);

18.3 Texinfo::Convert::TexinfoXML NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

18.4 Texinfo::Convert::TexinfoXML DESCRIPTION

Texinfo::Convert:: TexinfoXML converts a Texinfo tree to TexinfoXML.

18.5 Texinfo::Convert::TexinfoXML METHODS

$converter = Texinfo::Convert::TexinfoXML->converter($options)
Initialize converter from Texinfo to TexinfoXML.

The $options hash reference holds options for the converter. In this option
hash reference a Section 3.1 [parser object], page 12, may be associated with
the parser key. The other options are Texinfo customization options and a few
other options that can be passed to the converter. Most of the customization
options are described in the Texinfo manual. Those customization options,
when appropriate, override the document content. The parser should not be
available directly anymore after getting the associated information.

See Section 13.1 [Texinfo::Convert::Converter], page 58, for more information.

$converter->output($tree)
Convert a Texinfo tree $tree and output the result in files as described in the
Texinfo manual.

$result = $converter->convert($tree)
Convert a Texinfo tree $tree and return the resulting output.

$result = $converter->convert_tree($tree)
Convert a Texinfo tree portion $tree and return the resulting output. This
function does not try to output a full document but only portions. For a full
document use convert.

Chapter 18: Texinfo::Convert::TexinfoXML 75

18.6 Texinfo::Convert::TexinfoXML AUTHOR

Patrice Dumas, <pertusus@free.fr>

18.7 Texinfo::Convert::TexinfoXML COPYRIGHT AND
LICENSE

Copyright 2010- Free Software Foundation, Inc. See the source file for all copyright years.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

76

19 Texinfo::Convert::Plaintext

19.1 Texinfo::Convert::Plaintext NAME

Texinfo::Convert::Plaintext - Convert Texinfo tree to Plaintext

19.2 Texinfo::Convert::Plaintext SYNOPSIS

my $converter
= Texinfo::Convert::Plaintext->converter ({'parser' => $parser});

$converter->output ($tree) ;
$converter->convert ($tree) ;
$converter->convert_tree($tree);

19.3 Texinfo::Convert::Plaintext NOTES

The Texinfo Perl module main purpose is to be used in texi2any to convert Texinfo to
other formats. There is no promise of API stability.

19.4 Texinfo::Convert::Plaintext DESCRIPTION

Texinfo::Convert::Plaintext converts a Texinfo tree to Plaintext.

19.5 Texinfo::Convert::Plaintext METHODS

$converter = Texinfo::Convert::Plaintext->converter($options)
Initialize converter from Texinfo to Plaintext.

The $options hash reference holds options for the converter. In this option
hash reference a Section 3.1 [parser object], page 12, may be associated with
the parser key. The other options are Texinfo customization options and a few
other options that can be passed to the converter. Most of the customization
options are described in the Texinfo manual. Those customization options,
when appropriate, override the document content. The parser should not be
available directly anymore after getting the associated information.

See Section 13.1 [Texinfo::Convert::Converter], page 58, for more information.

$converter->output($tree)
Convert a Texinfo tree $tree and output the result in files as described in the
Texinfo manual.

$result = $converter->convert($tree)
Convert a Texinfo tree $tree and return the resulting output.

$result = $converter->convert_tree($tree)
Convert a Texinfo tree portion $tree and return the resulting output. This
function does not try to output a full document but only portions. For a full
document use convert.

Chapter 19: Texinfo::Convert::Plaintext 77

19.6 Texinfo::Convert::Plaintext AUTHOR

Patrice Dumas, <pertusus@free.fr>

19.7 Texinfo::Convert::Plaintext COPYRIGHT AND
LICENSE

Copyright 2010- Free Software Foundation, Inc. See the source file for all copyright years.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

Appendix A Index

%

Yhaccent_commandsc.iiiiiiiiiaa. 1
%all_commandsS.oiiiiniiii 6
Jblock_commandsouiiiiiiiiiiiaa 1
%blockitem_commandsS..........ouuernerninennnn. 2
%brace_code_commands................o.oeiiinn.. 2
Jbrace_commandsiiiiiiiiii 2
%close_paragraph_commands 2
%commands_args_number 3
Jicontain_basic_inline_commands.............. 3
%contain_plain_text...........c..oiiiiiiiii... 3
hdef _aliasest 7
Sdef _commands............iiiiiiii i 3
%def_no_var_arg_commands..................... 7
Ydefault_index_commands 3
%explained_commandsS..........c..ouuenienian... 3
%formattable_line_commands................... 3
Yformatted_line_commands..................... 3
Y%formatted_nobrace_commands 3
fheading_spec_commands 3
%in_heading_spec_commands.................... 4
dindex_names..............iiiiiiii 1
%inline_conditional_commands 4
Y%inline_format_commands 4
%letter_no_arg_commands 4
Y%line_commandsc.c.iiiiiiiii . 4
Jmath_commandscovviiiiiineenninnnn. 4
%no_paragraph_commands 4
Jnobrace_commandsiiiaiiiiiinn... 4
/nobrace_symbol_text...........l 7
Ynon_formatted_block_commands 4
Jpreamble_commandso.iiiiiriniiien.. 4
%preformatted_code_commands 4
fpreformatted_commands 4
Yref _commands............. ...t 4
Yroot_commandsiiiiiiii . 5
/sectioning_heading_commands 5
Y%small_block_associated_command............. 7
%texinfo_output_formats 6
Y%variadic_commands.............c..uiiiiiiiiii.. 5

A

add_heading number........................... 47
ascii_accent..........oviiiiiiiiii 56
ascii_accent_fallback....................... 56
associate_internal _references.............. 32

B

brace_no_arg_command 50

78

C

check_nodes_are_referenced.................. 32
check_unicode_point_conversion............. 50
collect_commands_in_tree..................... 8
collect_commands_list_in_tree............... 8
comma_index_subentries_tree................ 61
complete_node_tree_with_menus.............. 32
complete_tree_nodes_menus................... 43
complete_tree_nodes_missing menu........... 43
[4= o v 59
convert_accents ...t 61
convert_document_sections................... 61
convert_to_normalized 53
convert_to_texinfo........................... 46
convert_to_text i, 55
convert_tree........iiiiitiii i 59
(o7 427 2=5 o 1 = ol 59
converter_defaults..................ciin.. 59
converter_initialize 60
create_destination_directory............... 61

definition_arguments_content............... 48
definition_category_tree.................... 48
determine_files_and_directory.............. 61
document_erroriiiiiiii 39
docUument _Warmoviiitiet it 39

element_associated_processing_encoding..... 8
element_is_inline.................. 8
elements_directions............cciiiiiiiiin... 32
elements_file_directions.................... 33
encoded_accents ...t 51
encoded_input_file name................. 48, 62
encoded_output_file_name................ 48, 62
enumerate_item_representation............... 8
[oo = P 39
expand_today..............ol 48
expand_verbatiminclude...................... 48

F

fill_gaps_in_sectioning..................... 43
find_innermost_accent_contents............. 48
find_parent_root_command..................... 8
float_name_caption........................... 62
float_type_number......................, 62
floats_information..................c.cuu.... 15
force_conf 60

format_comment_or_return_end_line 62

Appendix A: Index

BAt 41
get_conf il 60
get_node_node_childs_from_sectioning...... 33
global_commands_information................ 15
global_information........................... 14

I

index_entry_sort_string..................... 33
indices_information.......................... 15
insert_nodes_for_sectioning_commands...... 43
internal_references_information............ 15
is_content_empty............, 8

L

labels_information........................... 15
1ine _ T Or .ottt 39
line _Warnooi it e 39
locate_include_file............... 9

M

menu_to_simple MeNU............ouuueeennnn... 44
merge_indices 33
move_index_entries_after_items_in_tree..... 9

N

new_block_command....................uin.n.. 33
new_complete_node_menu...................... 33
new_master_Menuc.oouuurenenenennnns. 34
new_node_menu_entry..............c.eeeennnnn.. 34
node_information_filename................... 62
NOdesS _Treettt e 34
normalize_nodec.iiiiitiniii., 53
normalize_top_node_name...................... 9
normalize_transliterate_texinfo............ 54
normalized_sectioning_command_filename.... 63
number_floats i 34

79
P
parse_texi_file............ i il 14
parse_texi_line............... ..., 14
parse_texi_piece............ol 14
parse_texi_textt 14
Parser initialization............................ 13
PEAt .. 42
present_bug_message............... ..o, 63
protect_colon_in_tree 9
protect_comma_in_tree 9
protect_first_parenthesis.................... 9
protect_hashchar_at_line_beginning........ 44
protect_node_after_label_in_tree............ 9
R
reference_to_arg in_tree.................... 44
regenerate_master_menu...................... 44
registered_errors............. 14
relate_index_entries_to_table_items_in_

0 o =Y =P 9
replace_convert_substrings.................. 42
S
section_level............. i 9
section_level_adjusted_command_name....... 34
sectioning_structure 34
set_conf 60
set_global_document_command 10
set_global_document_commands 63
set_informative_command_value.............. 10
set_menus_node_directions................... 35
set_menus_to_simple menu.................... 44
set_output_encodings 10
setup_index_entry_keys_formatting 35
sort_indices......... ... 35
split_by_nodel 35
split_by_section................l 36
split_custom_heading_command_contents..... 10
split_pages.........coiiiiiiiiiiiii 36
string_width.........o ool 51
T
table_item_content_tree..................... 63
Texinfo tree element extrakey 24
Texinfo tree element structure.................. 17
Texinfo tree elements 17
Texinfo: :Convert: :Converter initialization ... 59
Texinfo::Parser::parser..................... 13
Texinfo::Report::inew..............covvuunn. 38
text_accentsS. e 56
top_node_filename.................... 63
transliterate_protect_file_name............ 54
transliterate_texinfo....................... 54
trim_spaces_comment_from_content........... 10

Appendix A: Index

U

unicode_accentiiii i, 51
unicode_point_decoded_in_encoding 51
unicode_text... ... 51

vV

valid_option. ... 10
valid_tree_transformation................... 11

80
warn_non_empty_partsiiiiiiaan. 36
XML _ACCeNE . ..ttt 60
XML _ACCENtS . .. v ittt 60
XM1_COMMENT . ..ottt ittt et 60
xml_format_text_with_numeric_entities..... 60
xml_numeric_entity_accent................... 61

xml_protect_text............... il 60

	1 Texinfo::Commands
	Texinfo::Commands NAME
	Texinfo::Commands SYNOPSIS
	Texinfo::Commands NOTES
	Texinfo::Commands DESCRIPTION
	@-COMMAND INFORMATION
	@-COMMAND CLASSES
	Texinfo::Commands SEE ALSO
	Texinfo::Commands AUTHOR
	Texinfo::Commands COPYRIGHT AND LICENSE

	2 Texinfo::Common
	Texinfo::Common NAME
	Texinfo::Common SYNOPSIS
	Texinfo::Common NOTES
	Texinfo::Common DESCRIPTION
	MISC INFORMATION
	@-COMMAND INFORMATION
	Texinfo::Common METHODS
	Texinfo::Common SEE ALSO
	Texinfo::Common AUTHOR
	Texinfo::Common COPYRIGHT AND LICENSE

	3 Texinfo::Parser
	Texinfo::Parser NAME
	Texinfo::Parser SYNOPSIS
	Texinfo::Parser NOTES
	Texinfo::Parser DESCRIPTION
	Texinfo::Parser METHODS
	Initialization
	Parsing Texinfo text
	Getting information on the document

	TEXINFO TREE
	Element keys
	Element types
	Types for command elements
	Types for text elements
	Tree container elements
	Types of container elements

	Information available in the info key
	Information available in the extra key
	Extra keys available for more than one @-command
	Extra keys specific of certain @-commands or containers

	Texinfo::Parser SEE ALSO
	Texinfo::Parser AUTHOR
	Texinfo::Parser COPYRIGHT AND LICENSE

	4 Texinfo::Structuring
	Texinfo::Structuring NAME
	Texinfo::Structuring SYNOPSIS
	Texinfo::Structuring NOTES
	Texinfo::Structuring DESCRIPTION
	Texinfo::Structuring METHODS
	Texinfo::Structuring SEE ALSO
	Texinfo::Structuring AUTHOR
	Texinfo::Structuring COPYRIGHT AND LICENSE

	5 Texinfo::Report
	Texinfo::Report NAME
	Texinfo::Report SYNOPSIS
	Texinfo::Report NOTES
	Texinfo::Report DESCRIPTION
	Texinfo::Report METHODS
	Texinfo::Report AUTHOR
	Texinfo::Report COPYRIGHT AND LICENSE

	6 Texinfo::Translations
	Texinfo::Translations NAME
	Texinfo::Translations SYNOPSIS
	Texinfo::Translations NOTES
	Texinfo::Translations DESCRIPTION
	Texinfo::Translations METHODS
	Texinfo::Translations AUTHOR
	Texinfo::Translations COPYRIGHT AND LICENSE

	7 Texinfo::Transformations
	Texinfo::Transformations NAME
	Texinfo::Transformations NOTES
	Texinfo::Transformations DESCRIPTION
	Texinfo::Transformations METHODS
	Texinfo::Transformations SEE ALSO
	Texinfo::Transformations AUTHOR
	Texinfo::Transformations COPYRIGHT AND LICENSE

	8 Texinfo::Convert::Texinfo
	Texinfo::Convert::Texinfo NAME
	Texinfo::Convert::Texinfo SYNOPSIS
	Texinfo::Convert::Texinfo NOTES
	Texinfo::Convert::Texinfo DESCRIPTION
	Texinfo::Convert::Texinfo METHODS
	Texinfo::Convert::Texinfo AUTHOR
	Texinfo::Convert::Texinfo COPYRIGHT AND LICENSE

	9 Texinfo::Convert::Utils
	Texinfo::Convert::Utils NAME
	Texinfo::Convert::Utils SYNOPSIS
	Texinfo::Convert::Utils NOTES
	Texinfo::Convert::Utils DESCRIPTION
	Texinfo::Convert::Utils METHODS
	Texinfo::Convert::Utils SEE ALSO
	Texinfo::Convert::Utils AUTHOR
	Texinfo::Convert::Utils COPYRIGHT AND LICENSE

	10 Texinfo::Convert::Unicode
	Texinfo::Convert::Unicode NAME
	Texinfo::Convert::Unicode SYNOPSIS
	Texinfo::Convert::Unicode NOTES
	Texinfo::Convert::Unicode DESCRIPTION
	Texinfo::Convert::Unicode METHODS
	Texinfo::Convert::Unicode AUTHOR
	Texinfo::Convert::Unicode COPYRIGHT AND LICENSE

	11 Texinfo::Convert::NodeNameNormalization
	Texinfo::Convert::NodeNameNormalization NAME
	Texinfo::Convert::NodeNameNormalization SYNOPSIS
	Texinfo::Convert::NodeNameNormalization NOTES
	Texinfo::Convert::NodeNameNormalization DESCRIPTION
	Texinfo::Convert::NodeNameNormalization METHODS
	Texinfo::Convert::NodeNameNormalization AUTHOR
	Texinfo::Convert::NodeNameNormalization COPYRIGHT AND LICENSE

	12 Texinfo::Convert::Text
	Texinfo::Convert::Text NAME
	Texinfo::Convert::Text SYNOPSIS
	Texinfo::Convert::Text NOTES
	Texinfo::Convert::Text DESCRIPTION
	Texinfo::Convert::Text METHODS
	Texinfo::Convert::Text AUTHOR
	Texinfo::Convert::Text COPYRIGHT AND LICENSE

	13 Texinfo::Convert::Converter
	Texinfo::Convert::Converter NAME
	Texinfo::Convert::Converter SYNOPSIS
	Texinfo::Convert::Converter NOTES
	Texinfo::Convert::Converter DESCRIPTION
	Texinfo::Convert::Converter METHODS
	Initialization
	Getting and setting customization variables
	Conversion to XML
	Helper methods

	Texinfo::Convert::Converter SEE ALSO
	Texinfo::Convert::Converter AUTHOR
	Texinfo::Convert::Converter COPYRIGHT AND LICENSE

	14 Texinfo::Convert::Info
	Texinfo::Convert::Info NAME
	Texinfo::Convert::Info SYNOPSIS
	Texinfo::Convert::Info NOTES
	Texinfo::Convert::Info DESCRIPTION
	Texinfo::Convert::Info METHODS
	Texinfo::Convert::Info AUTHOR
	Texinfo::Convert::Info COPYRIGHT AND LICENSE

	15 Texinfo::Convert::HTML
	Texinfo::Convert::HTML NAME
	Texinfo::Convert::HTML SYNOPSIS
	Texinfo::Convert::HTML NOTES
	Texinfo::Convert::HTML DESCRIPTION
	Texinfo::Convert::HTML METHODS
	Texinfo::Convert::HTML AUTHOR
	Texinfo::Convert::HTML COPYRIGHT AND LICENSE

	16 Texinfo::Convert::DocBook
	Texinfo::Convert::DocBook NAME
	Texinfo::Convert::DocBook SYNOPSIS
	Texinfo::Convert::DocBook NOTES
	Texinfo::Convert::DocBook DESCRIPTION
	Texinfo::Convert::DocBook METHODS
	Texinfo::Convert::DocBook AUTHOR
	Texinfo::Convert::DocBook COPYRIGHT AND LICENSE

	17 Texinfo::Convert::TexinfoMarkup
	Texinfo::Convert::TexinfoMarkup NAME
	Texinfo::Convert::TexinfoMarkup SYNOPSIS
	Texinfo::Convert::TexinfoMarkup NOTES
	Texinfo::Convert::TexinfoMarkup DESCRIPTION
	Texinfo::Convert::TexinfoMarkup METHODS
	Markup formatting methods defined by subclasses
	Formatting state information

	Texinfo::Convert::TexinfoMarkup AUTHOR
	Texinfo::Convert::TexinfoMarkup SEE ALSO
	Texinfo::Convert::TexinfoMarkup COPYRIGHT AND LICENSE

	18 Texinfo::Convert::TexinfoXML
	Texinfo::Convert::TexinfoXML NAME
	Texinfo::Convert::TexinfoXML SYNOPSIS
	Texinfo::Convert::TexinfoXML NOTES
	Texinfo::Convert::TexinfoXML DESCRIPTION
	Texinfo::Convert::TexinfoXML METHODS
	Texinfo::Convert::TexinfoXML AUTHOR
	Texinfo::Convert::TexinfoXML COPYRIGHT AND LICENSE

	19 Texinfo::Convert::Plaintext
	Texinfo::Convert::Plaintext NAME
	Texinfo::Convert::Plaintext SYNOPSIS
	Texinfo::Convert::Plaintext NOTES
	Texinfo::Convert::Plaintext DESCRIPTION
	Texinfo::Convert::Plaintext METHODS
	Texinfo::Convert::Plaintext AUTHOR
	Texinfo::Convert::Plaintext COPYRIGHT AND LICENSE

	A Index

