11.3.3 Transliterating Characters

The system tr utility transliterates characters. For example, it is often used to map uppercase letters into lowercase for further processing:

generate data | tr 'A-Z' 'a-z' | process data ...

tr requires two lists of characters.79 When processing the input, the first character in the first list is replaced with the first character in the second list, the second character in the first list is replaced with the second character in the second list, and so on. If there are more characters in the “from” list than in the “to” list, the last character of the “to” list is used for the remaining characters in the “from” list.

Once upon a time, a user proposed adding a transliteration function to gawk. The following program was written to prove that character transliteration could be done with a user-level function. This program is not as complete as the system tr utility, but it does most of the job.

The translate program was written long before gawk acquired the ability to split each character in a string into separate array elements. Thus, it makes repeated use of the substr(), index(), and gsub() built-in functions (see String-Manipulation Functions). There are two functions. The first, stranslate(), takes three arguments:

from

A list of characters from which to translate

to

A list of characters to which to translate

target

The string on which to do the translation

Associative arrays make the translation part fairly easy. t_ar holds the “to” characters, indexed by the “from” characters. Then a simple loop goes through from, one character at a time. For each character in from, if the character appears in target, it is replaced with the corresponding to character.

The translate() function calls stranslate(), using $0 as the target. The main program sets two global variables, FROM and TO, from the command line, and then changes ARGV so that awk reads from the standard input.

Finally, the processing rule simply calls translate() for each record:

# translate.awk --- do tr-like stuff
# Bugs: does not handle things like tr A-Z a-z; it has
# to be spelled out. However, if `to' is shorter than `from',
# the last character in `to' is used for the rest of `from'.

function stranslate(from, to, target,     lf, lt, ltarget, t_ar, i, c,
                                                               result)
{
    lf = length(from)
    lt = length(to)
    ltarget = length(target)
    for (i = 1; i <= lt; i++)
        t_ar[substr(from, i, 1)] = substr(to, i, 1)
    if (lt < lf)
        for (; i <= lf; i++)
            t_ar[substr(from, i, 1)] = substr(to, lt, 1)
    for (i = 1; i <= ltarget; i++) {
        c = substr(target, i, 1)
        if (c in t_ar)
            c = t_ar[c]
        result = result c
    }
    return result
}

function translate(from, to)
{
    return $0 = stranslate(from, to, $0)
}

# main program
BEGIN {
    if (ARGC < 3) {
        print "usage: translate from to" > "/dev/stderr"
        exit
    }
    FROM = ARGV[1]
    TO = ARGV[2]
    ARGC = 2
    ARGV[1] = "-"
}

{
    translate(FROM, TO)
    print
}

It is possible to do character transliteration in a user-level function, but it is not necessarily efficient, and we (the gawk developers) started to consider adding a built-in function. However, shortly after writing this program, we learned that Brian Kernighan had added the toupper() and tolower() functions to his awk (see String-Manipulation Functions). These functions handle the vast majority of the cases where character transliteration is necessary, and so we chose to simply add those functions to gawk as well and then leave well enough alone.

An obvious improvement to this program would be to set up the t_ar array only once, in a BEGIN rule. However, this assumes that the “from” and “to” lists will never change throughout the lifetime of the program.

Another obvious improvement is to enable the use of ranges, such as ‘a-z’, as allowed by the tr utility. Look at the code for cut.awk (see Cutting Out Fields and Columns) for inspiration.


Footnotes

(79)

On some older systems, including Solaris, the system version of tr may require that the lists be written as range expressions enclosed in square brackets (‘[a-z]’) and quoted, to prevent the shell from attempting a file name expansion. This is not a feature.