Curve::Sphere class reference
[Core module]

Declaration  

#include <Goptical/Curve/Sphere>

namespace Goptical {
namespace Curve {
class Sphere;
};
};

This class is a member of the Curve namespace.

Inheritance  


 
 

 
 


 
 

 
 


 
 
 

 
 


 
 

 
 


Description  

This class provides an efficient spherical curve implementation.

Members  

See also the full member list section for this class.

Inherited members  

Functions  

  • Sphere(double roc)
  • virtual double derivative(double r) const
  • virtual bool intersect(Math::Vector3 &point, const Math::VectorPair3 &ray) const
  • virtual void normal(Math::Vector3 &normal, const Math::Vector3 &point) const
  • virtual double sagitta(double r) const

Members detail  

Sphere(double roc)  

Creates a spherical curve with given radius of curvature

virtual double derivative(double r) const  

This virtual function implements the derivative pure function declared in the ConicBase base abstract class.

Documentation inherited from base class:

Get curve derivative at specified distance from origin.

  • r: distance from curve origin (0, 0)

virtual bool intersect(Math::Vector3 &point, const Math::VectorPair3 &ray) const  

This virtual function implements the intersect pure function declared in the ConicBase base abstract class.

Documentation inherited from base class:

Get intersection point between curve and 3d ray. Return false if no intersection occurred

virtual void normal(Math::Vector3 &normal, const Math::Vector3 &point) const  

This virtual function overrides the normal virtual function defined in the Rotational base abstract class.

Documentation inherited from base class:

Get normal to curve surface at specified point

virtual double sagitta(double r) const  

This virtual function implements the sagitta pure function declared in the ConicBase base abstract class.

Documentation inherited from base class:

Get curve sagitta at specified distance from origin.

  • r: distance from curve origin (0, 0)

Valid XHTML 1.0 StrictGenerated by diaxen on Sun Jan 8 00:47:23 2012 using MkDoc